
72 1094-7167/01/$10.00 © 2001 IEEE IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Ontology Learning for
the Semantic Web
Alexander Maedche and Steffen Staab, University of Karlsruhe

The Semantic Web relies heavily on formal ontologies to structure data for com-

prehensive and transportable machine understanding. Thus, the proliferation of

ontologies factors largely in the Semantic Web’s success. Ontology learning greatly helps

ontology engineers construct ontologies. The vision of ontology learning that we propose

includes a number of complementary disciplines that
feed on different types of unstructured, semistruc-
tured, and fully structured data to support semiauto-
matic, cooperative ontology engineering. Our ontol-
ogy-learning framework proceeds through ontology
import, extraction, pruning, refinement, and evalua-
tion, giving the ontology engineer coordinated tools
for ontology modeling. Besides the general frame-
work and architecture, this article discusses tech-
niques in the ontology-learning cycle that we imple-
mented in our ontology-learning environment, such
as ontology learning from free text, dictionaries, and
legacy ontologies. We also refer to other techniques
for future implementation, such as reverse engi-
neering of ontologies from database schemata or
learning from XML documents.

Ontologies for the Semantic Web
The conceptual structures that define an underlying

ontology provide the key to machine-processable data
on the Semantic Web. Ontologies serve as metadata
schemas, providing a controlled vocabulary of concepts,
each with explicitly defined and machine-processable
semantics. By defining shared and common domain the-
ories, ontologies help people and machines to commu-
nicate concisely—supporting semantics exchange, not
just syntax. Hence, the Semantic Web’s success and pro-
liferation depends on quickly and cheaply constructing
domain-specific ontologies.

Although ontology-engineering tools have matured
over the last decade,1 manual ontology acquisition
remains a tedious, cumbersome task that can easily
result in a knowledge acquisition bottleneck. When

developing our ontology-engineering workbench,
OntoEdit, we particularly faced this question as we
were asked questions that dealt with time (“Can you
develop an ontology quickly?”), difficulty, (“Is it dif-
ficult to build an ontology?”), and confidence (“How
do you know that you’ve got the ontology right?”).

These problems resemble those that knowledge
engineers have dealt with over the last two decades
as they worked on knowledge acquisition method-
ologies or workbenches for defining knowledge
bases. The integration of knowledge acquisition with
machine-learning techniques proved extremely ben-
eficial for knowledge acquisition.2 The drawback to
such approaches,3 however, was their rather strong
focus on structured knowledge or databases, from
which they induced their rules.

Conversely, in the Web environment we encounter
when building Web ontologies, structured knowl-
edge bases or databases are the exception rather than
the norm. Hence, intelligent support tools for an
ontology engineer take on a different meaning than
the integration architectures for more conventional
knowledge acquisition.4

In ontology learning, we aim to integrate numerous
disciplines to facilitate ontology construction, partic-
ularly machine learning. Because fully automatic
machine knowledge acquisition remains in the distant
future, we consider ontology learning as semiauto-
matic with human intervention, adopting the paradigm
of balanced cooperative modeling for constructing
ontologies for the Semantic Web.5 With this objective
in mind, we built an architecture that combines knowl-
edge acquisition with machine learning, drawing on

The authors present

an ontology-learning

framework that

extends typical

ontology engineering

environments by using

semiautomatic

ontology-construction

tools. The framework

encompasses ontology

import, extraction,

pruning, refinement,

and evaluation.

resources that we find on the syntactic Web—
free text, semistructured text, schema defini-
tions (such as document type definitions
[DTDs]), and so on. Thereby, our framework’s
modules serve different steps in the engineer-
ing cycle (see Figure 1):

• Merging existing structures or defining
mapping rules between these structures
allows importing and reusing existing
ontologies. (For instance, Cyc’s ontolog-
ical structures have been used to construct
a domain-specific ontology.6)

• Ontology extraction models major parts
of the target ontology, with learning sup-
port fed from Web documents.

• The target ontology’s rough outline, which
results from import, reuse, and extraction,
is pruned to better fit the ontology to its
primary purpose.

• Ontology refinement profits from the pruned
ontology but completes the ontology at a
fine granularity (in contrast to extraction).

• The target application serves as a measure
for validating the resulting ontology.7

Finally, the ontology engineer can begin this
cycle again—for example, to include new
domains in the constructed ontology or to
maintain and update its scope.

Architecture
Given the task of constructing and main-

taining an ontology for a Semantic Web
application such as an ontology-based
knowledge portal,8 we produced support for
the ontology engineer embedded in a com-
prehensive architecture (see Figure 2). The
ontology engineer only interacts via the
graphical interfaces, which comprise two of
the four components: the OntoEdit Ontol-
ogy Engineering Workbench and the Man-
agement Component. Resource Processing
and the Algorithm Library are the architec-
ture’s remaining components.

The OntoEdit Ontology Engineering
Workbench offers sophisticated graphical
means for manual modeling and refining of the
final ontology. The interface gives the user dif-
ferent views, targeting the epistemological
level rather than a particular representation lan-
guage. However, the user can export the onto-
logical structures to standard Semantic Web
representation languages such as OIL (ontol-
ogy interchange language) and DAML-ONT
(DAML ontology language), as well as our own
F-Logic-based extensions of RDF(S)—we use
RDF(S) to refer to the combined technologies

MARCH/APRIL 2001 computer.org/intelligent 73

Web documents

Crawl
corpus

Domain
 ontology

Wordnet

O1

Result
set

Resource
Processing

Center

Natural-language-processing
system

OntologyOntology
engineer

Processed data

O2

HTML
HTML

DTD

Legacy databases

Import
schema Import

existing ontologies

XML schema

OntoEdit Ontology
Engineering Workbench

Algorithm
Library

Result
set

Lexicon

Management Component

XML Import semi-
 structured
 schema

Figure 2. Ontology-learning architecture for the Semantic Web.

Apply

Extract

Refine

Prune

Import and reuse Ontology
learning

Ontology
learning

Legacy and application data

Legacy and application data

Domain
ontology

Figure 1. The ontology-learning process.

of the resource description framework and
RDF Schema. Additionally, users can gener-
ate and access executable representations for
constraint checking and application debugging
through SilRi (simple logic-based RDF inter-
preter, www.ontoprise.de), our F-Logic infer-
ence engine, which connects directly to
OntoEdit.

We knew that sophisticated ontology-engi-
neering tools—for example, the Protégé mod-
eling environment for knowledge-based sys-
tems1—would offer capabilities roughly
comparable to OntoEdit. However, in trying
to construct a knowledge portal, we found
that a large conceptual gap existed between
the ontology-engineering tool and the input
(often legacy data), such as Web documents,
Web document schemata, databases on the
Web, and Web ontologies, which ultimately
determine the target ontology. Into this void
we have positioned new components of our
ontology-learning architecture (see Figure 2).
The new components support the ontology
engineer in importing existing ontology prim-
itives, extracting new ones, pruning given
ones, or refining with additional ontology
primitives. In our case, the ontology primi-
tives comprise

• a set of strings that describe lexical entries
L for concepts and relations;

• a set of concepts C (roughly akin to
synsets in WordNet9);

• a taxonomy of concepts with multiple
inheritance (heterarchy) HC;

• a set of nontaxonomic relations R
described by their domain and range
restrictions;

• a heterarchy of relations—HR;
• relations F and G that relate concepts and

relations with their lexical entries; and
• a set of axioms A that describe additional

constraints on the ontology and make
implicit facts explicit.8

This structure corresponds closely to
RDF(S), except for the explicit consideration
of lexical entries. Separating concept refer-
ence from concept denotation permits very
domain-specific ontologies without incur-
ring an instantaneous conflict when merg-
ing ontologies—a standard Semantic Web
request. For instance, the lexical entry school
in one ontology might refer to a building in
ontology A, an organization in ontology B,
or both in ontology C. Also, in ontology A,
we can refer to the concept referred to in
English by school and school building by the

German Schule and Schulgebäude.
Ontology learning relies on an ontology

structured along these lines and on input data
as described earlier to propose new knowledge
about reasonably interesting concepts, rela-
tions, and lexical entries or about links between
these entities—proposing some for addition,
deletion, or merging. The graphical result set
presents the ontology-learning process’s
results to the ontology engineer (we’ll discuss
this further in the “Association rules” section).
The ontology engineer can then browse the
results and decide to follow, delete, or modify
the proposals, as the task requires.

Components
By integrating the previously discussed con-

siderations into a coherent generic architecture
for extracting and maintaining ontologies from
Web data, we have identified several core com-
ponents (including the graphical user interface
discussed earlier).

Management component
graphical user interface

The ontology engineer uses the manage-
ment component to select input data—that is,
relevant resources such as HTML and XML
documents, DTDs, databases, or existing
ontologies that the discovery process can fur-
ther exploit. Then, using the management
component, the engineer chooses from a set
of resource-processing methods available in
the resource-processing component and from
a set of algorithms available in the algorithm
library.

The management component also supports
the engineer in discovering task-relevant
legacy data—for example, an ontology-based
crawler gathers HTML documents that are rel-
evant to a given core ontology.

Resource processing
Depending on the available input data, the

engineer can choose various strategies for
resource processing:

• Index and reduce HTML documents to
free text.

• Transform semistructured documents,
such as dictionaries, into a predefined rela-
tional structure.

• Handle semistructured and structured
schema data (such as DTDs, structured
database schemata, and existing ontolo-
gies) by following different strategies for
import, as described later in this article.

• Process free natural text. Our system
accesses the natural-language-processing
system Saarbrücken Message Extraction
System, a shallow-text processor for Ger-
man.10 SMES comprises a tokenizer
based on regular expressions, a lexical
analysis component including various
word lexicons, an amorphological analy-
sis module, a named-entity recognizer,
a part-of-speech tagger, and a chunk
parser.

After first preprocessing data according to one
of these or similar strategies, the resource-pro-
cessing module transforms the data into an
algorithm-specific relational representation.

Algorithm library
We can describe an ontology by a number

of sets of concepts, relations, lexical entries,
and links between these entities. We can
acquire an existing ontology definition
(including L, C, HC, R, HR, A, F, and G),
using various algorithms that work on this
definition and the preprocessed input data.
Although specific algorithms can vary
greatly from one type of input to the next, a
considerable overlap exists for underlying
learning approaches such as association
rules, formal concept analysis, or clustering.
Hence, we can reuse algorithms from the
library for acquiring different parts of the
ontology definition.

In our implementation, we generally use
a multistrategy learning and result combina-
tion approach. Thus, each algorithm plugged
into the library generates normalized results
that adhere to the ontology structures we’ve
discussed and that we can apply toward a
coherent ontology definition.

Import and reuse
Given our experiences in medicine,

74 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

In trying to construct a

knowledge portal, we found that a

large conceptual gap existed

between the ontology-

engineering tool and the input

(often legacy data).

telecommunications, tourism, and insurance,
we expect that domain conceptualizations are
available for almost any commercially signif-
icant domain. Thus, we need mechanisms and
strategies to import and reuse domain con-
ceptualizations from existing (schema) struc-
tures. We can recover the conceptualizations,
for example, from legacy database schemata,
DTDs, or from existing ontologies that con-
ceptualize some relevant part of the target
ontology.

In the first part of import and reuse, we
identify the schema structures and discuss
their general content with domain experts.
We must import each of these knowledge
sources separately. We can also import man-
ually—which can include a manual defini-
tion of transformation rules. Alternatively,
reverse-engineering tools—such as those
that exist for recovering extended entity-
relationship diagrams from a given data-
base’s SQL description (see the sidebar)—
might facilitate the recovery of conceptual
structures.

In the second part of the import and reuse
step, we must merge or align imported con-

ceptual structures to form a single common
ground from which to springboard into the
subsequent ontology-learning phases of
extracting, pruning, and refining. Although
the general research issue of merging and
aligning is still an open problem, recent pro-
posals have shown how to improve the man-
ual merging and aligning process. Existing
methods mostly rely on matching heuristics
for proposing the merger of concepts and sim-
ilar knowledge base operations. Our research
also integrates mechanisms that use an appli-
cation-data–oriented, bottom-up approach.11

For instance, formal concept analysis lets us
discover patterns between application data
and the use of concepts, on one hand, and
their heterarchies’relations and semantics, on
the other, in a formally concise way (see B.
Ganter and R. Wille’s work on formal con-
cept analysis in the sidebar).

Overall, the ontology-learning import and
reuse step seems to be the hardest to general-
ize. The task vaguely resembles the general
problems encountered in data-warehousing
—adding, however, challenging problems of
its own.

Extraction
Ontology-extraction models major

parts—the complete ontology or large
chunks representing a new ontology sub-
domain—with learning support exploiting
various types of Web sources. Ontology-
learning techniques partially rely on given
ontology parts. Thus, we here encounter an
iterative model where previous revisions
through the ontology-learning cycle can
propel subsequent ones, and more sophis-
ticated algorithms can work on structures
that previous, more straightforward algo-
rithms have proposed.

To describe this phase, let’s look at some
of the techniques and algorithms that we
embedded in our framework and imple-
mented in our ontology-learning environ-
ment Text-To-Onto (see Figure 3). We
cover a substantial part of the overall ontol-
ogy-learning task in the extraction phase.
Text-To-Onto proposes many different
ontology learning algorithms for primi-
tives, which we described previously (that
is, L, C, R, and so on), to the ontology engi-
neer building on several types of input.

MARCH/APRIL 2001 computer.org/intelligent 75

Figure 3. Screenshot of our ontology-learning workbench, Text-To-Onto.

76 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

Until recently, ontology learning—for comprehensive ontol-
ogy construction—did not exist. However, much work in numer-
ous disciplines—computational linguistics, information retrieval,
machine learning, databases, and software engineering—has
researched and practiced techniques that we can use in ontol-
ogy learning. Hence, we can find techniques and methods rel-
evant for ontology learning referred to as

• “acquisition of selectional restrictions,”1,2

• “word sense disambiguation and learning of word senses,”3

• “computation of concept lattices from formal contexts,”4 and
• “reverse engineering in software engineering.”5

Ontology learning puts many research activities—which focus
on different input types but share a common domain conceptu-
alization—into one perspective. The activities in Table A span a
variety of communities, with references from 20 completely dif-
ferent events and journals.

References
1. P. Resnik, Selection and Information: A Class-Based Approach to

Lexical Relationships, PhD thesis, Dept. of Computer Science, Univ.
of Pennsylvania, Philadelphia, 1993.

2. R. Basili, M.T. Pazienza, and P. Velardi, “Acquisition of Selectional
Patterns in a Sublanguage,” Machine Translation, vol. 8, no. 1, 1993,
pp. 175–201.

3. P. Wiemer-Hastings,A. Graesser, and K. Wiemer-Hastings, “Inferring
the Meaning of Verbs from Context,” Proc. 20th Ann. Conf. Cognitive
Science Society (CogSci-98), Lawrence Erlbaum, New York, 1998.

4. B. Ganter and R. Wille, Formal Concept Analysis: Mathematical
Foundations, Springer-Verlag, Berlin, 1999.

5. H.A. Mueller et al., “Reverse Engineering: A Roadmap,” Proc. Int’l
Conf. Software Eng. (ICSE-00),ACM Press, New York, 2000, pp. 47–60.

6. P. Buitelaar,CORELEX Systematic Polysemy and Underspecification,PhD
thesis,Dept. of Computer Science,Brandeis Univ.,Waltham,Mass., 1998.

7. H. Assadi, “Construction of a Regional Ontology from Text and Its
Use within a Documentary System,” Proc. Int’l Conf. Formal Ontol-
ogy and Information Systems (FOIS-98), IOS Press, Amsterdam.

8. D. Faure and C. Nedellec, “A Corpus-Based Conceptual Clustering
Method for Verb Frames and Ontology Acquisition,” Proc. LREC-98
Workshop on Adapting Lexical and Corpus Resources to Sublan-
guages and Applications, European Language Resources—Distrib-
ution Agency, Paris, 1998.

9. F. Esposito et al., “Learning from Parsed Sentences with INTHELEX,”
Proc. Learning Language in Logic Workshop (LLL-2000) and Learn-
ing Language in Logic Workshop (LLL-2000), Assoc. for Computa-
tional Linguistics, New Brunswick, N.J., 2000, pp. 194-198.

10. A. Maedche and S. Staab, “Discovering Conceptual Relations from
Text,” Proc. European Conf. Artificial Intelligence (ECAI-00), IOS
Press, Amsterdam, 2000, pp. 321–325.

11. J.-U. Kietz,A. Maedche, and R. Volz, “Semi-Automatic Ontology Acqui-
sition from a Corporate Intranet.” Proc. Learning Language in Logic
Workshop (LLL-2000), ACL, New Brunswick, N.J., 2000, pp. 31–43.

12. E. Morin, “Automatic Acquisition of Semantic Relations between
Terms from Technical Corpora,” Proc. of the Fifth Int’l Congress on
Terminology and Knowledge Engineering (TKE-99), TermNet-Ver-
lag, Vienna, 1999.

13. U. Hahn and K. Schnattinger, “Towards Text Knowledge Engineer-
ing,” Proc. Am. Assoc. for Artificial Intelligence (AAAI-98),
AAAI/MIT Press, Menlo Park, Calif., 1998.

14. M.A. Hearst, “Automatic Acquisition of Hyponyms from Large Text
Corpora,” Proc. Conf. Computational Linguistics (COLING-92), 1992.

15. Y. Wilks, B. Slator, and L. Guthrie, Electric Words: Dictionaries,
Computers, and Meanings, MIT Press, Cambridge, Mass., 1996.

16. J. Jannink and G. Wiederhold, “Thesaurus Entry Extraction from an
On-Line Dictionary,” Proc. Second Int’l Conf. Information Fusion
(Fusion-99), Omnipress, Wisconsin, 1999.

17. J.-U. Kietz and K. Morik, “A Polynomial Approach to the Con-
structive Induction of Structural Knowledge,” Machine Learning,
vol. 14, no. 2, 1994, pp. 193–211.

18. S. Schlobach, “Assertional Mining in Description Logics,” Proc. 2000
Int’l Workshop on Description Logics (DL-2000), 2000; http://Sun-
SITE.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-33.

19. A. Doan, P. Domingos, and A. Levy, “Learning Source Descriptions
for Data Integration,” Proc. Int’l Workshop on The Web and Data-
bases (WebDB-2000), Springer-Verlag, Berlin, 2000, pp. 60–71.

20. P. Johannesson, “A Method for Transforming Relational Schemas
into Conceptual Schemas,” Proc. Int’l Conf. Data Engineering
(IDCE-94), IEEE Press, Piscataway, N.J., 1994, pp. 190–201.

21. Z. Tari et al., “The Reengineering of Relational Databases Based on
Key and Data Correlations,” Proc. Seventh Conf. Database Seman-
tics (DS-7), Chapman & Hall, 1998, pp. 40–52.

A Common Perspective

Table A. A survey of ontology-learning approaches.

Domain Methods Features used Prime purpose Papers

Free Text Clustering Syntax Extract Paul Buitelaar,6 H. Assadi,7 and David Faure and Claure Nedellec8

Inductive logic Syntax, logic Extract Frederique Esposito et al.9
programming representation

Association rules Syntax, Tokens Extract Alexander Maedche and Steffen Staab10

Frequency-based Syntax Prune Joerg-Uwe Kietz et al.11

Pattern matching — Extract Emanuelle Morin12

Classification Syntax, semantics Refine Udo Hahn and Klemens Schnattinger13

Dictionary Information extraction Syntax Extract Marti Hearst,14 Yorik Wilks,15 and Joerg-Uwe Kietz et al.11

Page rank Tokens — Jan Jannink and Gio Wiederhold16

Knowledge base Concept induction, Relations Extract Joerg-Uwe Kietz and Katharina Morik17 and S. Schlobach18

A-Box mining

Semistructured Naive Bayes Relations Reverse engineering Anahai Doan et al.19

schemata

Relational Data correlation Relations Reverse engineering Paul Johannesson20 and Zahir Tari et al.21

schemata

Lexical entry and concept extraction
One of the baseline methods applied in our

framework for acquiring lexical entries with
corresponding concepts is lexical entry and
concept extraction. Text-To-Onto processes
Web documents on the morphological level,
including multiword terms such as “database
reverse engineering” by n-grams, a simple sta-
tistics-based technique. Based on this text pre-
processing, we apply term-extraction tech-
niques, which are based on (weighted)
statistical frequencies, to propose new lexical
entries for L.

Often, the ontology engineer follows the
proposal by the lexical entry and concept-
extraction mechanism and includes a new lex-
ical entry in the ontology. Because the new
lexical entry comes without an associated con-
cept, the ontology engineer must then decide
(possibly with help from further processing)
whether to introduce a new concept or link the
new lexical entry to an existing concept.

Hierarchical concept clustering
Given a lexicon and a set of concepts, one

major next step is taxonomic concept classifi-
cation. One generally applicable method with
regard to this is hierarchical clustering, which
exploits items’ similarities to propose a hier-
archy of item categories. We compute the sim-
ilarity measure on the properties of items.

When extracting a hierarchy from natural-
language text, term adjacency or syntactical
relationships between terms yield consider-
able descriptive power to induce the semantic
hierarchy of concepts related to these terms.

David Faure and Claure Nedellec give a
sophisticated example for hierarchical clus-
tering (see the sidebar). They present a coop-
erative machine-learning system, Asium
(acquisition of semantic knowledge using
machine-learning method), which acquires
taxonomic relations and subcategorization
frames of verbs based on syntactic input. The
Asium system hierarchically clusters nouns
based on the verbs to which they are syntac-
tically related and vice versa. Thus, they
cooperatively extend the lexicon, the concept
set, and the concept heterarchy (L, C, HC).

Dictionary parsing
Machine-readable dictionaries are fre-

quently available for many domains. Although
their internal structure is mostly free text, com-
paratively few patterns are used to give text
definitions. Hence, MRDs exhibit a large
degree of regularity that can be exploited to
extract a domain conceptualization.

We have used Text-To-Onto to generate a
concept taxonomy from an insurance com-
pany’s MRD (see the sidebar). Likewise,
we’ve applied morphological processing to
term extraction from free text—this time,
however, complementing several pattern-
matching heuristics. Take, for example, the
following dictionary entry:

Automatic Debit Transfer: Electronic service
arising from a debit authorization of the Yellow
Account holder for a recipient to debit bills that
fall due direct from the account….

We applied several heuristics to the mor-
phologically analyzed definitions. For
instance, one simple heuristic relates the defi-
nition term, here automatic debit transfer, with

the first noun phrase in the definition, here elec-
tronic service. The heterarchy HC : HC (auto-
matic debit transfer, electronic service) links
their corresponding concepts. Applying this
heuristic iteratively, we can propose large parts
of the target ontology—more precisely, L, C,
and HC to the ontology engineer. In fact,
because verbs tend to be modeled as relations,
we can also use this method to extend R (and
the linkage between R and L).

Association rules
One typically uses association-rule-learn-

ing algorithms for prototypical applications of
data mining—for example, finding associa-
tions that occur between items such as super-
market products in a set of transactions for
example customers’ purchases. The general-
ized association-rule-learning algorithm ex-
tends its baseline by aiming at descriptions at
the appropriate taxonomy level—for example,
“snacks are purchased together with drinks,”
rather than “chips are purchased with beer,”
and “peanuts are purchased with soda.”

In Text-To-Onto (see the sidebar), we use
a modified generalized association-rule-
learning algorithm to discover relations
between concepts. A given class hierarchy
HC serves as background knowledge. Pairs
of syntactically related concepts—for exam-
ple, pair (festival,island) describing the
head–modifier relationship contained in the
sentence “The festival on Usedom attracts
tourists from all over the world.”—are given
as input to the algorithm. The algorithm gen-
erates association rules that compare the rel-
evance of different rules while climbing up or
down the taxonomy. The algorithm proposes
what appears to be the most relevant binary
rules to the ontology engineer for modeling
relations into the ontology, thus extending R.

As the algorithm tends to generate a high
number of rules, we offer various interaction
modes. For example, the ontology engineer
can restrict the number of suggested relations
by defining so-called restriction concepts that
must participate in the extracted relations.
The flexible enabling and disabling of taxo-
nomic knowledge for extracting relations is
another way of focusing.

Figure 4 shows various views of the
results. We can induce a generalized relation
from the example data given earlier—relation
rel(event,area), which the ontology engineer
could name locatedin, namely, events located in
an area (which extends L and G). The user can
add extracted relations to the ontology by
dragging and dropping them. To explore and
determine the right aggregation level of
adding a relation to the ontology, the user can
browse the relation views for extracted prop-
erties (see the left side of Figure 4).

Pruning
A common theme of modeling in various

disciplines is the balance between com-
pleteness and domain-model scarcity. Tar-
geting completeness for the domain model
appears to be practically unmanageable and
computationally intractable, but targeting the
scarcest model overly limits expressiveness.
Hence, we aim for a balance between the two
that works. Our model should capture a rich
target-domain conceptualization but exclude
the parts out of its focus. Ontology import
and reuse as well as ontology extraction put
the scale considerably out of balance where
out-of-focus concepts reign. Therefore, we
appropriately diminish the ontology in the
pruning phase.

We can view the problem of pruning in at
least two ways. First, we need to clarify how

MARCH/APRIL 2001 computer.org/intelligent 77

Targeting completeness for the

domain model appears to be

practically unmanageable and

computationally intractable, but

targeting the scarcest model

overly limits expressiveness.

pruning particular parts of the ontology (for
example, removing a concept or relation)
affects the rest. For instance, Brian Peterson
and his colleagues have described strategies
that leave the user with a coherent ontology
(that is, no dangling or broken links).6 Second,
we can consider strategies for proposing ontol-
ogy items that we should either keep or prune.
Given a set of application-specific documents,
several strategies exist for pruning the ontol-
ogy that are based on absolute or relative
counts of term frequency combined with the
ontology’s background knowledge (see the
sidebar).

Refinement
Refining plays a similar role to extract-

ing—the difference is on a sliding scale
rather than a clear-cut distinction. Although

extracting serves mainly for cooperative
modeling of the overall ontology (or at least
of very significant chunks of it), the refine-
ment phase is about fine-tuning the target
ontology and the support of its evolving
nature. The refinement phase can use data
that comes from a concrete Semantic Web
application—for example, log files of user
queries or generic user data. Adapting and
refining the ontology with respect to user
requirements plays a major role in the
application’s acceptance and its further
development.

In principle, we can use the same algo-
rithms for extraction and refinement. How-
ever, during refinement, we must consider
in detail the existing ontology and its exist-
ing connections, while extraction works
more often than not practically from scratch.

Udo Hahn and Klemens Schnattinger
presented a prototypical approach for re-
finement (see the sidebar)—although not
for extraction! They introduced a method-
ology for automating the maintenance of
domain-specific taxonomies. This incre-
mentally updates an ontology as it acquires
new concepts from text. The acquisition
process is centered on the linguistic and
conceptual “quality” of various forms of
evidence underlying concept-hypothesis
generation and refinement. Particularly, to
determine a particular proposal’s quality,
Hahn and Schnattinger consider semantic
conflicts and analogous semantic structures
from the knowledge base for the ontology,
thus extending an existing ontology with
new lexical entries for L, new concepts for
C, and new relations for HC.

78 computer.org/intelligent IEEE INTELLIGENT SYSTEMS

T h e S e m a n t i c W e b

Figure 4. Result presentation in
Text-To-Onto.

MARCH/APRIL 2001 computer.org/intelligent 79

Ontology learning could add significant
leverage to the Semantic Web because

it propels the construction of domain ontolo-
gies, which the Semantic Web needs to suc-
ceed. We have presented a comprehensive
framework for ontology learning that crosses
the boundaries of single disciplines, touch-
ing on a number of challenges. The good
news is, however, that you don’t need perfect
or optimal support for cooperative ontology
modeling. At least according to our experi-
ence, cheap methods in an integrated envi-
ronment can tremendously help the ontology
engineer.

While a number of problems remain
within individual disciplines, additional chal-
lenges arise that specifically pertain to apply-
ing ontology learning to the Semantic Web.
With the use of XML-based namespace
mechanisms, the notion of an ontology with
well-defined boundaries—for example, only
definitions that are in one file—will disap-
pear. Rather, the Semantic Web might yield
an amoeba-like structure regarding ontology
boundaries because ontologies refer to and
import each other (for example, the DAML-
ONT primitive import). However, we do not
yet know what the semantics of these struc-
tures will look like. In light of these facts, the
importance of methods such as ontology
pruning and crawling will drastically
increase. Moreover, we have so far restricted
our attention in ontology learning to the con-
ceptual structures that are almost contained
in RDF(S). Additional semantic layers on top
of RDF (for example, future OIL or DAML-
ONT with axioms, A) will require new
means for improved ontology engineering
with axioms, too!

Acknowledgments
We thank our students, Dirk Wenke, and

Raphael Volz for work on OntoEdit and Text-To-
Onto. Swiss Life/Rentenanstalt (Zurich,
Switzerland), Ontoprise GmbH (Karlsruhe,
Germany), the US Air Force DARPA DAML
(“OntoAgents” project), the European Union
(IST-1999-10132 “On-To-Knowledge” project),
and the German BMBF (01IN901C0 “GETESS”
project) partly financed research for this article.

References

1. E. Grosso et al., “Knowledge Modeling at the
Millennium—the Design and Evolution of
Protégé-2000,” Proc. 12th Int’l Workshop
Knowledge Acquisition, Modeling and Man-
agement (KAW-99), 1999.

2. G. Webb, J. Wells, and Z. Zheng, “An Exper-
imental Evaluation of Integrating Machine
Learning with Knowledge Acquisition,”
Machine Learning, vol. 35, no. 1, 1999, pp.
5–23.

3. K. Morik et al., Knowledge Acquisition and
Machine Learning: Theory, Methods, and
Applications, Academic Press, London,
1993.

4. B. Gaines and M. Shaw, “Integrated Knowl-
edge Acquisition Architectures,” J. Intelligent
Information Systems, vol. 1, no. 1, 1992, pp.
9–34.

5. K. Morik, “Balanced Cooperative Modeling,”
Machine Learning, vol. 11, no. 1, 1993, pp.
217–235.

6. B. Peterson, W. Andersen, and J. Engel,
“Knowledge Bus: Generating Application-

Focused Databases from Large Ontologies,”
Proc. Fifth Workshop Knowledge Represen-
tation Meets Databases (KRDB-98), 1998,
http://sunsite.informatik.rwth-aachen.de/Pub-
lications/CEUR-WS/Vol-10 (current 19 Mar.
2001).

7. S. Staab et al., “Knowledge Processes and
Ontologies,” IEEE Intelligent Systems, vol.
16, no. 1, Jan./Feb. 2001, pp. 26–34.

8. S. Staab and A. Maedche, “Knowledge Por-
tals—Ontologies at Work,” to be published in
AI Magazine, vol. 21, no. 2, Summer 2001.

9. G. Miller, “WordNet: A Lexical Database for
English,” Comm. ACM, vol. 38, no. 11, Nov.
1995, pp. 39–41.

10. G. Neumann et al., “An Information Extrac-
tion Core System for Real World German Text
Processing,” Proc. Fifth Conf. Applied Nat-
ural Language Processing (ANLP-97), 1997,
pp. 208–215.

11. G. Stumme and A. Maedche, “FCA-Merge:
A Bottom-Up Approach for Merging Ontolo-
gies,” to be published in Proc. 17th Int’l Joint
Conf. Artificial Intelligence (IJCAI ’01),
Morgan Kaufmann, San Francisco, 2001.

Alexander Maedche is a PhD student at the Institute of Applied Informat-
ics and Formal Description Methods at the University of Karlsruhe. His
research interests include knowledge discovery in data and text, ontology
engineering, learning and application of ontologies, and the Semantic Web.
He recently founded together with Rudi Studer a research group at the FZI
Research Center for Information Technologies at the University of Karlsruhe
that researches Semantic Web technologies and applies them to knowledge
management applications in practice. He received a diploma in industrial
engineering, majoring in computer science and operations research, from the

University of Karlsruhe. Contact him at the Institute AIFB, Univ. of Karlsruhe, 76128 Karlsruhe,
Germany; ama@aifb.uni-karlsruhe.de.

Steffen Staab is an assistant professor at the University of Karlsruhe and
cofounder of Ontoprise GmbH. His research interests include computational
linguistics, text mining, knowledge management, ontologies, and the Seman-
tic Web. He received an MSE from the University of Pennsylvania and a Dr.
rer. nat. from the University of Freiburg, both in informatics. He organized
several national and international conferences and workshops, and is now
chairing the Semantic Web Workshop in Hongkong at WWW10. Contact
him at the Institute AIFB, Univ. of Karlsruhe, 76128 Karlsruhe, Germany;
sst@aifb.uni-karlsruhe.de.

T h e A u t h o r s

