
Presented at IEEE Mililtary Communications Conference Proceedings 1999, Atlantic City, NJ.

Page 1

Host-based Bottleneck Verification
Efficiently Detects Novel Computer Attacks1

Robert K. Cunningham, Richard P. Lippmann, David Kassay, Seth E. Webster, Marc A. Zissman
MIT Lincoln Laboratory

244 Wood Street
Lexington, MA 02420-9108

                                                
1 This work was sponsored by the Department of the Army under Air Force contract F19628-95-C-0002. Opinions, interpretations, conclusions, and

recommendations are those of the authors and are not necessarily endorsed by the United States Air Force.

Abs t rac t -Bot t l eneck  ver i f i ca t ion  detects  n o v e l
c o m p u t e r  a t t a c k s  b y  l o o k i n g  f o r  u s e r s  performing
operat ions  at a h i g h  p r i v i l e g e  l e v e l  without
p a s s i n g  t h r o u g h  l e g a l  “ b o t t l e n e c k ”  programs that
grant  those  pr iv i leges .  This  approach has  been used
with network s n i f f i n g  data to  analyze  te lnet  and
r log in  network s e s s i o n s  to  UNIX h o s t s  and with
Solar i s  Bas ic  Security Module (BSM) host -based
audit data. An o f f - l i n e  vers ion  o f  Bot t l eneck
Veri f icat ion performs at a fa l se  alarm rate more
than two orders  of  magnitude lower than a reference
key- s t r ing  sys t em,  whi l e  s imul taneous ly  increas ing
the detect ion rate from roughly  20% to  80% for
user-to-super-user  at tacks .  Recent  development  of  a
real-t ime host -based vers ion  demonstrates that
Bot t l eneck  Ver i f i ca t ion  can  rap id ly  and  accurate ly
d e t e c t  a t t a c k s ,  w h i l e  a d d i n g  v e r y  l i t t l e  l o a d  t o  t h e
pro tec ted  sy s t em.  Fur thermore ,  a  s imple  ex tens ion
a l lows  a sys t em to  detect the  use o f  backdoors
ins ta l l ed  pr ior  to  sys tem ins ta l la t ion .

I.  INTRODUCTION

Heavy reliance on the Internet has greatly increased the
potential damage that can be inflicted by computer-based
attacks, while worldwide connectivity has made it easier to
launch those attacks from a distant and safe location. It is
difficult to prevent such attacks by security policies,
firewalls, or other mechanisms because software often
contains unknown weaknesses or bugs, and because complex
interactions between application software, operating system
services and network protocols are exploited by attackers.
Intrusion detection systems are designed to detect attacks,
which inevitably occur despite security precautions. Some
intrusion detection systems detect attacks in real time and can
be used to stop an attack in progress. Others provide after-the-
fact information about attacks and are used to repair damage,
understand the attack mechanism, and reduce the possibility of
future attacks of the same type. More complex intrusion
detection systems detect never-before-seen,  new attacks,
while most commercial and government systems detect
previously known and studied attacks.
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 Fig. 1.  Approaches to Intrusion Detection.

The many different approaches which have been pursued to
develop intrusion detection systems are described elsewhere,
including [4][16]. Figure 1 shows four major approaches to
intrusion detection and the different characteristics of these
approaches [15]. The figure is divided vertically into
approaches that detect new, unseen attacks, and those that
only detect previously known attacks. Simpler approaches are
on the left and approaches that are computationally more
complex, and have greater memory requirements are shown
towards the right.

The most common approach to intrusion detection, denoted
as “signature verification,” is shown on the bottom of Figure
1. Systems using this approach find only previously seen,
(known) attacks by looking for an invariant signature left by
these attacks. This signature may be found either in host-
based audit records on a victim machine or in the stream of
network packets sent to and from a victim and captured by a
“sniffer” which stores all important packets for on-line or
future examination. The Network Security Monitor (NSM)
was an early signature-based intrusion detection system that
found attacks by searching for key-strings in network traffic
captured using a sniffer. Early versions of the NSM [9][11]
were the foundation for many government and commercial
intrusion detection systems including NID [14] and
NetRanger [5]. This type of system is popular because one
sniffer can monitor traffic to many workstations and the
computation required to reconstruct network sessions and
search for keystrings is not excessive. In practice, these
systems can have high false alarm rates (e.g. 100’s of false
alarms per day) because it is often difficult to select key-
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strings by hand that successfully detect real attacks while not
creating false alarms for normal traffic. In addition, these
signature-based systems must be updated frequently to detect
new attacks as they are discovered, and these and other
systems which rely on network sniffing can be defeated by
user or network encryption which makes reconstruction of
network sessions effectively impossible. Most current
commercial systems, including NetRanger [5], include some
form of signature verification. Recent research on systems
which rely on signature verification include BRO [18] which
uses network sniffer data and NSTAT [12] which uses audit
information from one or more hosts.

Approaches shown in the upper half of Figure 1 can find
novel new attacks. This capability is essential to protect
critical hosts because new attacks and new attack variants are
constantly being developed. Anomaly detection, shown in the
upper right of Figure 1, is one of the most frequently
suggested approaches to detect novel new attacks. NIDES was
one of the first statistical-based anomaly detection systems
used to detect unusual user [10] and unusual program [2]
behavior. The statistical component of NIDES forms a model
of a user, system, or network activity during a training phase.
After training, anomalies or departures from normal behavior
are detected and are flagged as attacks. Anomaly detection is
most useful if normal user or system behavior is repetitive
and easily modeled and less useful when behaviors vary
widely. When behavior is regular, this technique can discover
attacks that rely on human interactions not observed on the
computer system or network. Social engineering attacks, such
as those in which an attacker tricks the victim into revealing
passwords, can only be found using this method. Recent
research on anomaly detection includes the development of
EMERALD [19] which combines statistical anomaly
detection from NIDES with signature verification. Other
research, motivated by the natural immune system, detects
anomalous behavior of system programs by examining
system calls and looking for unusual call sequences that didn’t
occur during normal training [7][8]. Finally, some researchers
are beginning to use neural networks for anomaly detection
[22]. This approach combines some of the good qualities of
signature verification with anomaly detection because neural
networks can be trained to simultaneously model both normal
behavior and known attack behavior.

Specification-based intrusion detection [13] is a second
approach from the top half of Figure 1 that can be used to
detect new attacks. It detects attacks which make improper use
of system or application programs. This approach involves
first writing security specifications that describe the normal
intended behavior of programs. Host-based audit records are
then monitored to detect behavior that violates the security
specifications. This approach was applied to 15 Unix system
programs and successfully found many attacks [13].
Specification-based intrusion detection has the potential for
providing very low false alarm rates and detecting a wide

range of attacks including many forms of malicious code such
as trojan horses and viruses, attacks that take advantage of
race conditions, and attacks that take advantage of improper
synchronization in distributed programs. Unfortunately, it has
not become popular because security specifications must be
written for all monitored programs. This is difficult because
system and application programs are constantly updated,
because all programs must be monitored for effective
protection, and because many recent browser, mail, and word
processing applications are extremely complex and are
difficult to model. Specification-based intrusion detection is
thus best applied to a small number of critical user or system
programs that might be considered prime targets for
exploitation.

The final approach to intrusion detection shown in Fig. 1.
is bottleneck verification. Bottleneck verification is designed
to detect major system-wide security policy violations,
without monitoring every system or application program. It
doesn’t require specifications for all monitored programs as
with specification-based approaches, it doesn’t require
signatures for attacks as with signature verification, and it
doesn’t require a model of normal user behavior as with
anomaly detection. It is also has very low computational and
memory requirements. Bottleneck verification detects a user
transitioning to a privileged state without going through the
normal system bottlenecks used to permit this type of
transition.
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 Fig. 2.  System user state diagram (notional). Bottleneck verification
detects a user transitioning to a privileged state without going through the

normal system bottlenecks.

II.  BOTTLENECK VERIFICATION

The bottleneck verification approach was motivated by
careful examination of reconstructed telnet sessions, captured
by network sniffers, of many actual attacks on government
sites. It was found that the goal of many actual attacks on
Unix systems and also of many exploits posted to web sites
is to obtain an interactive shell running at the highest level of
privilege (root). It was also noticed that, no matter which
exploit was used to obtain such a root shell, evidence was
present in the transcript that could be used to determine that a
root shell had been created and that it had been created without
following normal system procedures.

Figure 2 illustrates the bottleneck verification approach to
intrusion detection. This approach applies to well-designed
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operating systems where there are only a few legal
“bottleneck” methods to transition from a lower privilege
level (the lower, normal user states) to a higher privilege
level (the upper, privileged user states) and where it is
relatively easy to determine when a user is at a higher level.
The key concept is to detect the use of legal bottleneck
methods to transition to higher privilege levels and user
activity indicative of a high privilege level. High privilege
activity that originates from a session that did not pass
through a bottleneck is indicative of an attack on the system.
This can theoretically detect any novel attack that illegally
transitions a user to a high privilege level, without prior
knowledge of the attack mechanism. New attacks shown on
the left of Figure 2 can thus be detected even when the attack
mechanism is not understood.

Initial work on bottleneck verification has focused on
detecting when users illegally obtain interactive root shells on
UNIX hosts by examining sniffing data or host audit data, as
described in the next few sections. The general approach,
however, can be extended to other operating systems and to
determine whether users illegally access or modify data or
illegally use specific application or system programs.

A recent addition to bottleneck verification, indicated on the
right side of Figure 2, makes use of the observation that most
security policies restrict the number of privileged users
permitted to access a system. (For UNIX, often only “root” is
allowed to be the super-user with high privilege.)

When users other than the select few permitted by security
policy appear to have super-user privilege, it is likely that a
successful attack occurred that  either predated installation of
the Bottleneck Verification system, or that used  a mechanism
that was not yet covered by the implementation.

This approach was used to develop a successful  (low false
alarm rate, high detection rate) off-line implementation of a
sniffer-based bottleneck verification intrusion detection
system [15]. The following sections describe the design and
implementation of real-time host-based Bottleneck
Verification, and the performance of the system on two
different computing platforms.

III.  REAL-TIME HOST-BASED SYSTEM DESIGN

Bottleneck Verification is applicable to any well-designed
operating system that has at least two different levels of
privilege. All UNIX-style operating systems  (e.g., AIX,
FreeBSD, Linux, MacOS Server, SCO, and Solaris) and the
Windows/NT operating systems enforce this distinction.
Unfortunately, system actions are recorded in different formats
in different files for each of the different operating systems.
To permit research and development of Bottleneck
Verification independent of a given operating system’s
recording mechanism, a multi-step approach is taken. (See
Fig. 3. ) In the first stage, an operating system’s (OS) native
process reporting format is converted to an OS-independent
data structure that represents information about each running
process. This data structure represents who is running the

process and whose permissions are used during the execution
of the process (in UNIX parlance, both real and effective user
ids), which process started the current process, and the name
of the command. Some additional information is maintained
to support attack reporting, including the start time of the
process, and if the session originates on a different computer,
the source IP address  and the port from which the connection
started.

As before, operating system events are mapped to generic
process events, to permit development of Bottleneck
Verification without regard for a specific system’s event. For
Unix systems, the POSIX standards have helped unify many
aspects of the programming and user interfaces.
Unfortunately, the application programmer’s interface (API)
for C2-class monitoring has not been standardized, so each
operating system has a slightly different tool to accomplish
this task. Luckily, to implement Bottleneck Verification, the
only events that need to be monitored are those that create,
initialize, or destroy a process, or those events that modify
the processes’ operating permission level. Create and destroy
events are used to allocate  and free process objects,
initialization events indicate the permissions that the process
will run at, and events that modify the operating permission
level are used to verify that the bottleneck has been respected.
Processes that spring into life at a higher permission level
than their parents are flagged as attacks, if they haven’t passed
through the bottleneck.
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 Fig. 3.  Separating Bottleneck Verification from OS-specific process
information.

IV.  REAL-TIME HOST-BASED SYSTEM IMPLEMENTATION

To verify the ideas described above, a real-time
implementation of Bottleneck Verification was developed
using the Sun Solaris Basic Security Module (BSM) as input
to the system.  Solaris BSM events were mapped to the
generic events as follows: fork, fork1, vfork⇒create; exec and
execve⇒initialize process; kill, exit ⇒ destroy process.  In
addition, the inetd connection creation event is monitored to
provide information about source IP addresses and ports for
reporting attacks, although this is not strictly necessary for
implementing BV.

BSM intercepts calls between applications and the kernel,
usually reporting all events to an audit file. The events that
are recorded can be controlled via an interface that
communicates with the audit daemon. By default, many
events are turned on. This, along with the attempt to write
these events to disk, results in a system that noticeably slows
when BSM auditing is started in its default configuration. To
achieve good performance, we do two things: first, only those
events that are monitored by Bottleneck Verification are
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enabled, and second, the audit daemon is told to write to a
pipe that is read by the Bottleneck Verification process. Under
most conditions, this data is never written to disk.

V.  HOST-BASED SYSTEM PERFORMANCE

A. Evaluation Using Data from the DARPA 1998  Off-Line
Intrusion Detection Evaluation

1. Data Source Description
In 1998 MIT Lincoln Laboratory created the first large-

scale realistic data base that could be openly distributed and
used to evaluate intrusion detection systems [6][17]. The full
corpus was designed to evaluate both the false alarm rate and
the detection rate of intrusion detection systems using many
types of both known and new attacks embedded in a large
amount of normal background traffic. Actual network traffic
was generated to be similar to the type of traffic observed
flowing between U.S. Air Force Bases and the publicly
accessible Internet.

Traffic and attacks were generated using conventional Unix
system and application programs by humans and automatic
traffic generators on a network which simulated 1000’s of
Unix hosts and 100’s of users using fewer than 20 actual
machines. This network simulates the inside of an Air Force
base connected through a Cisco router to outside machines on
the Internet. The inside contains Linux, SunOS, and Solaris
UNIX victim hosts and a gateway to 100’s of simulated PC
and Unix Workstation hosts. Host-based audit data was
collected on the Solaris victim machine using Sun’s Basic
Security Module (BSM). The outside contains a gateway to
100’s of simulated PC and Unix Workstation hosts, a
gateway to 1000’s of web servers and a sniffer workstation
that captures all packets on the local area network connected
to the outside of the router. Most attacks were launched from
outside workstations through the router against one or more
of the inside victim workstations.

Seven weeks of training data were provided with labeled
attacks to train intrusion detection systems and two weeks of
test data were then provided with unlabeled attacks to perform
a blind evaluation. Automatically generated background traffic
used more than 20 network services including dns, finger, ftp,
http, ident, ping, pop, smtp, snmp, telnet, time, X. More
than 38 different types of attacks were included in the test data
with a total of 114 attack instances. Attacks were divided into
four categories with regard to their purpose. Denial-of-service
attacks made it difficult to use a system or some network
service over a short interval, remote-to-user attacks provided a
user at a outside workstation access to one of the victim
machines, user-to-root attacks allowed a user who had already
obtained user-level access to a victim machine to transition to
a root privilege level, and surveillance or probe attacks
provided outside users information about the configuration or
existence of inside hosts. Attacks in the test data had either
appeared in the training data, were new to the test data, or
were new and developed by MIT Lincoln Laboratory.

2. Accuracy Results
An off-line version of host-based bottleneck verification

was evaluated using the Solaris BSM audit information
provided with Lincoln Laboratory corpus. The performance
evaluation of host-based systems focused on user-to-root
attacks because this is the attack type for which sufficient data
was present. All sessions that were recorded by the auditing
Solaris system were processed, however this is only a small
subset (4600) of the total number of sessions. Of these
sessions, only 22 were attacks, and all of these attacks
obtained a root shell as part of the attack. The results
presented in this section should be considered “unofficial,” as
some members of the intrusion detection team interacted with
members of the evaluation corpus development team.
Nevertheless, this data was processed only once following the
formal evaluation procedures described in [17].

The off-line host-based bottleneck verification algorithm
detected more than 80% of the attacks, with no false alarms.
Further investigation of the results revealed that the algorithm
could have found all attacks with no false alarms, were it not
for an implementation bug. In the tested implementation we
assumed that if any shell obtained root legally, then all
subsequent processes spawned from this shell or its
descendants should be allowed to obtain root. This
assumption was too permissive: in the test data the inet
daemon was restarted by the system administrator (who had
legally obtained root). The inet daemon starts processes,
connecting them to incoming sessions, so subsequent attacks
that came over the network were missed. The fix actually
simplified the implementation: instead of maintaining a list
of all descendants, only immediate parent-children
relationships need to be examined.
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 Fig. 4.  Host-based Bottleneck Verification Accuracy. (Unofficial.)

B. Effect of installing Real-time Bottleneck Verification
Host-based intrusion detection systems have two inherent

drawbacks: they alter the configuration of the system
software, and they use up processing power and disk space of
the machine on which they are installed.

Commercial companies that develop host-based intrusion
detection systems address these problems. To reduce the
number of changes required to install an intrusion detection
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system, some companies provide an option to read audit data
generated by operating systems in their default  configuration
(e.g., [1]). Commercial host-based intrusion detection
systems typically require 10s to 100s of Mbytes of disk space
to store the output of the audit and syslog daemons. For
reasons of portability, some first allow the audit daemon to
save records, and periodically and asynchronously  process
these records with a polling intrusion detection process [1].

For our implementation of bottleneck verification, we
assume that if one is willing to modify the configuration of
the system by installing an intrusion detection system, then
it is advantageous to install a C2-class auditing system and
receive the most accurate and timely process information
possible. To reduce the amount of disk storage required, we
cause Sun’s BSM to write directly to the Bottleneck
Verification process, only recording the events required to
detect bottleneck violations.

Because we want to continue to improve the algorithm, it
is important to us to have a system that can easily and rapidly
be modified. As a result, our implementation of Bottleneck
Verification is in perl, with C extensions to control the audit
process. Perl is an outstanding language for prototyping
systems; it has a simple object model that allows one to
rapidly experiment with new ideas by altering the behavior of
a limited number of program objects. It is not the best
language for system software where memory use and
processor utilization is to be minimized.

Nevertheless, we have installed our implementation of
Bottleneck Verification on several different computer systems,
including a portable Intel x86 system and a desktop Sun
Sparc system. The portable Intel-based system was a Tecra
740 CDT portable system with a 166 MHz Pentium
processor with 128 MB of memory running Sun Solaris
5.5.1. The desktop Sparc system was an Ultra 5 275/250MHz
system with 128 MB of memory running Sun Solaris 5.6.
The systems have run for several weeks, usually not
consuming more than a few percent of processing, while
consuming a relatively stable 4 Mbytes of memory. Because
Bottleneck Verification is event driven, it only consumes
CPU time when the requested audit events are produced.

We ran the integer SPEC marks to measure the overhead of
the Bottleneck Verification daemon in a nearly quiescent
system, and found it to be essentially zero. (There were no
significant differences between SPECint marks with and
without BV present.) During the few weeks that BV was
installed on the abovementioned systems, we noticed the
highest loads (~8% of the CPU utilization) during the
execution of a parallel distributed make, which spawned many
processes on the local and remote machines. During the past
two weeks, no attacks were found, and no alerts were issued.

VI.  CONCLUSIONS

Host-based Bottleneck Verification rapidly and efficiently
detects novel attacks at exceedingly low false alarm rates.
Host-based BV has been tested using the 1998 DARPA

Intrusion Detection data for which it detected more than 80%
of the attacks against an audited Solaris host that advanced the
privilege of the attacker. A real-time host-based version has
been developed and tested on Solaris systems running on two
different processors. To date, the real-time version of
Bottleneck Verification has had no significant effect on
normal operation of Solaris hosts. Future work will focus on
extending Bottleneck Verification to find other abuses of
privilege and to find more stealthy attacks.
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