
26 1094-7167/02/$17.00 © 2002 IEEE IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

The Briefing Associate:
Easing Authors into
the Semantic Web
Marcelo Tallis, Neil M. Goldman, and Robert M. Balzer, Teknowledge

The Semantic Web promises to expand Web services, both through automated soft-

ware agents that perform what are now manual procedures and through new appli-

cations that are infeasible today. For this vision to materialize, Web documents must

contain ontologically encoded information (or semantic markups) that software agents

and tools can accurately and reliably interpret. Gen-
erating this encoding—at least in manually created
documents—is a major challenge. Document
markup is currently tedious and sometimes com-
plex. Given that markup benefits accrue almost
solely to agent-assisted content consumers, content
producers have little motivation to undertake the
extra effort.

While the research community has made consid-
erable technical progress in supporting much of the
Semantic Web life cycle, support for markup of
manually composed documents remains quite prim-
itive. The prevalent approach is to create specialized
tools that support the association of semantic
markups with preexisting document content1,2 (see
the “Related Work” sidebar). These tools provide a
GUI that lets authors browse ontologies, find appro-
priate terms, generate syntactically correct markups,
and associate them with portions of a document or,
more often, with the document as a whole. This
activity remains an extra effort that does not directly
reward authors.

We are experimenting with a different approach.
Rather than add semantic markups to completed doc-
uments, we have augmented a popular commercial
off-the-shelf (COTS) authoring application with the
Briefing Associate (BA), a tool that produces seman-
tic markups as authors compose briefings. Our intent
is to dramatically reduce the cost of producing
semantically annotated documents and thus simplify
the transition to the Semantic Web. We have also
added analysis and synthesis tools that use these
semantic markups during document composition to

improve accuracy, quality, and production speed.
Authors thus reap a direct benefit from creating doc-
uments with associated ontological encodings.

We’ve implemented a BA research prototype and
tested it in a few simple domains. The most complex
document composed with the BA so far produced
semantic markup that describes more than 270
domain relationships.

Briefing Associate overview
The BA is a descendent of the Design Editor,3 an

application for producing visual, domain-specific
design environments. Both tools are implemented as
extensions of Microsoft’s PowerPoint, which, as we
describe later, is a key factor in our research.

How it works
The BA operates through the PowerPoint GUI. We

extended the native GUI with a toolbar for adding
graphics that represent a particular ontology’s classes
and properties. When authors compose briefings using
these graphics, they indirectly construct DARPA
Agent Markup Language descriptions of the briefing
content. (For more on DAML, see www.daml.org.)
The BA stores the semantic markup persistently, but
not visually, within the PowerPoint document.

In addition to creating semantically grounded brief-
ings, the BA exposes the briefing’s semantic descrip-
tions to external modules called analyzers, which will
perform specialized services or analyses for the author.
Such analyses might provide feedback to the author,
extend or modify the briefing, or produce external doc-
uments derived from the descriptions.

The Semantic Web has

clear benefits for

information

consumers, but for

authors it typically

means added work

with no immediate

payoff. This article

describes a tool that

eases the effort by

automating markup

within a popular

COTS application.

Implementation
We regard our choice to implement the BA

as an extension of the PowerPoint platform
not as an implementation detail, but as cen-
tral to our research for two key reasons:

• PowerPoint gives us a higher-level plat-
form for building a briefing tool than
generic middleware such as COM/Corba
and GUI widget libraries. It offers an
extensive graphical base for representing

a briefing’s visual content and support for
retaining nongraphical data, such as
DAML markup persistently within its doc-
uments. PowerPoint also offers an exten-
sive WYSIWYG user interface for view-

JANUARY/FEBRUARY 2002 computer.org/intelligent 27

There are currently several ongoing initiatives aimed at estab-
lishing a global semantic markup scheme for the Web. The oldest
and most widely adopted is the Dublin Core Metadata Initiative
(http://dublincore.org). The DCMI’s goal is to facilitate electronic
resource discovery on the Web. Its primary offering is the Dublin
Core Metadata Element Set, a group of 15 elements—such as
Title, Creator, Subject, and Date—that describe Web resources.
The DCM Element Set is the de facto worldwide standard for
describing information resources across disciplines and languages,
and has already been translated into 25 languages.

Newer undertakings, such as the European Community’s
Ontobroker (http://ontobroker.semanticweb.org), its successor
OntoWeb (www.ontoweb.org), and DARPA’s DAML, go beyond
DCMI goals. Rather than annotating electronic resources to
merely facilitate their discovery, these projects aim to describe
electronic and real-world entities using a machine-understand-
able language that lets autonomous software agents accurately
understand and process their content.1 We are developing the
Briefing Associate (BA) under the DAML program.

There are two dimensions of requirements for semantic
markup generator tools:

• Description granularity ranges from coarse descriptions, which
relate a whole document with a set of predefined conceptual
categories, to detailed descriptions of a document’s content.

• Description regularity ranges from highly regular data,
which is typically supported in relational databases, to
descriptions of highly unstructured and irregular informa-
tion, such as the content of newspaper articles.

We use these granularity and regularity dimensions to
compare the BA with other tools for generating semantic
markups. Our aim with the BA is to offer detailed descriptions
of irregular and unstructured documents.

• The Nordic DC metadata creator (www.lub.lu.se/cgi-bin/
nmdc.pl) is a metadata editor for the DCMI. It consists of a
Java applet that displays a form for users to input DCM Ele-
ment Set values. The Nordic DC then generates a syntactically
correct encoding of these values that a user can attach to the
described document. This tool corresponds to less elaborated
forms of semantic markups, such as coarse descriptions based
on a predefined set of conceptual categories.

• Klarity (www.klarity.com.au) is another type of metadata gen-
erator that supports the DCM Element Set. Klarity automati-
cally generates metadata for HTML pages based on concepts
it finds in the text. It uses statistic methods to allocate values
based on concepts it identifies in the “seed” or exemplar doc-
uments related to the target concept. Like Nordic DC, Klarity
generates coarse metadata descriptions of documents.

• ITtalks2 is a portal for announcements about IT-related
talks, seminars, and colloquia, developed under the DAML
program. Although not its main focus, ITtalks generates
DAML descriptions from the talks contained in its database.

In this sense, ITtalks generates descriptions from highly
structured data.

Two tools closer to the BA’s scope are the KA2 initiative’s
Annotation Tool,3 developed under the Ontobroker project,
and the Shoe project’s Knowledge Annotator.4 Both tools offer
a GUI for authoring and attaching semantic annotations to
Web documents. They also offer context-sensitive instances
and ontology browsers that facilitate the creation of semantic
descriptions. A second incarnation of KA2 can semiautomati-
cally generate annotations using a lexical text analysis and a
vast word and domain lexicon

Unlike these approaches, the BA generates markups as a
byproduct of constructing the document. Hence, it does not
require extra work from authors. Also, because the BA’s seman-
tic annotations are embedded in the original document—
rather than inserted in a second step using a different tool—
modifying the original document does not erase the existing
annotations. On the other hand, the BA approach might prove
inadequate for marking up

• existing documents that do not use the BA conventions for
representing ontological relationships, and

• documents whose types are not supported by the underly-
ing COTS product.

Although the KA2 annotation tool’s semiautomatic markup
generation simplifies the production of semantic annotations,
it still constitutes an extra activity because users must check
and revise the generated annotations. The KA2 approach is
also limited to textual documents that contain enough infor-
mation to infer their semantic relationships. This limitation
might exclude briefing documents because they usually
contain diagrams that are not explained within the text.

References

1. T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” Sci-
entific American, vol. 284, no. 5, May 2001, pp. 34–43; www.sciam.
com/2001/0501issue/0501berners-lee.html (current Dec. 2001).

2. R. Scott et al., “ITTALKS: A Case Study in the Semantic Web and
DAML,” Proc. First Semantic Web Working Symposium, 2001;
www.semanticweb.org/SWWS/program/full/paper41.pdf (current
Dec. 2001).

3. M. Erdmann et al., “From Manual to Semi-Automatic Semantic
Annotation: About Ontology-Based Text Annotation Tools,” to be
published in Linköping Electronic Articles in Computer and Infor-
mation Science, vol. 6; available at www.ida.liu.se/ext/epa/cis/2001/
002/tcover.html (current Dec. 2001).

4. J. Heflin, J. Hendler, and S. Luke, “SHOE: A Prototype Language for
the Semantic Web,” to be published in Linköping Electronic Arti-
cles in Computer and Information Science, vol. 6; available at www.
ida.liu.se/ext/epa/cis/2001/003/tcover.html (current Dec. 2001).

Related Work

ing and editing a briefing’s visual content.
To accommodate DAML-aware briefings,
the interface requires only an extension,
not a redesign or reimplementation.

• PowerPoint is the most widely used prod-
uct for authoring briefings. An author can
thus adopt the BA without learning a new
production environment and without sac-
rificing familiar features. Briefing
authors familiar with PowerPoint can
continue to use the native GUI tools,
menus, and direct-manipulation actions
to edit visual content. The BA simply
extends the interpretation of these tools
and actions and adds tools tailored to a
target ontology.

We programmed the BA primarily in

Visual Basic. For PowerPoint 2000/XP, the
BA is a COM add-in that receives “events” as
the author creates, opens, closes, and modi-
fies briefings. As a client of PowerPoint, the
BA can also navigate through a briefing,
paint analysis feedback directly onto it, and
associate DAML descriptions with graphi-
cal items. For efficiency reasons, the BA runs
entirely as an in-process component—it is
incorporated into the PowerPoint process
itself. With both the BA and PowerPoint
residing in a single operating system process,
communications are extremely efficient.
Although we could achieve greater efficiency
by implementing the BA in C++, the Visual
Basic code’s performance has been accept-
able to date.

The BA components
Figure 1 shows the BA’s architecture and

major information flows. The BA appears to
authors as an ordinary PowerPoint presenta-
tion editing environment, with a few extra tool
buttons that create graphics representing
instances of classes and properties from a tar-
get ontology. Portions of the briefing created
with these tools are automatically annotated
with nonvisible DAML markup. Authors can
augment the briefing by importing preexist-
ing DAML markup, which is automatically
rendered according to the graphic conven-
tions of the target ontology. Authors lose none
of PowerPoint’s native capabilities. The
DAML markup persists with the briefing doc-
ument as part of the saved presentation or
slideshow file. Authors can also publish the
document’s markup independently of the
graphic content using the standard XML
encoding for DAML.

The semantically grounded briefing (SGB)
editor appears to authors as a modestly
extended user interface to PowerPoint. The
extensions are tools and menu items for insert-
ing graphics that represent class and property
instances in a target ontology. The BA itself
is not tied to any specific ontology; it creates
extensions based on a visually annotated
ontology (VAO).

The VAO editor provides a graphical view
of an ontology. A domain graphic designer
adds graphic annotations to this ontology,
specifying a standard rendering for its classes
and properties. A single VAO will typically
be reused by multiple authors to create many
briefings. An author selects a VAO for a brief-
ing from a library of registered VAOs. The
BA records the choice with the briefing’s
markup. Whenever the BA is focused on a
briefing, the PowerPoint GUI is augmented
according to the chosen VAO’s dictates.

The semantic-content import and update
component lets authors create new graphic
briefing content from preexisting DAML
descriptions. The VAO assigned to a briefing
determines an initial rendering for the imported
content. Authors then use the native Power-
Point GUI to manually edit the layout and
other graphic details used in the rendering.

As with a VAO, a domain expert creates
an analyzer for reuse across multiple brief-
ings by multiple authors. An analyzer pro-
vides a service based on the DAML descrip-
tion associated with a briefing. Such a service
might provide feedback on a briefing’s com-
pleteness or consistency, or its adherence to
established guidelines.

28 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

GUI
extensions

Native PowerPoint
server + GUI

Import/update Publish

Briefing associate

Native PowerPoint

Live briefing

DAML-marked
briefing

Link

Relationship
type

Component
type

Satellite

Electronic
node

Node

User Amplifier Switch Terminal ProcessorNetwork

Mobile
ground node

Comsat

Sensor

SpaceStation

Graphic
template

Tool icon

Organization ID

Data type

Protocol

Security level

Visually annotated ontology

Figure 1. The BA’s software architecture. An author selects a visually annotated
ontology and creates a briefing using the BA’s augmented PowerPoint user interface.
The resulting document can be presented as a slideshow with native PowerPoint
software. The document retains semantic markup tied to its visual elements as a
byproduct of the author’s actions.

SGB editor
The SGB editor lets authors create original

content, and edit both original and imported
content. Authors control the SGB editor
through a combination of standard Power-
Point interface actions, additional GUI tools
and menu items, and direct manipulation. The
native PowerPoint GUI is completely func-
tional, and all user preference settings are
preserved.

The editor is guided by a VAO, which asso-
ciates a graphic template with each class and
object property in a single ontology. A class
template might be either an image or a Pow-
erPoint shape. A property template must be a
PowerPoint connector. Because a connector
can be attached to (at most) two other graphic
objects, it is a natural rendering for a prop-
erty. Disconnected property graphics are
interpreted as properties for which the domain
or range instances are not (yet) specified.

The editor adds a toolbar to PowerPoint’s
GUI that has a tool for each of these classes
and properties. By selecting a tool, authors
can insert a copy of the graphic template any-
where in the briefing, as if they selected a
native PowerPoint tool for adding a shape or
connector. These ontology-aware tools
simultaneously associate the ontology class
or property with the new graphic.

Figure 2 shows a screenshot of the editor
in a satellite communications domain.
Everything in the figure is part of the GUI,
with the exception of the callouts highlight-
ing specific elements. The screen’s center
contains a slide depicting a satellite com-
munications configuration. The various
labeled shapes represent class instances
from the ontology: satellites, terminals,
switches, processors, and users. They are
connected by arrows representing commu-
nication links, which are this simple ontol-
ogy’s sole object property.

The ontology toolbar appears in the sec-
ond toolbar row (upper right). To its left is a
box with a drop-down list that displays the
current ontology’s name (in this case, “Satel-
lite Com”). To start a new briefing, the author
chooses an ontology from this list, which
triggers the creation and display of the appro-
priate ontology toolbar. To manipulate graph-
ical aspects of the briefing’s class and prop-
erty instances—such as positioning, resizing,
and attaching or detaching connectors—the
author uses PowerPoint’s native mouse ges-
tures or keyboard shortcuts.

In addition to graphic templates, a VAO lists
any analyses available to the author. The pres-

ence of analyses in the VAO is reflected by
additional menus in the PowerPoint menu bar.
In Figure 2, the author requested a topology
analysis from the “Designer studies” group.
The result of the analysis is a list of reports,
displayed in a separate window in the upper
left. Each report consists of a textual explana-
tion and optional graphical feedback. In this
example, there is just one report. Its explana-
tion reads, “User U3 is directly connected to
User U2.” When the author selects a report,
its graphical feedback is displayed. In this
case, the feedback highlights the communi-
cation link between U2 and U3 as a thin red
arrow. When the author deselects the report or
closes the window, the highlighting is reversed
and the link returns to its normal state.

The editor lets authors edit datatype (lit-
eral) properties of class instances through a
dialog box interface. In a briefing, every
graphic associated with an ontology class has
an Edit Attribute Values menu item in its con-
text menu. The author selects this item to dis-
play a tabbed dialog for the selected instance,
with a tab for each datatype property applic-
able to that instance. Each tab provides a text,
radio button, or checkbox interface (depend-
ing on the property’s range type and cardi-
nality) that lets authors view and set the prop-
erty’s value. Figure 3 shows the dialog for a
sensor satellite. The dialog contains a tab for
each of 10 datatype properties in the ontol-
ogy that have “sensor satellite” or one of its
superclasses as a domain. The editor uses
analogous dialogs to gather the parameter
values for parameterized analyses.

The editor also extends PowerPoint’s cut,
copy, and paste operations. Whenever authors

cut or copy a graphic to the clipboard, its
markup accompanies it. When they paste that
graphic into its original briefing or into
another briefing using the same ontology, the
markup is restored. There are actually two
pasting modes. One (“paste as new instance”)
creates a new markup object instance, copy-
ing the class and datatype property values
from the clipboard. The other (“paste as
proxy”) simply adds a graphic to the briefing
and treats it as an additional instance refer-
ence already referred to elsewhere in the
briefing. Use of such proxies lets authors dis-
tribute information about a single object
across multiple slides.

VAO editor
The VAO editor lets a domain graphic

designer add graphic annotations to any
DAML ontology. Like the SGB editor, the
VAO editor is implemented as an extension
of PowerPoint—in fact, technically, VAO is
simply the name we give the SGB editor
when it is being driven by a VAO for ontolo-
gies. Using the VAO editor, a graphic

JANUARY/FEBRUARY 2002 computer.org/intelligent 29

Figure 2. The SGB editor’s GUI in the satellite communications domain.

Sat S1

T2

S2

U3

U2

P

SW2

T1

SW1
U1

Analysis feed-
back

Domain-specific analyses

Analysis results window Design units creation tools

Figure 3. The dialog for a sensor satellite.
Dialogs are displayed on demand and
contain tabs for each datatype property
applicable to the selected object.

designer selects classes and properties from
an ontology and associates them with
graphic templates. When the designer
imports ontology X into the VAO editor, it
lays out X’s classes and object properties,
graphically depicting their hierarchical rela-
tionships (their subclass and subproperty
properties). The designer can then create an
arbitrary PowerPoint graphic for some or

all of them. The VAO created by this activ-
ity establishes a rendering convention for
briefings.

The designer also has the option of assign-
ing toolbar icons to the graphically annotated
classes and properties. When a VAO contains
a graphic template, but no toolbar icon for a
class or property, the SGB editor simply uses
a scaled-down replica of the graphic template

as the toolbar icon.
Figure 4 shows the satellite communica-

tions VAO used in Figure 2. The green rec-
tangles labeled “Comsat,” “Sensor,” “User,”
and so on depict the leaf ontology classes.
The shapes attached to them by dashed con-
nections are graphic templates assigned by
the designer. In Figure 2, copies of these
graphic templates depict instances of the
associated classes. Designers can use any of
PowerPoint’s native autoshapes as a graphic
template and format them however they
want. They can also use an image as a
graphic template. The light-blue clouds
(“Satellite,” “Electronic node,” and so on)
represent non-leaf classes. The orange arrow
(“Link”) defines the ontology’s sole object
property, and the attached dashed, double-
headed arrow is the graphic template for the
“Link” property

To create tool icons for the instantiation
toolbar, authors connect classes and proper-
ties to graphics using a curved-solid connec-
tor. Like graphic templates, authors can
select any PowerPoint graphic as a tool icon.

In addition to providing visual annotation,
a designer can use the VAO editor to specify
initial values for the datatype properties
applicable to any class. The interface is a
tabbed property-editing dialog, identical to
those the SGB editor uses (see Figure 3).
When a VAO specifies an initial value for a
property of a class, the SGB editor assigns
that value to instances of the class as they are
created from the ontology toolbar.

Figure 4 shows the specification of two
analysis groups, “Designer studies” and
“Path studies,” and the eight analyses they
contain. The color and styling of an analy-
sis’ border specifies how the BA will render
graphical feedback supplied with analysis
reports. For example, Figure 2’s U2 to U3
connection report contained feedback spec-
ifying that the link between them be high-
lighted. The highlighting was rendered as a
thin red line because the “Topology” analy-
sis border is a thin red line. Analogously, an
analysis label’s text characteristics—font,
face, size, and color—specify the textual
characteristics of any feedback text an analy-
sis asks to paint on a briefing.

Although an analysis can specify graphical
feedback characteristics in great detail, defer-
ring to the VAO’s “convention” simplifies the
analysis programmer’s job. It also leaves the
choice of graphical characteristics to graphic
designers, who can choose schemes that avoid
conflicts between graphic feedback conven-

30 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

Link

Abstract
component

type

Relationship
type

Relationship
type

Component
type

Satellite

Electronic
node

Node

User Amplifier Switch Terminal ProcessorNetwork

Mobile
ground node

Comsat

Sensor

SpaceStation

Path
studies

Attribute
validity

Analysis group

Graphic
template

Tool icon

Authorization

Security

Topology

Capacity

Latency

Organization's
view

Throughput

Designer
studies

Analysis

Organization ID

Data type

Enumerated type

Protocol

Security level

Figure 4. Visually annotated ontology for the satellite communication domain. A VAO
associates graphic templates with ontology classes (green rectangles) and properties
(orange double arrow). It also specifies the supported analyses (right side).

tions and the VAO’s rendering conventions.
Although we have focused on the VAO

editor adding annotation to a preexisting
ontology, it is in fact a full-fledged ontology
editor and can be used to declare new classes
and properties.

Content import and update
To date, we have created a series of ontol-

ogy-specific import and update components.
In the following, we describe our planned
generic component.

Our content import component will let an
author contact and query DAML-aware
agents, including search agents. It will then
accept the query results as DAML descrip-
tions and incorporate them into the presen-
tation, retaining the imported descriptions
and the agent and query that produced them.

The component will graphically render
these descriptions as specified in the applic-
able VAO, thereby creating the imported con-
tent within the briefing. Authors must then
adjust the graphics’sizes and positions using
the native PowerPoint GUI to produce an
acceptable layout.

The component will also let authors
update information on demand. Using the
retained queries, the component will requery
source agents to retrieve updated content and
render an updated version. The component
will visually correlate the two versions on
demand. Authors can then incorporate the
updated version as a whole or selectively
incorporate only changed information.

Analyzers
Analyzers are external, executable mod-

ules that process the briefing content’s
DAML descriptions to provide an analysis, a
synthesis, or some other service. An analyzer
can be implemented to execute from within
the PowerPoint process, as a separate process
on the same host, or on a different host
(through DCOM).

Analyzer interactions. Each analysis is
associated with a particular ontology. A VAO
factors an ontology’s analyses into groups.
The grouping is reflected in menus that the
SGB editor adds to PowerPoint’s menu bar.
When an author requests an analysis, the BA
connects to, or launches, the module imple-
menting that analysis and passes it a refer-
ence to the target briefing, along with any
author-provided analysis parameters. The
analyzer subsequently sends the BA a set of
reports that constitute the results of the analy-

sis. The BA presents the reports to the author.
For a snapshot analysis, the analyzer’s

responsibility ends with report transmission.
With an incremental analysis, however, the
analyzer updates its reports as the author mod-
ifies the briefing. The updates end when the
author either closes the analysis report viewer
or closes the briefing. To support incremental
analyses, the briefing reference that the BA
sends the analyzer provides direct access not
only to the briefing’s content, updated as the
author edits, but also to events broadcast by
the SGB editor as changes occur.

An analyzer can also use a briefing refer-
ence to gain direct access to PowerPoint’s
detailed graphic model of a briefing. How-
ever, analyzers are typically interested only

in the DAML descriptions that encode the
briefing’s semantic content.

The DAML content conveyed to an ana-
lyzer could be encoded in an ontology-
independent form, such as XML text or an
RDF object model (www.w3c.org/RDF).
However, reliance on such an encoding would
make analysis programming tedious and
would generally result in inefficient analyzers
as well. We have chosen instead to provide an
analyzer with an ontology-specific interface
to briefings. For each ontology, the BA auto-
matically generates a COM type library. This
type library reflects a straightforward map-
ping between ontology classes and properties
and COM’s corresponding modeling con-
cepts (classes, interfaces, and properties).
Most widely used software development
environments for Windows provide a declar-
ative way to import such type libraries, auto-
matically building the client-side code needed
to interact with servers of the library-defined
objects. Analyses can then be written in a con-

text in which the ontology’s classes and prop-
erties appear as first-class types and methods
of the development language.

Analyzer examples. One analyzer we have
developed exports a briefing’s markup in the
XML encoding of the DAML+OIL language
(www.daml.org/2001/03/daml+oil.daml).
Using a generic briefing ontology, it also
exports meta information (author, date, size,
and so on) and all titles and text that appear
in the briefing.

One of the analyzers for the satellite com-
munications ontology computes communi-
cation latency across paths between a pair of
components selected by the author. For each
possible path, a report is returned containing
its latency. The graphic feedback accompa-
nying a report highlights the components and
links on that report’s path.

Author benefits
Although implementing the BA imposes

no extra impediments or costs on producing
PowerPoint briefings in the standard way, it’s
unrealistic to expect authors to use the BA’s
extensions based solely on the prospect of
future benefit to others. The BA includes sev-
eral enhancements that offer authors imme-
diate benefits:

• Graphic templates. The BA simplifies
briefing construction by offering readily
available graphic templates that authors
can repeatedly use to represent domain
objects.

• Analysis, synthesis, and other services.
The BA’s analyses exploit the briefing
content’s semantics to provide services to
authors while they’re editing their brief-
ings. Although such analyzers are not nec-
essarily tied to the Semantic Web, the
availability of DAML encoding of brief-
ing descriptions means that Web-based
agents can be used as part of the imple-
mentation of these services.

• Potential time savings. The BA’s exten-
sions for importing and visualizing preex-
isting DAML descriptions can save authors
significant time in constructing certain
kinds of briefings. Because we’ve designed
these facilities to rely on Semantic Web
queries, they leverage, rather than boot-
strap, the Semantic Web vision.

• Automated updates of imported content.
The BA automatically updates content that
originates in the Semantic Web. As with
import and visualization, this leverages the
Semantic Web vision.

JANUARY/FEBRUARY 2002 computer.org/intelligent 31

The BA constitutes a new paradigm

for generating semantic

descriptions that minimizes the

overhead typically incurred when

authors annotate documents with

semantic markups.

These BA author enhancements embed the
Semantic Web life cycle into the briefing cre-
ation process so that authors can also enjoy
two benefits of semantic markup.

First, ontology-based annotations will turn
briefings into reusable resources. Authors
can publish new content, as well as novel
aggregations of imported content, in a form
accessible to DAML-enabled agents. Link-
ing the briefing’s graphic content to the
semantic content fosters reuse of both visual
and semantic material. Although this does
not directly benefit the publishing author, it
does benefit any author who imports pub-
lished material.

Second, the BA’s automated content
update facilities will transform briefings
from information snapshots—which decline
in value as the information becomes dated
and obsolete—into renewable information
resources that are automatically updated.

The BA constitutes a new paradigm for
generating semantic descriptions that

minimizes the overhead typically incurred
when authors annotate documents with
semantic markups. We have several additions
to it planned or in progress.

We are currently augmenting the reper-
toire of visual metaphors for representing
ontological relationships. Currently, the SGB
editor only accepts and displays datatype (lit-
eral) properties through textual dialog boxes.
We are extending the BA to allow the repre-
sentaton of some properties as visual attrib-
utes of their corresponding graphic template.
Authors can then edit those property values
by changing the corresponding graphic
attributes. For example, a graphic’s label can
represent a text property (such as a name),
the graphic’s size can represent a numeric
property (such as the length of a queue), and
the graphic’s color can represent an enumer-
ated datatype (such as a state).

We also plan to extend the BA’s capabilities
in representing relations between instances.
The current BA can only represent a relation
between two instances using an arrow to con-
nect their graphic representations. This mech-
anism constrains authors to specifying rela-
tions between a pair of instances that are both
included in the briefing’s visual content. We
plan to implement an alternative mechanism
for specifying relations with instances exter-
nal to the briefing. We also plan to add a tool

to search Semantic Web content for references
to preexsisting instances.

We are also applying our paradigm to
Microsoft Word. In this case, instead of rely-
ing on a visually annotated ontology, we’ll
use a textually annotated ontology that might
include text fragments for representing onto-
logical relationships.

One outstanding question concerns the
BA’s applicability in a production environ-
ment. In our tests, we have demonstrated that
we can use the BA to compose documents
that fulfill our requirements in terms of its
semantic descriptive power. However, these
documents were composed to test the BA
rather than to create briefings for a real audi-
ence. We have yet to demonstrate that it is
practical to compose useful briefings that
also convey useful semantic information.

References

References

1. M. Erdmann et al., “From Manual to Semi-
automatic Semantic Annotation:About Ontol-
ogy-Based Text Annotation Tools,” to be pub-
lished in Linköping Electronic Articles in
Computer and Information Science, vol. 6;
available at www.ida.liu.se/ext/epa/cis/2001/
002/tcover.html (current Dec. 2001).

2. J. Heflin, J. Hendler, and S. Luke, “SHOE: A
Prototype Language for the Semantic Web,”
to be published in Linköping Electronic Arti-
cles in Computer and Information Science,
vol. 6; available at www.ida.liu.se/ext/epa/cis/
2001/003/tcover.html (current Dec. 2001).

3. N. Goldman and R. Balzer, “The ISI Visual
Design Editor Generator,” Proc. 1999 IEEE
Symp. Visual Languages, IEEE CS Press, Los
Alamitos, Calif., 1999, pp. 20–27.

32 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

I n t e l l i g e n t W e b S e r v i c e s

T h e A u t h o r s
Marcelo Tallis is a research scientist at Teknowledge Corporation. His
research includes the development of tools that support creation of seman-
tic markups for the Semantic Web and support COTS product wrapping to
extend their functionality and provide safe and secure execution environ-
ments. He previously worked at the University of Southern California’s Infor-
mation Sciences Institute researching knowledge acquisition for knowledge-
based systems. Tallis received a PhD in computer science from the University
of Southern California. Contact him at Teknowledge Corp., 4640 Admiralty
Way, Ste. 231, Marina del Rey, CA 90292; mtallis@teknowledge.com.

Neil M. Goldman is a senior research scientist at Teknowledge Corpora-
tion, where he develops middleware to support mediation of communica-
tions between COTS software components, with a focus on enhanced host-
based security. He is also working on the integration of COTS desktop tools
with the semantic Web. He previously worked at the University of Southern
California’s Information Sciences Institute researching application of arti-
ficial intelligence to software engineering and formal software specification
languages. He received a BS in mathematics and an MS and PhD in computer
science, all from Stanford University. Contact him at Teknowledge Corp.,

4640 Admiralty Way, Ste. 231, Marina del Rey, CA 90292; ngoldman@teknowledge.com.

Robert M. Balzer is a senior research scientist and the chief technical offi-
cer of Teknowledge Corporation. He also directs Teknowledge’s Distributed
Systems Unit, which combines artificial intelligence, database, and software
engineering techniques to automate the software development process. Cur-
rent research includes wrapping COTS products to integrate them, provide
safe and secure execution environments, and extend their functionality. He
is also researching instrumenting software architectures and generating sys-
tems from domain-specific specifications. He previously worked for the
Rand Corporation, and later helped establish the University of Southern Cal-

ifornia’s Information Sciences Institute, where he was director of the Software Sciences Division.
He was also a professor of computer science at USC from 1972 to 2000. Balzer received his BS, MS,
and PhD in electrical engineering from the Carnegie Institute of Technology in Pittsburgh. Contact
him at Teknowledge Corp., 4640 Admiralty Way, Ste. 231, Marina del Rey, CA 90292;
bbalzer@teknowledge.com.

