COVID-19 (Coronavirus)
UMBC campuses are closed, but courses are now online and employees are working remotely.

talk: Learning to Ground Instructions to Plans, 2:30 Thr 3/21, ITE346

Learning to Ground Natural Language Instructions to Plans

Nakul Gopalan, Brown University

2:30-3:30pm Thursday, 21 March 2019, ITE 346, UMBC

In order to easily and efficiently collaborate with humans, robots must learn to complete tasks specified using natural language. Natural language provides an intuitive interface for a layperson to interact with a robot without the person needing to program a robot, which might require expertise. Natural language instructions can easily specify goal conditions or provide guidances and constraints required to complete a task. Given a natural language command, a robot needs to ground the instruction to a plan that can be executed in the environment. This grounding can be challenging to perform, especially when we expect robots to generalize to novel natural language descriptions and novel task specifications while providing as little prior information as possible. In this talk, I will present a model for grounding instructions to plans. Furthermore, I will present two strategies under this model for language grounding and compare their effectiveness. We will explore the use of approaches using deep learning, semantic parsing, predicate logic and linear temporal logic for task grounding and execution during the talk.

Nakul Gopalan is a graduate student in the H2R lab at Brown University. His interests are in the problems of language grounding for robotics, and abstractions within reinforcement learning and planning. He has an MSc. in Computer Science from Brown University (2015) and an MSc. in Information and Communication Engineering from T.U. Darmstadt (2013) in Germany. He completed a Bachelor of Engineering from R.V. College of Engineering in Bangalore, India (2008). His team recently won the Brown-Hyundai Visionary Challenge for their proposal to use Mixed Reality and Social Feedback for Human-Robot collaboration.

Host: Prof. Cynthia Matuszek (cmat at umbc.edu)

talk: Algorithms for Weakly Supervised Denoising of EEG Data, 6:30pm Feb 28

The February meeting of the Data Works MD Meetup features a talk by UMBC Professor Tim Oates on  Two Algorithms for Weakly Supervised Denoising of EEG Data, 6:30-9pm Thursday, February 28, 2019 at UMBC’s South Campus.  Join the meetup and register to attend this free talk and network with members of the Maryland data science community.  The talk abstract and Dr. Oates’s biosketch are given below.

Electroencephalogram (EEG) data is used for a variety of purposes, including brain-computer interfaces, disease diagnosis, and determining cognitive states. Yet EEG signals are susceptible to noise from many sources, such as muscle and eye movements, and motion of electrodes and cables. Traditional approaches to this problem involve supervised training to identify signal components corresponding to noise so that they can be removed. However, these approaches are artifact specific. In this talk, I will discuss two algorithms for solving this problem that uses a weak supervisory signal to indicate that some noise is occurring, but not what the source of the noise is or how it is manifested in the EEG signal. In the first algorithm, the EEG data is decomposed into independent components using Independent Components Analysis, and these components form bags that are labeled and classified by a multi-instance learning algorithm that can identify the noise components for removal to reconstruct a clean EEG signal. The second algorithm is a novel Generative Adversarial Network (GAN) formulation. I’ll present empirical results on EEG data gathered by the Army Research Lab, and discuss pros and cons of both algorithms.

Dr. Tim Oates is an Oros Family Professor in the Computer Science Department at the University of Maryland, Baltimore County. His Ph.D. from the University of Massachusetts Amherst was in the areas of artificial intelligence and machine learning with a focus on situated language learning. After working as a postdoctoral researcher in the MIT Artificial Intelligence Lab, he joined UMBC where he has taught extensively in core areas of Computer Science, including data structures, discrete math, compiler design, artificial intelligence, machine learning, and robotics. Dr. Oates has published more than 150 peer-reviewed papers in areas such as time series analysis, natural language processing, relational learning, and social media analysis. He has developed systems to determine operating room state from video streams, predict the need for blood transfusions and emergency surgery for traumatic brain injury patients based on vital signs data, detect seizures from scalp EEG, and find story chains (causal connections) joining news articles, among many others. Recently Dr. Oates served as the Chief Scientist of a Virginia-based startup where he developed architectures and algorithms for managing contact data, including entity linking, fuzzy record matching, and connected components on billion node graphs stored in a columnar database. He has extensive knowledge of machine learning algorithms, implementations, and usage.

talk: Does Wireless and Mobile Networking Research Still Matter? 12pm Wed 2/27, ITE325

Does Wireless and Mobile Networking Research Still Matter?

Dr. Dmitri Perkins, National Science Foundation

12:00pm Wed. Feb. 27, 2019, ITE325, UMBC

The miniaturization of radio and communication technologies has led to the widespread proliferation of wireless-enabled devices and to an explosion of mobile applications and services. Without question, wireless networking has become an enabling and critical component in practically every business sector. Wireless technologies and terms, such as, WiFi, Bluetooth, and broadband cellular are now embedded in our world and have become a part of society’s regular vocabulary. Given this ever-increasing success, one might be tempted to opine whether any core research challenges remain in the wireless and mobile networking domain.

In this talk, I will present the case that the answer is most certainly “yes” and that the promise of a truly ubiquitous Wireless Internet of Everything, capable of seamlessly interconnecting billions of devices, humans, intelligent systems, information sources, and enabling transformative applications (e.g., remote healthcare monitoring) still faces a plethora of inter-related challenges. These include, for example, exponential growth in mobile traffic, dynamic spectrum allocation, real-time management of network resources, design of intelligent radio technology, energy-efficient protocol designs, and network security/trust/privacy. I will highlight our most recent work on the topic of opportunistic wireless spectrum access, which focused on practical and implementable radio spectrum management frameworks and related spectrum sensing and sharing protocols, using today’s front-end communication technology. I will also discuss my vision for developing a sustainable and nationally recognized wireless networking research program, which includes emerging areas such as networked cyber-physical systems and mobile IoT.

Dr. Dmitri Perkins is currently a Program Director at the U.S. National Science Foundation (NSF), where he leads the Industry-University Cooperative Research Centers (IUCRC) Program for the Directorate of Computer & Information Science & Engineering (CISE). In this role, Dr. Perkins provides oversight of 25 multi-university industry-focused research centers, spanning all areas of CISE research and comprising over 75 U.S. academic institutions, 5 international sites, and 225+ industry partners. Prior to joining the NSF in 2015, Dr. Perkins was the Hardy Edmiston Endowed Professor of Computer Science and Engineering at the University of Louisiana at Lafayette, where he was the founding Director of the Wireless Systems and Performance Engineering Research (WiSPER) Laboratory. His core research interests include wireless and mobile communications, networking, and computing, with an emphasis on cognitive and adaptive protocols, formal design of experiments, performance engineering, dynamic resource and spectrum management, and security challenges. His research work spans multiple networking paradigms, including sensor/actuator networks, wireless broadband networks, multi-hop wireless networks, cognitive radio networks, and large-scale heterogeneous wireless systems. Dr. Perkins has published over 45 peer-reviewed journal articles and conference papers and is also the co-author of the book, Cognitive Radio Networks: From Theory to Practice. He received the NSF CAREER award in 2005 and was the recipient of the Outstanding Professor Award within the College of Sciences at the University of Louisiana in 2012. In 2013 and 2014, he was an ONR visiting research fellow at the Naval Research Laboratory (NRL), conducting research on dynamic spectrum awareness in heterogeneous wireless networks. Dr. Perkins has held leadership roles at the university and national levels. He was elected to serve as the Chair of the University Graduate Council and served a two-year term as Associate Dean of the Ray P. Authement College of Sciences at the University of Louisiana in 2012-2013. He has served on the technical program committee of numerous IEEE and ACM international conferences and served on advisory committees for Computer and Networks Systems (CNS) Division of the NSF. He is currently an associate editor of IEEE Transactions on Mobile Computing. Dr. Perkins received the Ph.D. degree in computer science and engineering from Michigan State University in 2002 and the B.S. degree in computer science from Tuskegee University in 1995.

talk and demo: Exploiting IoT Vulnerabilities, 11:45-1:00pm Mon 2/18

Exploiting IoT Vulnerabilities

Dr. Yatish Joshi, Senior Engineer, Cisco Systems

11:45am-1:00pm Monday, 18 February 2019, ITE 325-B

The past decade has seen explosive growth in the use and deployment of IoT (Internet of Things) devices. According to Gartner there will be about 20.8 billion IoT devices in use by 2020. These devices are seeing wide spread adoption as they are cheap, easy to use and require little to no maintenance. In most cases, setup simply requires using a web or phone app to configure Wi-Fi credentials. Digital home assistants, security cameras, smart locks, home appliances, smart switches, toys, vacuum cleaners, thermostats, leakage sensors etc are examples of IoT devices that are widely used and deployed in home and enterprise environments.

The threat landscape is constantly evolving and threat actors are always on the prowl for new vulnerabilities they can exploit. With traditional attack methods yielding fewer exploits   due to the increased focus on security testing, frequent patches, increased user awareness, Threat actors have turned their attention on IoT devices and are exploiting inherent vulnerabilities in these devices. The vulnerabilities, always ON nature, and autonomous mode of operation allow attackers to spy on users, spoof data, or leverage them as botnet infrastructure to launch devastating attacks on third parties. Mirai, a well known IoT malware utilized hundreds and thousands of enslaved IoT devices to launch DDoS attacks on Dyn affecting access to Netflix, Twitter, Github and many other websites. With the release of the Mirai source code numerous variants of the malware are infecting IoT devices across the world and using them to carry out attacks.

These attacks are made possible because the devices are manufactured without security in mind!. In this talk I will demonstrate how one can hack a widely available off-the-shelf IP Camera and router by exploiting the vulnerabilities present in these devices to get on the network, steal personal data, spy on a user, disrupt operation etc. We will also look at what can be done to mitigate the dangers posed by IOT devices.

So attend hack & defend!

Dr. Yatish Joshi is a software engineer in the Firepower division at Cisco Systems where he works on developing new features for Cisco’s security offerings. Yatish has a PhD in Computer Engineering from UMBC. Prior to Cisco Yatish worked as a lecturer at UMBC, and was a senior software engineer developing TV software at Samsung Electronics. When not working, he enjoys reading spy thrillers and fantasy novels.

talk: OMI, Invisible Technology that will Revolutionize Supercomputing and AI; 3pm Thr Feb 14, ITE325

Distinguished Lecture Series

OMI: The Invisible Technology that will Revolutionize Supercomputing and AI

Prof. Harm Peter Hofstee
Delft University of Technology
Distinguished Research Staff, IBM Austin Research Laboratory

3:00pm Thursday 14 February, 2019, ITE325, UMBC

In this talk, we present some major trends in compute, memory/storage, and networking, and for each we will discuss how OpenCAPI Memory Interface (OMI) and related interface technologies are set to transform how we build, program, and think about our computer systems. For the first of these trends, it allows us to compensate for the reduced growth in processor performance (per dollar) and performance per Watt. Accelerators are sharing memory and other resources over NVLink or OpenCAPI with conventional IBM POWER cores and are driving performance in the world’s largest supercomputers and IBM’s systems are targeting AI and other workloads. The second addresses the reduced improvement in memory cost and capacity. OMI allows us to use technologies other than DRAM as memory, and because many of these technologies are nonvolatile, the line between memory and storage is becoming blurred. The third, OpenCAPI-based networking leverages the rapid improvements in cost per Gb/s and allows us to contemplate systems that extend memory beyond the node using commodity infrastructure.

Harm Peter Hofstee is a Dutch physicist and computer scientist who currently is a distinguished research staff member at the IBM Austin Research Laboratory, USA, and a part-time Professor in Big Data Systems at Delft University of Technology, Netherlands. Hofstee is best known for his contributions to Heterogeneous computing as the chief architect of the Synergistic Processor Elements in the Cell Broadband Engine processor used in the Sony PlayStation 3, and the first supercomputer to reach sustained Petaflop operation. His early research work on coherently attached reconfigurable acceleration on POWER7 paved the way for the new coherent attach processor interface on POWER8. Hofstee is an IBM Master Inventor with more than 100 issued patents and a member of the IBM Academy of Technology. Hofstee was born in Groningen and obtained his master’s degree in theoretical physics of the University of Groningen in 1988. He continued to study at the California Institute of Technology where he wrote a master’s thesis Constructing Some Distributed Programs in 1991 and obtained a Ph.D. with a thesis titled Synchronizing Processes in 1995. He joined Caltech as a lecturer for two years and moved to IBM in the Austin, Texas, Research Laboratory, where he had staff member, senior technical staff member and distinguished engineer positions.

MD-AI Meetup: An AI Enabled Vision of the Future, 6-8pm 2/12, UMBC

talk: Using Deep Learning in Identifying Network Intrusions, 10:30am Mon 2/11, UMBC

talk: The Web PKI in Theory and Malpractice, Prof. Bruce Maggs, 11am Fri 12/7, ITE325

talk: Legal Aspects of Privacy and Data Protection, 12-1 Fri 11/9

talk: Unbiased Decisions with Biased Data, Nov 14

1 2 3 4 5 6 54