

page 1 --- December 2002

F-Logic Tutorial

ontoprise GmbH

How to Write F-Logic Programs
A Tutorial for the Language F-Logic1
covers OntoBroker Version 3.5

Contents
1. Introduction ... 2
2. A First Example .. 3
3. Objects and their Properties ... 4

3.1. Object Names and Variable Names.. 4
3.1.1. Methods.. 4
3.1.2. Class Membership and Subclass Relationship.. 5

3.2. Expressing Information about an Object: F-Molecules 6
3.3. Signatures ... 6
3.4. F-molecules without any properties .. 9

4. Predicate Symbols.. 10
5. Lists .. 11

5.1. Examples... 11
6. Built-in Features.. 12

6.1. List of Built-in Features.. 12
6.2. Numbers, Comparisons and Arithmetics... 13
6.3. String handling .. 14
6.4. Type conversion .. 15
6.5. Index Server integration .. 15
6.6. Access to databases ... 16
6.7. Other builtins ... 16

7. Path Expressions.. 17
7.1. Nesting of Path Expressions and F-Molecules ... 17
7.2. Path Expressions in Queries... 18

8. Rules and Queries.. 19
8.1. Rules ... 19
8.2. Queries .. 19

9. Namespaces in F-Logic.. 21
9.1. Declaring Namespaces ... 21
9.2. Using Namespaces in F-Logic Expressions.. 21
9.3. Querying for Namespaces... 22
9.4. Default Namespaces ... 23

10. Compiler Switches.. 24
11. Imprint... 25
12. References ... 26

1 This tutorial refers to the syntactic and semantic capabilities of F-Logic as
implemented by ontoprise GmbH (F-Logic Parser V 2.4, Ontobroker version V 3.5).

page 2 --- December 2002

F-Logic Tutorial

ontoprise GmbH

1. Introduction
F-Logic [KLW95] is a deductive, object oriented database language which combines
the declarative semantics and expressiveness of deductive database languages with
the rich data modelling capabilities supported by the object oriented data model.

The theoretical foundations of F-Logic have been described in the F-Logic report
[KLW95]. For this tutorial parts of the F-Logic tutorial of the Florid project at the
university of Freiburg have been used (http://www.informatik.uni-
freiburg.de/~dbis/florid). The present tutorial describes how to apply F-Logic in the
Ontobroker system. Therefore, this tutorial explains the various features of F-Logic by
example and shows how to use them for typical problems. Section 2 gives a taste of
how F-Logic programs look like. The same simple model world taken from the Old
Testament also serves as a background database throughout the tutorial. The
following Sections 3 to 7 focus on data modeling and present the language concepts
of F-Logic. In section 8 it is described how F-Logic is used within the Ontobroker
system.

We assume that the reader of this tutorial is familiar with the basic concepts of
deductive databases, e.g., Datalog [AHV95, CGT90, Ull89], and the principles of
object oriented database systems [ABD + 89].

This covers the features of the Ontoprise Ontobroker version V 3.X. The F-Logic
variant of Ontoprise differs from the versions in [KLW95] and [FHK] in using a slightly
different syntax (e.g. <- is used instead of :-) and in providing a lot of extensions (like
builtins, name spaces etc.). In this version additionally any logical formula may occur
in the bodies of rules.

page 3 --- December 2002

F-Logic Tutorial

ontoprise GmbH

2. A First Example
Before explaining the syntax and semantics in detail, we give a first impression of F-
Logic. The following F-Logic program models biblical persons and their relationships:

/* facts */
abraham:man.
sarah:woman.
isaac:man[father->abraham; mother->sarah].
ishmael:man[father->abraham; mother->hagar:woman].
jacob:man[father->isaac; mother->rebekah:woman].
esau:man[father->isaac; mother->rebekah].

/* rules consisting of a rule head and a rule body */
FORALL X,Y X[son->>Y] <- Y:man[father->X].
FORALL X,Y X[son->>Y] <- Y:man[mother->X].
FORALL X,Y X[daughter->>Y] <- Y:woman[father->X].
FORALL X,Y X[daughter->>Y] <- Y:woman[mother->X].

/* query */
FORALL X,Y <- X:woman[son->>Y[father->abraham]].

(Example 2.1)

The first part of this example consists of a set of facts to indicate that some people
belong to the classes man and woman, respectively, and give information about the
father and mother relationships among them. According to the object-oriented
paradigm, relationships between objects are modeled by method applications, e.g.,
applying the method father to the object isaac yields the result object abraham. All
these facts may be considered as the extensional database of the F-Logic program.
Hence, they form the framework of an object base which is completed by some
closure properties.

The rules in the second part of Example 2.1 derive new information from the given
object base. Evaluating these rules in a bottom-up way, new relationships between the
objects, denoted by the methods son and daughter, are added to the object base as
intensional information.

The third part of Example 2.1 contains a query to the object base. The query shows
the ability of F-Logic to nest method applications. It asks about all women and their
sons, whose father is Abraham. The same question could be written as a conjunction
of simple subgoals:

FORALL X,Y <- X:woman AND X[son->>Y] AND Y[father->abraham].

Methods and classes also are objects, see Sections 3.1.1 and 3.1.2.

page 4 --- December 2002

F-Logic Tutorial

ontoprise GmbH

3. Objects and their Properties
As we have already seen in Example 2.1 objects are the basic constructs of F-Logic.
Objects model real world entities and are internally represented by object identifiers
which are independent of their properties. According to the principles of object
oriented systems these object identifiers are invisible to the user. To access an object
directly the user has to know its object name. Every object name refers to exactly one
object. Following the object oriented paradigm, objects may be organized in classes.
Furthermore, methods represent relationships between objects. Such information
about objects is expressed by F-atoms.

3.1. Object Names and Variable Names

Object names and variable names are also called id-terms and are the basic
syntactical elements of F-Logic. To distinguish object names from variable names, the
later are always declared using logical quantifiers FORALL and EXISTS.

After the first letter, object names and variable names may both contain uppercase
letters, lowercase letters, numerals or the underscore symbol "_" . Examples for object
names are abraham, man, daughter, for variable names are X, Method. There are two
special types of object names that carry additional information: integers and strings.

Every positive or negative integer may be used as an object name, e.g., +3, 3, -3, and
also every string enclosed by quotation marks "".

Complex id-terms may be created by function symbols where other id-terms may be
used as arguments, e.g., couple(abraham, sarah), f(X). An id-term that contains no
variable is called a ground id-term.

3.1.1. Methods

In F-Logic, the application of a method to an object is expressed by data-F-atoms
which consist of a host object, a method and a result object, denoted by id-terms. Any
object may appear in any location: host object, result position, or method position.
Thus, in our Example 2.1 the method names father and son are object names just like
isaac and abraham.

Variables may also be used be used at all positions of a data-F-atom, which allows
queries about method names like

FORALL X,Y <- isaac[X->>Y].

Methods may either be single-valued (->), i.e. can have one value only or they may be
multi-valued (->>), i.e. can have more values. If more values are given for multi-valued
attributes the values must be enclosed in curly brackets:

jacob[son->>{reuben, simeon, levi, judah, issachar, zebulun}].

Methods with Parameters. Sometimes the result of the invocation of a method on a
host object depends on other objects, too. For example, Jacob's sons are born by
different women. To express this, the method son is extended by a parameter
denoting the corresponding mother of each of Jacob's sons. Like methods,
parameters are objects as well, denoted by id-terms. Syntactically a parameter list is
always included in parentheses and separated by "@" from the method object.

page 5 --- December 2002

F-Logic Tutorial

ontoprise GmbH

jacob[son@(leah)->>
 {reuben, simeon, levi, judah, issachar, zebulun};
 son@(rachel)->>{joseph, benjamin};
 son@(zilpah)->>{gad, asher};
 son@(bilhah)->>{dan, naphtali}].

(Example 3.1)

The syntax extends straightforwardly to methods with more than one parameter. If we
additionally want to specify the order in which the sons of Jacob were born, we need
two parameters which are separated by commas:

jacob[son@(leah,1)->>reuben; son@(leah,2)->>simeon;
 son@(leah,3)->>levi; son@(leah,4)->>judah;
 son@(bilhah,5)->>dan; son@(bilhah,6)->>naphtali;
 son@(zilpah,7)->>gad; son@(zilpah,8)->>asher;
 son@(leah,9)->>issachar; son@(leah,10)->>zebulun;
 son@(rachel,11)->>joseph; son@(rachel,12)->>benjamin].

 (Example 3.2)

In Examples 3.1 and 3.2 the method son is used with a different number of
parameters. This so-called overloading (see also Section 3.3) is supported by F-Logic.
Given the object base described in Example 2.1, questioning the sons of Isaac

FORALL X <- isaac[son->>X].

 yields all his known sons:
X = jacob
X = esau

Note that variables in a query may only be bound to individual objects, never to sets of
objects, i.e., the above query does not return X = {jacob,esau}.

In case of a query with a set of ground id-terms at the result position, however, it is
only checked whether all these results are true in the corresponding object base; there
may be additional result objects in the database. With the object base above, all the
following queries yield the answer true.

<-isaac[son->>{jacob, esau}].
<-isaac[son->>jacob].
<-isaac[son->>esau].

If we want to know if a set of objects is the exact result of a multi-valued method
applied to a certain object, we have to use negation, see Example 7.2.

3.1.2. Class Membership and Subclass Relationship

Isa-F-atoms state that an object belongs to a class, subclass-F-atoms express the
subclass relationship between two classes. Class membership and the subclass
relation are denoted by a single colon and a double colon, respectively. In the
following example the first three isa-F-atoms express that Abraham and Isaac are
members of the class man, whereas Sarah is a member of the class woman.
Furthermore, two subclass-F-atoms state that both classes man and woman are
subclasses of the class person:

abraham:man.
isaac:man.
sarah:woman.
woman::person.
man::person.

page 6 --- December 2002

F-Logic Tutorial

ontoprise GmbH

(Example 3.3)

In isa-F-atoms and subclass-F-atoms, the objects and the classes are also denoted by
id- terms because classes are objects as well as methods are objects. Hence, classes
may have methods defined on them and may be instances of other classes which
serve as a kind of metaclass. Furthermore, variables are permitted at all positions in
an isa- or subclass-F- atom. In contrast to other object oriented languages where
every object is instance of exactly one most specific class (e.g., ROL [Liu96]), F-Logic
permits that an object is an instance of several classes that are incomparable by the
subclass relationship. Analogously, a class may have several incomparable direct
superclasses.

Thus, the subclass relationship specifies a partial order on the set of classes, so that
the class hierarchy may be considered as a directed acyclic (but not reflexiv) graph
with the classes as its nodes.

Note that in analogy to HiLog [CKW93] a class name does not denote the set of
objects that are instances of that class.

3.2. Expressing Information about an Object: F-Molecules

Instead of giving several individual atoms, information about an object can be
collected in F-molecules. For example, the following F-molecule denotes that Isaac is
a man whose father is Abraham and whose sons are Jacob and Esau.

isaac:man[father->abraham; son->>{jacob,esau}].

(Example 3.4)

This F-molecule may be split into several F-atoms:
isaac:man.
isaac[father->abraham].
isaac[son->>jacob].
isaac[son->>esau].

For F-molecules containing a multi-valued method, the set of result objects can be
divided into singleton sets (recall that our semantics is multivalued, not set-valued).
For singleton sets, it is allowed to omit the curly braces enclosing the result set, so
that the three given in 3.4, 3.5 and 3.6 are equivalent, which means that they yield the
same object base:

isaac[son->>{jacob,esau}].

(Example 3.5)
isaac[son->>{jacob}].
isaac[son->>{esau}].

(Example 3.6)
isaac[son->>jacob].
isaac[son->>esau].

(Example 3.7)

3.3. Signatures

Signature-F-atoms define which methods are applicable for instances of certain
classes. In particular, a signature-F-atom declares a method on a class and gives type

page 7 --- December 2002

F-Logic Tutorial

ontoprise GmbH

restrictions for parameters and results. These restrictions may be viewed as typing
constraints. Signature- F-atoms together with the class hierarchy form the schema of
an F-Logic database. To distinguish signature-F-atoms from data- F-atoms, the arrow
body consists of a double line instead of a single line. Here are some examples for
signature-F-atoms:

person[father=>man].
person[daughter=>>woman].
man[son@(woman)=>>man].

The first one states that the single-valued method father is defined for members of the
class person and the corresponding result object has to belong to the class man. The
second one defines the multi-valued method daughter for members of the class
person restricting the result objects to the class woman. Finally, the third signature-F-
atom allows the application of the multi-valued method son to objects belonging to the
class man with parameter objects that are members of the class woman. The result
objects of such method applications have to be instances of the class man. By using a
list of result classes enclosed by parentheses, several signature-F-atoms may be
combined in an F-molecule. This is equivalent to the conjunction of the atoms: the
result of the method is required to be in all of those classes:

person[father=>{man, person}].

(Example 3.9)
person[father=>man].
person[father=>person].

 (Example 3.10)

Both expressions in the Examples 3.9 and 3.10 are equivalent and express that the
result objects of the method father if applied to an instance of the class person have to
belong to both classes man and person.

Overloading F-Logic supports method overloading. This means that methods denoted
by the same object name may be applied to instances of different classes. Methods
may even be overloaded according to their arity, i.e., number of parameters. For
example, the method son applicable to instances of the class man is used as a
method with one parameter in Example 3.11 and as a method with two parameters in
Example 3.12. The corresponding signature-F-atoms look like this:

man[son@(woman)=>>man].

(Example 3.11)
man[son@(woman,integer)=>>man].

(Example 3.12)

Of course, the result of a signature may be enclosed in parentheses as well, if it
consists of just one object.

As already shown in Example 3.4, properties of an object may be expressed in a
single, complex F-molecule instead of several F-atoms. For that purpose, a class
membership or subclass relationship may follow after the host object. Then, a
specification list, a list of method applications (with or without parameters) separated
by semicolons, may be given. If a method yields more than one result, those can be
collected in curly braces, separated by commas; if a signature contains more than one
class, those can be collected in parentheses, also separated by commas:

isaac[father->abraham; mother->sarah].
jacob:man[father->isaac; son@(rachel)->>{joseph, benjamin}].

page 8 --- December 2002

F-Logic Tutorial

ontoprise GmbH

man::person[son@(woman)=>>{man, person}].

(Example 3.13)

The following set of F-atoms is equivalent to the F-molecules in 3.13:
isaac[father->abraham].
isaac[mother->sarah].
jacob:man.
jacob[father->isaac].
jacob[son@(rachel)->>joseph].
jacob[son@(rachel)->>benjamin].
man::person.
man[son@(woman)=>> man].
man[son@(woman)=>>person].

(Example 3.14)

Besides collecting the properties of the host object, the properties of other objects
appearing in an F-molecule, e.g., method objects or result objects, may be inserted,
too. Thus, a molecule may not only represent the properties of one single object but
can also include nested information about different objects, even recursively:

isaac[father->abraham:man[son@(hagar:woman)->>ishmael];
 mother->sarah:woman].
jacob:(man::person).
jacob[(father:method)->isaac].

(Example 3.15)

 The equivalent set of F-atoms is:
isaac[father->abraham].
abraham:man.
abraham[son@(hagar)->>ishmael].
hagar:woman.
isaac[mother>>sarah].
sarah:woman.
man::person.
jacob:man.
jacob[father->isaac].
father:method.

F-Logic molecules are evaluated from left to right. Thus, nested properties have to be
included in parentheses if those properties belong to a method object (cf. Section 7),
class object or superclass object. Note the difference between the following two F-
molecules. The first one states that Isaac is a man and Isaac believes in god, whereas
the second one says that Isaac is a man and that the object man believes in god
(which is probably not the intended meaning).

isaac:man[believesin->>god].
isaac:(man[believesin->>god]).

Moreover, omitting parentheses at method or result position can lead to syntactically
incorrect molecules, e.g.,

isaac[(father::ancestor)->abraham]

is correct, whereas
isaac[father::ancestor->abraham]

results in a parsing error, and
isaac[father->(abraham:man)]

page 9 --- December 2002

F-Logic Tutorial

ontoprise GmbH

is correct, whereas
isaac[father->abraham:man]

results in a parsing error.

3.4. F-molecules without any properties

If we want to represent an object without giving any properties, we have to attach an
empty specification list to the object name, e.g.

thing[].

 If we use an expression like this that consists solely of an object name as a molecule,
it is treated as a 0-ary predicate symbol (see next section).

page 10 --- December 2002

F-Logic Tutorial

ontoprise GmbH

4. Predicate Symbols
In F-Logic, predicate symbols are used in the same way as in predicate logic, e.g., in
Datalog, thus preserving upward-compatibility from Datalog to F-Logic. A predicate
symbol followed by one or more id-terms separated by commas and included in
parentheses is called a P-atom to distinguish it from F-atoms. Example 4.1 shows
some P-atoms. The last P-atom consists solely of a 0-ary predicate symbol. Those are
always used without parentheses.

married(isaac,rebekah).
male(jacob).
sonof(isaac,rebekah,jacob).
true.

(Example 4.1)

 Information expressed by P-atoms can usually also be represented by F-atoms, thus
obtaining a more natural style of modelling. For example, the information given in the
first three P- atoms in 4.1 can also be expressed as follows:

isaac[marriedto->>rebekah].
jacob:man.
isaac[son@(rebekah)->>jacob].

(Example 4.2)

Similar to F-molecules, P-molecules may be built by nesting F-atoms or F-molecules
into P-atoms. The P-molecule

married(isaac[father->abraham], rebekah:woman).

is equivalent to the following set of P-atoms and F-atoms:
married(isaac,rebekah).
isaac[father->abraham].
rebekah:woman.

Note, that only F-atoms and F-molecules may be nested into P-atoms, but not vice
versa.

page 11 --- December 2002

F-Logic Tutorial

ontoprise GmbH

5. Lists
A special kind or terms are lists. In F-Logic lists of terms can be represented as in
Prolog. A list containing the constants a to e looks like this:

[a, b, c, d, e]

Internally a list is represented by recursively nesting the binary function symbol l_().
Its first argument represents the first element of the list and its second argument
represents the rest of the list (i.e. head and tail in Prolog-speak, or car and cdr in Lisp-
speak). The example list presented above looks like this in its functional
representation.

l_(a, l_(b, l_(c, l_(d, l_(e, nil_)))))

Note the 0-ary function symbol nil_ to represent the end of the list. This symbol can
be used to represent an empty list outside of l_() terms as well. Due to the canonical
mapping even open lists with no fixed length can be represented, e.g.

[a, b, c, d | Tail]

The variable Tail represents the currently not bound list, following the fourth element
of this list. Note the “|”-symbol after d. This symbol separates the remainder of the list
of the lists firsts element. When replacing “|” by “,” (yielding) represents a list of
exactly five elements, whose first elements are fixed and whose fifth element is not yet
bound.

l_(a, l_(b, l_(c, l_(d, Tail))))

In this case Tail may even also represent a list, but then the two example lists would
still be different, since in this case the list Tail is the fifth element not the cdr. Assume
Tail to be [X, Y]. Then the two lists would be
[a, b, c, d| Tail] = l_(a,l_(b,l_(c,l_(d, Tail))))
 = l_(a,l_(b,l_(c,l_(d, l_(X,l_(Y,nil_))))))
[a, b, c, d, Tail] = l_(a,l_(b,l_(c,l_(d, l_(Tail, nil_)))))
 = l_(a,l_(b,l_(c,l_(d, l_(l_(X,l_(Y,nil_)), nil_)))))

In particular, these two lists do not unify.

5.1. Examples
For list operations you may use the built-in features concat and inlist (see chapter
“Built-in Features”).

Define a new list: p([a,b,c])

Separate a list: FORALL Head,Tail <- p([H T]).
the result will be: Head=[a], Tail=[b,c]

All elements of the list: FORALL X <- inlist(X,[a,b,c]).
the result will be: X=[a,b,c]

Merge lists: FORALL X <- concat([a,b],[c,d],X).
the result will be: X=[a,b,c,d]

Add elements to a list: FORALL q([a L]) <- p(L).
 FORALL X <- q(X).
the result will be: X=[a,a,b,c]

page 12 --- December 2002

F-Logic Tutorial

ontoprise GmbH

6. Built-in Features
Our implementation of F-Logic provides some built-in features like the built-in class
number, several comparison predicates, the basic arithmetic operators, predicates for
string handling, and aggregate functions.

6.1. List of Built-in Features

All available built-in features are listed below. Some selected features (*) will be
explained further in the next chapters by short examples.
Built-in feature Description
altavista searches for documents with

altavista
altavista(<search string>,
<beginning index>,
<number of hits>,
<language>, <url>, <title>,
<description>, <number of
found hits>)

between returns true, if X is between A and B;
for <number> and <string>

between(A,X,B)

classify -> set learns a classifier for vectors: first
argument is an id, second a feature
list, third the class, fourth the
resulting classifier

classify(<grouping id>
<vector>, <class>,
<classifier>)

concat* succeeds, if <string3> is the
concatenation of <string1> and
<string2>

concat(<string1>,<string2>,
<string3>)

concatlists merges two lists into a third concatlists(<list1>,<list2>,
<list3>)

constant2string* converts a function to a string and
vice versa

constant2string(<function>,
<string>)

contains returns true, if <string2> is contained
in <string1>

contains(<string1>,
<string2>)

count* Counts the values grouped to each
key.

count(<key>,<value>,
<number>)

cut* returns the <string> n characters
shorter

cut(<string>,<n>,
<variable>)

dbaccess* accesses a database dbaccess(<tablename>,
<access>, <dbtype>,
<dbname>, <dbhost>)

dbaccessuser* In addition to dbaccess,
dbaccessuser allows to specify login
name and password.

dbaccessuser(
<tablename>, <access>,
<dbtype>, <dbname>,
<dbhost>, <login>,
<passwd>)

directsub_ shows direct sub- or superconcept-
relations

directsub_(A,B).

equal returns true, if X = Y equal(X,Y)
evaluable_ math functions:

+, -, *, /, sin, cos, tan, asin, acos, ceil,
floor, exp, rint, sqrt, round, max, min,
power

i.e. (X + Y) * Z

page 13 --- December 2002

F-Logic Tutorial

ontoprise GmbH

greater returns true, if X > Y greater(X,Y)
greaterorequal returns true, if X >= Y greaterorequal(X,Y)
indexinlist returns true, if index I of element X is

in list L
indexinlist(X,L,I)

inlist returns true, if X is in List L inlist(X,L)
isconstant returns true, if <arg> is a constant isconstant(<arg>)
isint returns true, if <arg> is an integer isint(<arg>)
isnumber returns true, if <arg> is a number isnumber(<arg>)
isstring* returns true, if <arg> is a string isstring(<arg>)
less returns true, if X < Y less(X,Y)
lessorequal returns true, if X <= Y lessorequal(X,Y)
list* Creates lists of values grouped to

each key.
list(<key>,<value>,<list>)

maximum* Determines the maximum of a set of
numbers.

maximum(<key>,<value>,
<maximum>)

minimum* Determines the minimum of a set of
numbers.

minimum(<key>,<value>,
<minimum>)

multiply
msindex* accesses Microsoft’s index server msindex(

<searchexpression>,
<var1>,<var2>,<catalog>)

power xy=z power(X,Y,Z)
predict predicts a class for given feature

vectors; first argument is the feature
list, second the classifier, third the
predicted class

predict(<feature vector>,
<classifier>, <class>)

regexp* regular expressions may be used to
search in strings, <string2> is the
result of the operation with <string1>

regexp(“<regular
expression>”,<string1>,
<string2>)

regexp1 regular expressions may be used to
search in strings

regexp1(“<regular
expression>”,<string>)

string2number* converts a string to a number and
vice versa

string2number(<string>,
<number>)

tokenize* breaks string into tokens at the
delimiters

tokenize(<string>,
<delimiters>,<variable>)

tokenizen* breaks string into maximal n tokens
at the delimiter

tokenizen(<string>,<n>,
<delimiters>,<variable>)

tolower* transforms all characters into lower
characters

tolower(<string>,
<variable>)

toupper* transforms all characters into upper
characters

toupper(<string>,
<variable>)

unify X unified with Y unify(X,Y)
write, write2,
..., write6

prints the parameters write(X1), write2(X1, X2),
…, write6(X1, X2, X3, X4,
X5, X6)

6.2. Numbers, Comparisons and Arithmetics

Objects denoting numbers or strings are different from other objects because the
usual comparison operators are defined for them, as well as several arithmetic
functions. Within a query or a rule body, relations between numbers or strings may be

page 14 --- December 2002

F-Logic Tutorial

ontoprise GmbH

tested with the comparison predicates less, lessorequal, greater, greaterorequal. For
example, the following query asks for the first three sons of Jacob:

FORALL X,Y,Z <- jacob[son@(X,Y)->>Z] AND less(Y,4).

(Example 6.1)

Comparison predicates are not allowed in rule heads.

The arithmetic operations addition +, subtraction -, multiplication * and division / are
also implemented. Arithmetic expressions may be constructed in the usual way, even
complex expressions, e.g., 3 + 5 + 2 or 3 + 2 * 3 are possible. By default,
multiplication and division are prior to addition and subtraction. As usual, the
evaluation order may be changed by using parentheses, e.g., (3 + 2) * 3.

The following example contains the query whether Jacob has three sons born
consecutively by the same woman.

FORALL X,A,B,C,Z1,Z2,Z3 <-
 jacob[son@(X,A)->>Z1; son@(X,B)->>Z2; son@(X,C)->>Z3] AND
 (B is A+1) AND
 (C is A+2).

Additionally the following mathematical functions are implemented:
 sin,cos,tan,asin,acos,ceil,floor,exp,rint,sqrt,round,max,min,pow

To test the equality of two terms the builtin equal(<term1>,<term2>) may be used, if
both terms are ground. To unify two terms unify(<term1>,<term2>) may be used.

6.3. String handling

Analogously to numbers, there are several predefined operations for strings. These
are provided by the built-in predicates which all have a fixed arity. Furthermore these
predicates can only be used in rule bodies:
• isString(<arg>)

is true, if <arg> is a string.
• concat(<string 1 > , <string 2 > , <string 3 >)

succeeds if < string 3 > is the concatenation of < string 1 > and < string 2 >, e.g.,
FORALL X <- concat("a","b",X).

returns the binding X = "ab" whereas
FORALL X <- concat("a",Y,"ab").

leads to Y = "b".
• cut(<string>,<n>,<variable>)

returns the <string> n characters shorter
• tokenize(<string>,<delimiters>,<variable>)

breaks string into tokens at the delimiters
• tokenizen(<string>,<n>,<delimiters>,<variable>)

breaks string into maximal n tokens at the delimiter
• tolower(<string>,<variable>)

transforms all characters into lower characters

page 15 --- December 2002

F-Logic Tutorial

ontoprise GmbH

• toupper(<string>,<variable>)

transforms all characters into upper characters

• Regular Expressions

Regular expressions may be used to search in strings. For that purpose a regular
expression predicate is available:

regexp(“<regular expression>”,<string1>,<string2>)

The first parameter defines the search string as regular expression. Regular
expressions are defined as PERL regular expressions. The second parameter
defines the string to search in, and the last parameter defines the resulting string,
i.e. the region that matched the pattern, e.g.

married(“peter”).
married(“tom”).
married(“mary”).

The query “search forall married people with a “p” or “t” in their name:
FORALL X <- married(X) and regexp(“[pt]”,X,Y).

delivers X = “peter”, Y = “p”, X = “peter”, Y = “t” and X = “tom”, Y=”t”

6.4. Type conversion

There are three different basic object types: numbers, strings and functional
expressions. Numbers are denoted by any kind of number, integers and floating point
numbers are not distinguished. Strings are enclosed in quotation marks. There exist
two builtins to convert these basic types:

constant2string(<function>,<string>)

converts a function to a string and vice versa
string2number(<string>,<number>)

converts a string to a number and vice versa, e.g.,
FORALL X <- constant2string(f(3,a),X).

delivers “f(3,a)” as result

6.5. Index Server integration

The builtin msindex(<searchexpression>,<var1>,<var2>,<catalog>) allows to access
Microsofts index server. Searchexpression specifies a search expression (look at the
index server documentation) and the paths of documents satisfying the search
expression are bound to the variable var1. Additionally a description of the contents of
the files are delivered (if this feature is switched on for MS index server). Catalog
specifies the index server catalog:

FORALL X,Y <-
 msindex("@Contents \"car\" and "motor\"",X,Y,System)

delivers the paths of all files containing “car” and “motor”.

page 16 --- December 2002

F-Logic Tutorial

ontoprise GmbH

6.6. Access to databases

Ontobroker is able to access a lot of relational databases. This access may be used in
F-Logic via the builtin:

dbaccess(<tablename>, <access>, <dbtype>, <dbname>, <dbhost>)

<dbtype> specifies the type of the database. At the moment there exist connectors to
MSSQL, ORACLE, DB2, MYSQL.

<access> specifies the tables and the columns to access. It has the form
F(columnname,<variable>|<string,…, columnname, <variable>|<string)

If a string is given it is used for selection, a variable is instantiated with the
corresponding value, e.g.

dbaccess(person,F(lastname, "peters", firstname,
X),"mysql","db","localhost")

returns the firstname of “peters” from the table “person” in MYSQL database “db” on
localhost.

dbaccessuser(<tablename>, <access>, <dbtype>, <dbname>, <dbhost>,
 <login>, <passwd>)

In addition to dbaccess, dbaccessuser allows to specify login name and password.

6.7. Other builtins

There is often the need to query direct sub- or superconcepts of a given concept.
Instead of defining this in a logical sense, i.e. give me the maximal subconcepts a
pseudo builtin directsub_ is available. Thus a fact A::B leads to an instance
directsub_(A,B). No facts should be added to directsub_ because this has no influence
on the is-a relation of concepts.

page 17 --- December 2002

F-Logic Tutorial

ontoprise GmbH

7. Path Expressions
Objects may be accessed directly by their object names. On the other hand it is also
possible to navigate to them by applying a method to another object using path
expressions. For example, the object described by the object name abraham may also
be accessed by calling the method father on the object isaac. The corresponding
constructs are called path expressions and look like this: isaac.father.2 Example 6.1
shows that path expressions may also contain multi-valued methods and methods
with parameters and that it is possible to chain up path expressions by successively
applying methods to the result object of the preceding method call. At the end of each
line you find the object name of the result object that is denoted by the path
expression. The underlying object base is taken from the Examples 2.1 and 3.2:

isaac..son {jacob, esau}
jacob..son@(rachel,11) joseph
benjamin.father.father.mother sarah

 (Example 6.1)

Some path expressions may even denote objects in the object world which have no id-
term as object name

Note, that the symbol to delimit components of path-expressions is the dot. The same
symbol terminates rules, facts and queries. To be able to unambiguously parse F-logic
programs, these symbols must become distinguishable. The heuristic used for this
purpose demands the use of line terminators directly following the dot at the end of a
rule, a fact or a query.

7.1. Nesting of Path Expressions and F-Molecules

As mentioned before, every (ground) path expression corresponds to an object. This
object is called the object value of a path expression. Thus, it is possible to nest path
expressions in F-molecules as well as in P-molecules in any position where id-terms
are allowed in bodies of queries:

jacob..son@(rachel,11)[mother->rachel; father->jacob].
abraham[son->>{jacob.father}].
jacob[son@(joseph.mother)->>{benjamin}].
male(jacob.father).

 (Example 6.2)

How parentheses affect the meaning of path expressions will become clear when
looking at the next two examples:

jacob.(father.twice):person.
jacob.father.twice:person.
(jacob.father).twice:person.

(Example 6.3)

As path expressions are evaluated left to right, the second and third F-molecule are
equivalent. In our context, however, they are not meaningful (evaluating to false)

2 Note, that in earlier versions of F-Logic the symbol “#” was used instead of “.” to
delimit constituents of parts.

page 18 --- December 2002

F-Logic Tutorial

ontoprise GmbH

because jacob.father is a person (isaac) and not a method, so that twice cannot be
applied to this object.

Assume the object base defined by Example 2.1 is given.
jacob:(god.people).
jacob:god.people.
(jacob:god).people.

(Example 6.4)

In Example 6.4 the first F-molecule states that applying the method people to the
object called god yields a class jacob belongs to. The second expression, which is
equivalent to the third one, states that the object jacob is a member of the class god
and denotes the application of the method people to the object jacob. However, the
last two expressions are path expressions -not F-molecules- as they do not end with a
specification list or an isa/subclass relationship (see Section 3.4).

Besides using path expressions instead of simple id-terms in F-molecules, it is also
possible to nest path expressions and F-molecules the other way round: Intermediate
objects in a path expression may have specification lists, turning them into F-
molecules. As an example the path expression jacob.mother may be extended by
specifying some properties for Jacob:

jacob:man[father->isaac].mother

In a rule body, this feature is useful to restrict the set of objects matching a path
expression by selecting those with a certain property. For a formal analysis of such
terms, see the reference semantics and object semantics of F-Logic expressions, e.g.,
in [LHL + 98].

7.2. Path Expressions in Queries

Path expressions in a rule body or query help the user to describe the information in
question more concisely, avoiding auxiliary variables for intermediate results. If for
example the grandfather of Isaac is requested, this query can be written as

FORALL X <- isaac.father[father->X].

instead of
FORALL X,Y <- isaac[father->Y] AND Y[father->X].

Path expressions may be eliminated from F-molecules in rule bodies or queries by
decomposing the molecules into a set of F-atoms using new variables for the result
values.

page 19 --- December 2002

F-Logic Tutorial

ontoprise GmbH

8. Rules and Queries

8.1. Rules

Based upon a given object base (which can be considered as a set a facts), rules offer
the possibility to derive new information, i.e., to extend the object base intensionally.
Rules encode generic information of the form: Whenever the precondition is satisfied,
the conclusion also is. The precondition is called rule body and is formed by an
arbitrary logical formula consisting of P- or F-molecules, which are combined by OR,
NOT, AND, <-, -> and <->. A -> B in the body is an abbreviation for NOT A OR B, A <-
B is an abbreviation for NOT B OR A and <-> is an abbreviation for (A->B) AND (B<-
A). Variables in the rule body may be quantified either existentially or universally. The
conclusion, the rule head, is a conjunction of P- and F-molecules. Syntactically the
rule head is separated from the rule body by the symbol <- and every rule ends with a
dot. Non-ground rules use variables for passing information between subgoals and to
the head. Every variable in the head of the rule must also occur in a positive F-Atom in
the body of the rule. Assume an object base defining the methods father and mother
for some persons, e.g., the set of facts given in Example 2.1. The rules in Example 7.1
compute the transitive closure of these methods and define a new method ancestor:

FORALL X,Y X[ancestor->>Y] <- X[father->Y].
FORALL X,Y X[ancestor->>Y] <- X[mother->Y].
FORALL X,Y,Z X[ancestor->>Y] <- X[father->Z] AND Z[ancestor->>Y].
FORALL X,Y,Z X[ancestor->>Y] <- X[mother->Z] AND Z[ancestor->>Y].
man::person.
woman::person.

(Example 7.1)

Partial logical formulae in the rule body may be negated. E.g. the following rule
computes for every person X all persons Y not related to X :

FORALL X,Y
 X[notrelated->>Y] <-
 X:person AND
 Y:person AND
 NOT X[ancestor->>Y] AND
 NOT Y[ancestor->>X].

(Example 7.2)

The following rule computes all persons X for whom an ancestor is known:
 FORALL X X[] <- EXISTS Y X:person[ancestor->>Y].

8.2. Queries

A query can be considered as a special kind of rule with empty head. The following
query asks about all female ancestors of Jacob:

FORALL Y <- jacob[ancestor->>Y:woman].

(Example 7.3)

The answer to a query consists of all variable bindings such that the corresponding
ground instance of the rule body is true in the object base. Considering the object
base described by the facts of Example 2.1 and the rules in 7.1, the query 7.3 yields
the following variable bindings:

page 20 --- December 2002

F-Logic Tutorial

ontoprise GmbH

Y = rebekah
Y = sarah

The following query computes the maximum value X for which p(X) holds. The rule
body expresses that all Y for which p(Y) holds must be less or equal to the searched
X.

p(1).
p(2).
p(3).
FORALL X <- p(X) AND FORALL Y (p(Y) -> lessorequal(Y,X)).

page 21 --- December 2002

F-Logic Tutorial

ontoprise GmbH

9. Namespaces in F-Logic
Without namespaces in F-Logic the names in different ontologies can not be
distinguished from each other. For instance, a concept named “person” in ontology
“car” is the same concept as the concept “person” in ontology “finance”. Handling
more than one ontology thus needs a mechanism to distinguish these concepts. This
is the reason for introducing namespaces in F-Logic.

9.1. Declaring Namespaces

The namespace mechanism of F-Logic is similar to that of XML3. If you are familiar
with XML-namespaces you will find namespaces in F-Logic easy to understand and
use. You can introduce namespaces and associate aliases for them anywhere where
a rule or query is allowed. This namespace declaration contains the XML-Element
<ns> with a number of XML-attributes with the prefix “ontons”. The scope of declared
namespaces ends when the corresponding end-element </ns> is reached in the
program, e.g.

<ns ontons:cars="www.cars-r-us.tv"
 ontons:finance="www.financeWorld.tv"
 ontons="www.myDomain.tv/private">

 //Here the aliases “cars” and “finance” can be used.
 <ns . . .>
 // Here inner aliases can be used.
 // Outer aliases are also visible if not redefined.
 </ns>

</ns>

 (Example 8.1)

In our example three namespaces are declared. Each namespace must represent a
valid URI according to RFC 2396 and can optionally be associated with an alias. The
namespaces www.cars-r-us.tv and www.financeWorld.tv are associated with the
aliases “cars” and “finance”, respectively. The third namespace is not associated
with an alias and thus, represents the default namespace.

As in XML these namespace declarations can be arbitrarily nested and aliases may be
temporarily associated with other URIs by inner namespace declarations.

9.2. Using Namespaces in F-Logic Expressions

In F-Logic expressions every concept, method, object, function, and predicate may be
qualified by a namespace. To separate the namespace from the name the “#”-sign is

3 Note: Since version 2.2 of the F-Logic parser, the namespace mechanism has
slightly changed. The new means for declaring namespaces is more powerful and
closer to the spirit of XML.

page 22 --- December 2002

F-Logic Tutorial

ontoprise GmbH

used (as conventionally used in the RDF world and in HTML to locate local links inside
a web page)4. The following examples use the name space declaration of 8.1:

 cars#Car[cars#driver => cars#Person;
 cars#passenger =>> cars#Person;
 cars#seats => NUMBER].
 cars#Person[cars#name => STRING;
 cars#age => NUMBER;
 cars#drivingLicenseId => STRING].

 finance#Bank[finance#customer => finance#Person;
 finance#location =>> finance#City].
 finance#Person[cars#name => STRING;
 finance#monthlyIncome => NUMBER].

 FORALL X,Y Y[finance#hasBank ->> X] <-
 Y:finance#Person AND
 X:finance#Bank[finance#customer ->> Y].

 #me:cars#Person[cars#age -> 32].
 #myBank:finance#Bank[finance#location ->> karlsruhe].

 (Example 8.2)

The semantics of a namespace-qualified object is always a pair of strings, i.e. each
object is represented by a URI (its namespace) and a local name. Thus
finance#Person and cars#Person become clearly distinguishable. During parsing of
the F-Logic program the aliases are resolved, such that the following pairs are
constructed.

• finance#Person stands for (“www.financeWorld.tv”, Person)

• cars#Person stands for (“www.cars-r-us.tv”, Person)

In case no declared namespace URI is found for a used alias, the alias itself is
assumed to represent the namespace of an F-Logic object. Because pure URIs
conflict with the F-Logic grammar, literal namespaces, i.e. URIs, must be quoted, e.g.

• ”www.cars-r-us.tv”#Person is equivalent to cars#Person

Note, that declared namespace URIs are taken literally, i.e. two URIs are equivalent
only if they syntactically do not differ, e.g. www.cars-r-us.tv is not equivalent to
http://www.cars-r-us.tv.

9.3. Querying for Namespaces

This mechanism enables users even to query for namespaces (URIs not aliases) and
to provide variables in namespaces. For instance, the following query asks for all
namespaces X that contain a concept “Person”.

 FORALL X <- X#Person[].

 (Example 8.3)

4 Note: In earlier versions of this parser, the $-symbol was used instead. This must be
changed.

page 23 --- December 2002

F-Logic Tutorial

ontoprise GmbH

The following inference rules integrate knowledge from different ontologies using the
namespace mechanism (and a so called Skolem-function).

FORALL Name,Attr,Value
 person(Name)[Attr -> Value] <- EXISTS X
 X:finance#Person[Attr -> Value; finance#name -> Name] OR
 X:cars#Person[Attr -> Value; cars#name -> Name].
FORALL Name,Attr,Value
 person(Name)[Attr ->> Value] <- EXISTS X
 X:finance#Person[Attr ->> Value; finance#name -> Name] OR
 X:cars#Person[Attr ->> Value; cars#name -> Name].

 (Example 8.4)

Predicate symbols are somehow special in F-Logic. Although they can contain
namespaces they must not contain variables, i.e. all predicate symbol names must be
ground.

Note that simple types like STRING or NUMBER must not be qualified by a
namespace. Namespace qualifying is forbidden for builtins and arithmetic functions.

9.4. Default Namespaces

Objects that start with a #-symbol (i.e. have no declared namespace alias) refer to
objects in the default namespace, in our example 8.1. the URI
www.myDomain.tv/private. The default mechanism is used when a large number of
objects, concepts, or methods from the same namespace are used, e.g.

• #me stands for (“www.myDomain.tv/private”, me)

Objects with an explicit reference to the current default namespace (i.e. starting with a
#) must be clearly distinguished from objects without the leading #. The latter explicitly
are defined to belong to the null namespace (or, if you like, to no namespace at all),
e.g. in contrast to the defaulted line above

• me stands for (“”, me)

To state it clearly: The default namespace is not equivalent to the null namespace.

page 24 --- December 2002

F-Logic Tutorial

ontoprise GmbH

10. Compiler Switches
For internal purposes another markup element has been added to F-Logic. So-called
compiler switches may influence the (not necessarily functional) behaviour of rules,
facts, or queries. They look similar to namespace declarations since they too use
XML-syntax.

forall X0 t(X0) <- tt(X0).
<compilerSwitch materialize="on"
 funkyFeature="off"
 otherSwith=”27B”>
 forall X1 q(X1) <- qq(X1).
 <compilerSwitch materialize="off">
 forall X2 p(X2) <- pp(X2).
 </compilerSwitch>
 forall X3 r(X3) <- rr(X3).
</compilerSwitch>
forall X4 s(X4) <- ss(X4).

Example (9.1)

A compilerSwitch declaration contains of an XML-element with tag name
compilerSwitch and a list of attribute=value pairs. The attributes and value must
conform to XML conventions, esp. each value must be enclosed in single or double
quotes. Arbitrary keywords can be used as attribute names, but only special
keywords5 will be recognized by the compiler or the inference engine when executing
the rules or queries, that were marked by these switches. The same that has been
said for namespace declarations about nesting and visibility holds for these
compilerSwitch declarations. For example, the rule with X2 sees materialize=”off”,
while the rules with X1 and X3 see materialize=”on”.

5 A list of reserved keywords for attributes or values is not yet available.

page 25 --- December 2002

F-Logic Tutorial

ontoprise GmbH

11. Imprint
Editor
ontoprise GmbH
Haid-und-Neu-Strasse 7
76131 Karlsruhe
Germany
Telefon +49 (0) 721 / 66 57 910
Telefax +49 (0) 721 / 66 57 911
Email info@ontoprise.de; support@ontoprise.de
Internet http://www.ontoprise.de

© by ontoprise GmbH, all rights reserved

Dieses Werk ist einschließlich seiner Teile urheberrechtlich geschützt. Jede Verwertung, die über die Grenzen des
engeren Urheberrechtsgesetzes hinausgeht, ist ohne schriftliche Zustimmung der ontoprise GmbH unzulässig und
strafbar. Dies gilt insbesondere für Übersetzungen, Vervielfältigungen und Weitergaben jeder Art. Alle weiteren
Rechte bleiben vorbehalten. Jegliche kommerzielle Nutzung, insbesondere die Verbreitung der Texte unter
Erhebung eines Entgeltes für die Übertragung der Texte, für ein Medium oder für die Nutzung eines Informations-
Systems, bleibt vorbehalten und ist nicht gestattet. Für die hier zugänglichen Informationen übernehmen die
Autoren und die ontoprise GmbH keine Form der Gewährleistung. Weiterhin wird keine Haftung für die Korrektheit,
Vollständigkeit, Wirksamkeit oder Anwendbarkeit der enthaltenen Informationen und der vorgeschlagenen
Maßnahmen übernommen. Insbesondere wird keine Verantwortung für die Verwendung der enthaltenen
Informationen und eventuell dadurch entstehende Schäden übernommen. Viele Zitate und Wiedergaben von
Informationen Dritter stammen aus öffentlich zugänglichen Dokumenten. Für die Richtigkeit von Angaben dieser
Art wird im Speziellen keinerlei Gewährleistung übernommen.

Karlsruhe, December 2002

page 26 --- December 2002

F-Logic Tutorial

ontoprise GmbH

12. References
[ABD+ 89] Malcolm Atkinson, Francois Bancilhon, David DeWitt, Klaus Dittrich, David

Maier, and Stanley Zdonik. The object-oriented database system manifesto.
In Intl. Conference on Deductive and Object-Oriented Databases (DOOD),
pages 40-57. North-Holland/Elsevier Science Publishers, 1989.

[AHV 95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.
Addison Wesley, 1995.

[CGT 90] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Databases.
Springer, 1990.

[CKW 93] W. Chen, M. Kifer, and D.S. Warren. HiLog: a foundation for higher-order
logic programming. Journal of Logic Programming, 15(3):187-230, 1993.

[FLU 94] Jürgen Frohn, Georg Lausen, and Heinz Upho . Access to objects by path
expressions and rules. In Intl. Conference on Very Large Data Bases (VLDB),
pages 273-284, 1994.

[FHK] J. Frohn, R. Himmeröder, P. Kandzia, C. Schlepphorst. How to Write F-logic
Programs in FLORID - A Tutorial for the Database Language F-logic.
http://www.informatik.uni-freiburg.de/~dbis/florid/

[KLW 95] Michael Kifer, Georg Lausen, and James Wu. Logical foundations of object-
oriented and frame-based languages. Journal of the ACM, 42(4):741-843,
1995.

[LHL+ 98] Bertram Ludäscher, Rainer Himmeroder, Georg Lausen, Wolfgang May,
and Christian Schlepphorst. Managing semistructured data with orid: A
deductive object-oriented perspective. Information Systems, 23(8):589-612,
1998.

[Liu 96] M. Liu. ROL: A typed deductive object base language. In Intl. Conference on
Database and Expert Systems Applications (DEXA), 1996.

[Ull 89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems,
volume 2. Computer Science Press, New York, 1989.

