MARSHALLING EVIDENCE THROUGH DATA MINING

Daniel Barbará
James J. Nolan
David Schum
Arun Sood

George Mason University
Problem

♦ Lots of disparate, heterogeneous pieces of evidence.
♦ How do we make sense of it all?
♦ How do people investigate: making hypothesis. Two solutions:
 − A system that can make automatic hypothesis, through the use of models.
 − A system that supports hypothesis ``testing.''

Trifles?

You know my method. It is founded upon the observation of trifles...

Sherlock Holmes

``The Boscombe Valley Mystery``
Two approaches

- Automatic generation of hypothesis:
 + Less labor intensive
 - Rigid (constrained by the previously-built models. E.g.: Bayesian Networks)
 ⇒ Fails to adapt to new situations
- Human-in-the-loop (generating hypothesis)
 + Humans have great capacity for discovering new patterns
 - Laborious

Our approach: human-in-the-loop + Heavy support for hypothesis testing.
Hypothesis testing?

- By supporting:
 - Query answering
 - Linkage of evidence by data mining methods.
The architecture

Intelligence Trifles

Images
Signals
Human Intelligence
Open Source

New and Uncorrelated I-XML pages

Linked I-XML pages
Not Linked to Hypothesis

Query Processing

Linked I-XML pages
Linked to Other I-XML pages

I-XML pages
Linked to Existing Hypothesis

Weak Linkage to Hypothesis

I-XML pages
Strong Linkage to Hypothesis

Strong Linkage to Hypothesis

Add, Delete, Alter

Build I-XML pages

Build New Hypothesis

Existing Hypothesis

Build I-XML pages

Hypothesis Creation, Justification, Negation

Human Interaction
<table>
<thead>
<tr>
<th>Trifle address</th>
<th>Source</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Individuals</th>
<th>Assesment</th>
<th>Text</th>
<th>Image characteristics</th>
<th>Some tags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Queries, queries everywhere…

♦ Durability:
 – Standing (continuous) queries
 – Ad-hoc queries

♦ Complexity
 – Unformatted (query-by-example: take a trifle and use it as a query)
 – Formatted: list-of-keywords (or I-XML tags)
 – Richer queries (data mining): e.g., “is there a change in the trend of money transfers to a certain group of individuals?” HYPOTHESIS can be formulated by richer queries.
Richer queries

♦ Only limited by the implemented tasks in our system. E.g.,:
 – Frequent episodes,
 – Time-series outliers
 – Trend shifts
Grouping and querying trifles

♦ Supervised learning (text, and other media classification)
 – Trifle parsing into I-XML
 – Dimensionality reduction
 – Classifier building:
 • Unlabeled sets: clustering
 • Record linkage
 • T. Mitchell’s work
Trifles grouped by class

SQ1: Query (formatted) Iraq AND Weapons of mass destruction

1. If C_I: Belongs to I?
 - Yes: New trifle T_n
 - No: C_W: Belongs to W?
 - Yes: C_S: Belongs to S?
 - Yes: T_n
 - No: T_n
 - No: T_n

2. If C_W: Belongs to W?
 - Yes: T_n
 - No: T_n

I: Iraq $\cdots T_i, \cdots T_j, \cdots$

W: Weapons of mass destruction $\cdots T_i, \cdots T_k, \cdots$

C_S: Belongs to S?

T_n

S: Somalia $\cdots T_j, \cdots T_s, \cdots$
Clustering

SQ (unformatted)

C1

T1

C2

C3
Challenges

♦ Unsupervised learning
 – Absence or limited availability of a training corpus of trifles
 – Dynamic nature of the trifles
 – Large volume of trifles

♦ Clustering
 – Large dimensional space
 – Lots of missing values
 – Large volume of trifles

♦ Richer queries
 – Scalable methods in a distributed environment
Extra links

♦ Some important trifles may be missed by similarity comparison

♦ Linking trifles is a way to avoid this. E.g.:
 – Ti and Tj are target for SQ1, Tj and Tk are target for SQ2: Ti and Tk may be linked
 – Ti and Tj have words in common, but they are not classified (or clustered) together.

♦ The “small worlds” principle (the Kevin Bacon Game)
The value of “extra links”

Trifle: Strange shootings in backyard of house in WA (early in the investigation; regarded low priority)

Trifle: Gunman leaves note, instructing to wire $10M to acc xxx (Saturday, Oct. 19)

Trifle: ATM card of acc xxx had been used recently in WA

Trifle: House tenants Ids.
On the shoulders of AIGA

http://aiga.cs.gmu.edu/

♦ Agent-based Imagery and Geospatial Architecture (AIGA)

♦ To-date Achievements
 – AIGA Architecture
 – Publications
 – Prototype
Agent Architecture

♦ Agents
 – Perform specified function
 – Imagery, geospatial, Info. Retrieval (Google), Natural Language Processing (Annie), Data Mining.

♦ Locations
 – Provide places for agents to execute

♦ Communication Space
 – Allow agents to pass messages, data, objects to one another
 – Asynchronous communication
 – Knowledge repository

♦ Data Repositories
 – Provide access to imagery, geospatial, and other data
Architectural View

I-XML Page Space

- Imagery Agent
- Geospatial Agent
- Loc.
- Clustering Agent
- Data Agent
- Info. Retrieval Agent
- Client
- Geo Library
- Name Server
- Image Library
- Data Agent
- Geo Library
- Imagery Agent
- Client
- Data Agent
- Classf. Agent
- Loc.
- Geo Library
- Name Server
- Image Library
- Data Agent
Example scenario

1. **Trifle 1:** Shoulder fired anti-aircraft missiles stolen from a US Army base by member of a militia group in USA
2. **Hypothesis:** The militia group has shoulder-fired AA missiles
3. **Trifle 2:** Phone conversation between X and a member of the militia group.
4. **Hypothesis:** The conversation involved the sale of stolen weapons.
5. **Trifle 3:** X is a Saudi national known to have been in Afghanistan in January, 2001
6. **Hypothesis:** X has obtained shoulder-fired AA missiles from the militia group.
7. **Hypothesis:** The shoulder-fired AA missiles that will be delivered to the L. A. area.
8. **Trifle 4:** Photo of X at an ATM at LAX.
9. **Hypothesis:** X is now in LA area.
10. **Hypothesis:** Al Qaeda sleepers in the USA are planning attacks on civilian airliners landing and taking off at LAX.
Example scenario

HUMINT
- **Evidence 1:** Shoulder fired anti-aircraft missiles stolen from a US Army base by members of a militia group here in the USA.
- **Evidence 2:** Recorded phone conversation between member of militia group and a man identified as X.
- **Evidence 3:** The person identified as X is a Saudi national known to have been in Afghanistan in January of 2001.

SIGINT
- **Evidence 2:** Recorded phone conversation between member of militia group and a man identified as X.

IMINT
- **Evidence 4:** Video tape of person identified as X at an ATM at LAX Airport.

NEW AND UNCORRELATED XML PAGES

CLUSTER AND LINK ANALYSIS:
Helps to generate lines of argument on hypotheses.

NEW HYPOTHESIS:
Al Qaeda Sleepers in the USA planning attacks on civilian airliners landing and taking off at LAX.
Summary

- A flexible architecture to support hypothesis testing via query evaluation
- AIGA provides the distributed agents framework
- System can be incrementally enriched by adding query capabilities (through agents)
- A test bed for intelligence management techniques