
(cl-add-rule 'two-bedrooms-and-family-size @two-bedroom

'(all possible-clients

(at-most 4 family-members)))

There is a problem in de�ning such an upper bound for the class more-that-three-bedroom. It is certainly
possible to write a rule that uses a Test-C function to check whether the family size is not too large respect
to the number of bedrooms of the house being analized. This rule can be used to check if a certain client is a
possible client for a certain house, but not for retrieving all the individuals satis�ng the restriction that the
rule creates.

This problem rises since the restriction is based on TEST-C. Every time a house is inserted in the KB, a
\prototypical" client is assigned as a �ller of the possible-client role. To retrieve all the possible clients for a
house, we �rst generate a derived concept that contains all the derived information in the prototypical client
and then we ask for all the instance of this derived concept. The problem is that the derived concept cannot
contain the restriction created with a TEST-C, since TEST-C restrictions are treated like black boxes by the
classi�er.

This problem is easily solvable creating a class for each possible number of bedrooms, if we assume that a
Real Estate agency in Pittsburgh doesn't deal with castles and therefore we can satisfactory stop creating
new classes at 5 or 6 bedrooms. Nonetheless, the problem has been addressed to show the kind of problems
that the lack of structural descriptions in Classic can generate.

� A second set of rules de�nes a lower bound on the possible clients' income depending on the house's cost.

� A rule takes care of restricting the possible clients of a house for rent to be interested in renting (an there is
a similar rule for houses on sale).

There are no rules simmetric to the ones that constraint the proposable houses' locations for a client if the
client is a student. Infact these rules would constrain the possible clients of an house in the university areas to be
students only, which is de�nitely a too strong constraint. For the same reason there are no rules that constraint
possible clients of an house with a primary school in its vicinities to have kids in scholar age.

The complete process to �nd out what are the most probable clients interested in an new house available for
renting or selling is the following. First, the agency queries the knowledge base to obtain the possible clients. Then,
it checks for each client if the house belongs to the client's list of proposable house, obtaining the �nal the selection
of clients to notify. It is during the second phase, for example, that a client is discarded (or just considered with
lower priority) if it is a student and the house just inserted is not in the university area.

11



(2B3 (STATUS FOR-RENT) (LOCATION OAKLAND) (NUMBER-OF-BEDROOMS 2)(PETS-ALLOWED YES)...)

> (all-role-fillers @2b6)

(2B6 (STATUS FOR-RENT) (LOCATION SHADYSIDE) (NUMBER-OF-BEDROOMS 2) (RENT 700.0)

(AVAILABLE-SERVICES PRIMARY-SCHOOL SECONDARY-SCHOOL) (PETS-ALLOWED YES) ...)

> (all-role-fillers @2b7)

(2B7 (STATUS FOR-RENT) (LOCATION SQUIRREL-HILL) (NUMBER-OF-BEDROOMS 2)

(AVAILABLE-SERVICES NONE)(PETS-ALLOWED YES) (RENT 500.0)...)

As a second step, the agency can enter the description of the new client in the client taxonomy and ask for
proposable houses. In the example shown in the previous section, the proposable houses for @ind20 contained just
@2b3. The intersection between the houses satisfying the query and the proposable-houses gives the set of houses
that the agency can submit for evaluation to @ind20.

Another inference the system is able to make is what individuals in the Clients Taxonomy could be interested in a
certain house. In this way, every time a new house becomes available in the database, the agency can immediately
�nd out which clients to notify. The inference is based on the same mechanism as the one for retrieving the
proposable houses for a client.

The role possible-client has been de�ned for the concepts house-for-sale and house-for-rent and there are rules
that impose restrictions on this role depending on houses' properties (they are basically simmetric to the rules for
the proposable-house).

� A �rst set of rules imposes an upper bound on the client's family size depending on the house's number of
bedrooms, such as

10



@c{PERSON-WITH-FAMILY} @c{PERSON} @c{CLIENT}

@c{PERSON-WITH-INCOME})

Role Fillers and Restrictions

Pets![1 ; 1] -> (YES)

Interested-in![1 ; 1] -> (RENTING)

=> (ONE-OF RENTING BUYING)

Family-members[2 ; 2] -> (@i{W2} @i{KID9})

Income![1 ; 1] -> (900)

=> Tests: ((INTEGERP) (ATOM) (NUMBERP))

Interval: [-INF ; 1000]

Proposable-house[1 ; INF] -> (@i{PH20})

=> Primitive ancestors: (@c{INANIMATE-THING}

@c{CLASSIC-THING})

Role Restrictions:

Status![1 ; 1] -> (FOR-RENT)

Possible-clients => @c{CLIENT}

Rent! => Tests: ((ATOM) (NUMBERP) (FLOATP))

Interval: [-INF ; 500.0]

Basic-rent! => @c{FLOAT}

Pets-allowed![1 ; 1] -> (YES)

Location! => @c{URBAN-UNIVERSITY-AREA}

Number-of-bedrooms! => Tests: ((INTEGERP))

Interval: [1 ; INF]

Date-of-construction! => @c{INTEGER}

Available-services[1 ; 9] -> (@i{SECONDARY-SCHOOL})

=> @c{SERVICE}

Age! => @c{INTEGER}

Profession![1 ; 1] -> (@i{STUDENT})

@i{IND20}

> (list-proposable-houses @ind20)

(1B3 (STATUS FOR-RENT) (LOCATION OAKLAND) (NUMBER-OF-BEDROOMS 1) (RENT 300.0)

(AVAILABLE-SERVICES PRIMARY-SCHOOL SECONDARY-SCHOOL...)(PETS-ALLOWED YES) ...)

(2B3 (STATUS FOR-RENT) (LOCATION OAKLAND) (NUMBER-OF-BEDROOMS 2) (PETS-ALLOWED YES)

(AVAILABLE-SERVICES PRIMARY-SCHOOL SECONDARY-SCHOOL) (BASIC-RENT 300.0) (RENT 450.0)...)

Note that, in the last example, all the houses proposed for @ind20, which is a student, are located in Oakland,
which is an university area. Furthermore, they allows pets and have a secondary school available

Queries to The KB

A typical operation supported by terminological languages is the retrieval of all the individuals that satisfy a given
description. Therefore, our KB is able to accept a description of a house from a client and to return all the available
houses that satisfy the description.

Let's suppose that the client that corresponds to the individual @ind20 in the above example requests to the
agency a two-bedrooms house for rent in the university area, where pets are allowed. At �rst, the agengy can
tranform the request in a query for the Classic KB

> (find-instances-of '(and two-bedroom

house-in-university-area

(fills pets-allowed 'yes)))

(@i{2B3} @i{2B6} @i{2B7})

> (all-role-fillers @2b3)

9



Status![1 ; 1] -> (FOR-RENT)

Possible-clients => @c{CLIENT}

Rent! => Tests: ((ATOM) (NUMBERP) (FLOATP))

Interval: [-INF ; 1500.0]

Basic-rent! => @c{FLOAT}

Location! => @c{GEOGRAPHIC-LOCATION}

Number-of-bedrooms! => Tests: ((INTEGERP) (ATOM) (NUMBERP))

Interval: [1 ; INF]

Date-of-construction! => @c{INTEGER}

Available-services[1 ; 9] -> (@i{PRIMARY-SCHOOL})

=> @c{SERVICE}

Family-members[2 ; 2] -> (@i{W1} @i{KID1})

Age! => @c{INTEGER}

@i{IND1}

The KB retrieves the following proposable houses for @ind18

> (list-proposable-houses @ind1)

(1B3 (STATUS FOR-RENT) (LOCATION OAKLAND) (NUMBER-OF-BEDROOMS 1)

(AVAILABLE-SERVICES PRIMARY-SCHOOL SECONDARY-SCHOOL ...) (PETS-ALLOWED YES) (RENT 300.0)...)

(2B2 (STATUS FOR-RENT) (LOCATION DOWNTOWN) (NUMBER-OF-BEDROOMS 2)

(AVAILABLE-SERVICES PRIMARY-SCHOOL SECONDARY-SCHOOL) (PETS-ALLOWED NO) (RENT 850.0) ...)

(2B3 (STATUS FOR-RENT) (LOCATION OAKLAND) (NUMBER-OF-BEDROOMS 2) (PETS-ALLOWED 'yes)

(AVAILABLE-SERVICES PRIMARY-SCHOOL SECONDARY-SCHOOL...) (rent 450.0) ...)

(2B4 (STATUS FOR-RENT) (LOCATION SOUTH-SIDE) (NUMBER-OF-BEDROOMS 2)

(AVAILABLE-SERVICES PRIMARY-SCHOOL SECONDARY-SCHOOL) (PETS-ALLOWED NO) (RENT 1500.0))

Let's now de�ne another client that is a student, has a kid of age 11, an income of 900$ and has pets.

>(cl-create-ind 'kid9 '(and person (fills age 11)))

@kid9

> (cl-create-ind 'ind20 '(and client student (fills pets 'yes) (fills interested-in 'renting)

(fills family-members w2 kid9)

(fills income 900)

(fills proposable-house ph20)))

>(cl-ind-close-role @ind20 @family-members)

@ind20

>(cl-print-ind @ind20)

@i{IND20} ->

Derived Information:

Primitive ancestors: (@c{PERSON} @c{LIVING-THING} @c{CLASSIC-THING})

Parents: (@c{PERSON-WITH-LOW-INCOME} @c{CLIENT-FOR-RENT}

@c{PERSON-WITH-ANIMAL} @c{PERSON-WITH-CHILDREN-IN-SECONDARY}

@c{STUDENT})

Ancestors: (@c{THING} @c{CLASSIC-THING} @c{LIVING-THING}

8The function \list-proposable-houses" is de�ned in \kb.lisp"

8



� Another constraint reects the fact that a person with kids in scholar age necessitates to have a school in the
neighborhood. Three categories of persons with kids in scholar age have been created: person-with-children-

in-high, person-with-children-in-secondary, person-with-children-in-primary. The latter class, for example, is
de�ned as

(cl-define-concept 'person-with-children-in-secondary

'(and person-with-family

(TEST-C has-children? child-in-secondary-school-age)))

The TEST-C in the above de�nition tests the family members of the client to check whether there is any of
them with age between six and ten.

The fact that a house has a primary school in its vicinities is represented inserting primary-school as a �ller
of the available-services role. The rule that relates the two elements is

(cl-add-rule 'primary-school-available @client '(all proposable-house

(fills available-services primary-school))

:filter 'person-with-children-in-primary)

� An additional rule states that if a person is a student, the proposable house must be in a university area,
while another rule requires that the houses proposable to a person with animals must have the attribute
pets-allowed set to 'yes.

Working all together, the restrictions de�ned above allow to eliminate from the set of available houses those
whose features are incompatible with the client's feature. Some examples follows.

Let's de�ne a client interested in renting, with a kid of age six and no pets

> (cl-create-ind 'kid1 '(and person (fills age 6)))

@kid1

> (cl-create-ind 'ind1 '(and client (fills interested-in 'renting)

(fills income 2500)

(fills pets 'no)

(fills proposable-house ph3)

(fills family-members w1 kid1)))

(cl-ind-close-role @ind1 @family-members)

>(cl-print-ind @ind1)

@i{IND1} ->

Derived Information:

Primitive ancestors: (@c{PERSON} @c{LIVING-THING} @c{CLASSIC-THING})

Parents: (@c{PERSON-WITH-AVERAGE-INCOME} @c{CLIENT-FOR-RENT}

@c{PERSON-WITH-CHILDREN-IN-PRIMARY})

Ancestors: (@c{THING} @c{CLASSIC-THING} @c{LIVING-THING} @c{PERSON}

@c{PERSON-WITH-FAMILY} @c{CLIENT} @c{PERSON-WITH-INCOME})

Role Fillers and Restrictions

Interested-in![1 ; 1] -> (RENTING)

=> (ONE-OF RENTING BUYING)

Income![1 ; 1] -> (2500)

=> @c{INTEGER}

Pets![1 ; 1] -> (NO)

Proposable-house[1 ; INF] -> (@i{PH3})

=> Primitive ancestors: (@c{INANIMATE-THING}

@c{CLASSIC-THING})

Role Restrictions:

7



On the other end, creating an individual with three members in his family gives:

(cl-create-ind 'my-client1 '(and client-for-rent

(fills family-members fm2 fm3 fm4) (fills proposable-house h2)))

@my-client1

> (list-proposable-houses @my-client1)

(2B2 (STATUS FOR-RENT) (LOCATION DOWNTOWN) (NUMBER-OF-BEDROOMS 2)...)

Another reasonable constraint could be to de�ne an upper bound on the number of bedrooms depending on
the family size. For example, if the family size is at most 1, it is not worth it proposing a house that has
more that, let's say, 3 bedrooms. Nonetheless, if we assume that the only reason that could induce a person
to refuse a house with too many bedrooms is money, we can integrate this constraint in the next restriction.

� The client must have an income large enough to a�ord the rent (or the selling price). The best way to
implement this constraint would be to de�ne a relation between the amount of income and the rent, but this
impossible in Classic.

This cannot be done with a rule of the following type

(cl-add-rule 'salary-adeguate-for-rent @client

'(all proposable-house (TEST-C rent-adeguate-for-salary?)))

since the TEST-C function cannot access the client individual, and therefore it is impossible to relate her
income with the cost of the proposable-house.

Another solution could be to add an \add-�ller-rule" such as

(cl-add-filler-rule 'income-adeguate-for-rent @client @proposable-house

'income-adeguate-for-rent? :filter '(TEST-C

cl-role-filled? price))

When a new client (let's call it new-c) is created, this rule tests all the available houses and returns as �llers
for proposable-house those houses whose cost is adeguate for new-c's income. The problem with this approach
is that the rule checks just for the income constraint, creating inconsistencies when, for example, we have

(cl-create-ind 'ind4 '(and client (fills income 2000) (fills family-members ind2)))

(cl-create-ind 'h3 '(and efficency (fills price 600)))

As far as cost concern, h3 would be �ne as proposable house for ind4, but it is an e�cency, therefore it is
incompatible with the constraint that the proposable house for a client with one family member must have at
least one bedroom. To pursue this last approach, it would be necessary to de�ne a rule for each combination
of house's and client's feature.

The solution I have adopted is to de�ne four subclasses of person-with-income, based on income ranges:
person-with-low-income, person-with-average-income, person-with-high-income, person-with-very-hig-income

along with rules that de�ne an upper bound on the house cost for each class, such as:

(cl-add-rule 'low-income-and-rent @person-with-low-income

'(all proposable-house (and house-for-rent

(all rent (max 500.0))))

:filter '(fills interested-in 'renting))

This solution is evidently not very satisfactory, since the grain size of the match its creates is quite coarse
and the only way to improve it is to create subclasses based on smaller ranges of income. Nonetheless, it is
the only one allowed by Classic's expressive power.

6



=> @c{FLOAT}

Basic-rent![1 ; 1] -> (300.0)

=> @c{FLOAT}

.

.

Status![1 ; 1] -> (FOR-RENT)

@i{2B1}

1 The Clients' Taxonomy

This taxonomy organizes the information about the clients of the agency. The taxonomy representes a \waiting
list" of clients willing to rent or to buy a house and waiting for the right o�er to become available. The classes in
this hierarchy are specializations of the person superclass and they are built on properties that create constraints
between a client and the kind of house that can be o�ered to him.

For example, the size of the client's family creates a lower bound on the number of bedrooms of the house he
could be interested in. The client's income de�nes an upper bound on the cost of the house. The link between the
client and houses that can suit him resides in the proposable-house role of the client concept, de�ned as follows 5

(cl-define-concept 'client '(and person-with-income

(all proposable-house house)

(all interested-in (one-of 'buying 'renting))))

The �rst restriction on the proposable houses' type depends upon whether the client is interested in buying or
renting. This restriction is integrated in the de�nition of client-for-rent and client-for-sale. The latter concept, for
example, is de�ned as

(cl-define-concept 'client-for-sale '(and client (fills interested-in 'buying)

(all proposable-house house-on-sale)))

Other restrictions are create by rules that �re every time a new client enters the taxonomy6

� The house must have enough bedrooms to �t all the members of the client's family. This constraint is encoded
in a set of rules parameterized over the family size. The following rule, for example, states that if the client
has at least 1 member in her family, the proposable house must have at least 1 bedroom (that is, e�cencies
cannot be proposable houses for families of two persons or more)

(cl-add-rule 'family-members-1 @client '(all proposable-house

(all number-of-bedrooms (min 1)))

:filter '(at-least 1 family-members))

Therefore, if we create a client that has one family member and is interested in renting

(cl-create-ind 'my-client '(and client-for-rent

(fills family-members fm1) (fills proposable-house h1)))

and we ask for all the instances that satisfy the de�nition of the sample proposable house h1, we obtain7

> (list-proposable-houses @my-client1)

(1B1 (STATUS FOR-RENT) (NUMBER-OF-BEDROOMS 1) (LOCATION SHADYSIDE)(RENT 400.0)...)

(1B2 (STATUS FOR-RENT) (LOCATION DOWNTOWN) (NUMBER-OF-BEDROOMS 1)...)

(2B2 (STATUS FOR-RENT) (LOCATION DOWNTOWN) (NUMBER-OF-BEDROOMS 2)...)

5While the de�nition of all concepts regarding persons are in the \person-concept.cl", the de�nition of client is the the \house-

concept.cl".
6These rules are de�ned in the \person-rules.cl"�le
7All the examples presented in this work have been obtained having loaded the �les \person-istances.cl" and \house-instances.cl"

5



let's insert in the KB a two-bedroom, average-age house locaded in Squirrel Hill.

>(cl-create-ind '2b1 '(and house-for-rent two-bedroom average-age-house

(fills location squirrel-hill)))

@i{2B1}

The new house gets classi�ed as house-in-urban-residential-area and its rent is set to 1650$.

> (cl-print-ind @2b1)

@i{2B1} ->

Derived Information:

Primitive ancestors: (@c{INANIMATE-THING} @c{CLASSIC-THING})

Parents: (@c{HOUSE-FOR-RENT} @c{TWO-BEDROOM}

@c{HOUSE-IN-URBAN-RESIDENTIAL-AREA} @c{HOUSE-IN-UNIVERSITY-AREA}

@c{AVERAGE-AGE-HOUSE})

Ancestors: (@c{THING} @c{CLASSIC-THING} @c{INANIMATE-THING}

@c{HOUSE-IN-URBAN-AREA} @c{HOUSE})

Role Fillers and Restrictions

Rent![1 ; 1] -> (1650.0)

=> @c{FLOAT}

Basic-rent![1 ; 1] -> (300.0)

=> @c{FLOAT}

Available-services[0 ; 9] => @c{SERVICE}

Date-of-construction! => Tests: ((INTEGERP) (ATOM) (NUMBERP))

Interval: [1960 ; 1986]

Number-of-bedrooms![1 ; 1] -> (2)

=> @c{INTEGER}

Location![1 ; 1] -> (@i{SQUIRREL-HILL})

=> @c{GEOGRAPHIC-LOCATION}

Status![1 ; 1] -> (FOR-RENT)

@i{2B1}

Let's suppose that Squirrel Hill degrades to average-level area. To represent this fact in the knowledge base,
it is necessary to delete the original value of the area-type role of Squirrel Hill and to assign the new value4. The
result of performing the change is that @2B1 gets reclassi�ed as house-in-urban-average-level-area and its rent is
recomputed at 1050$, as shown below

>(change-area-definition @squirrel-hill 'average-level)

>(cl-ind-parents @squirrel-hill)

(@c{AREA-OF-PITTSBURGH} @c{URBAN-AVERAGE-LEVEL-AREA})

> (cl-print-ind @2b1)

@i{2B1} ->

Derived Information:

Primitive ancestors: (@c{INANIMATE-THING} @c{CLASSIC-THING})

Parents: (@c{HOUSE-FOR-RENT} @c{TWO-BEDROOM}

@c{HOUSE-IN-URBAN-AVERAGE-AREA} @c{AVERAGE-AGE-HOUSE})

Ancestors: (@c{THING} @c{CLASSIC-THING} @c{INANIMATE-THING}

@c{HOUSE-IN-URBAN-AREA} @c{HOUSE})

Role Fillers and Restrictions

Rent![1 ; 1] -> (1050.0)

4These operations are performed by the change-area-de�nition function, de�ned in the �le \kb.lisp"

4



> (cl-print-ind @my-house)

@i{MY-HOUSE} ->

Derived Information:

Primitive ancestors: (@c{INANIMATE-THING} @c{CLASSIC-THING})

Parents: (@c{HOUSE-FOR-RENT} @c{EFFICENCY}

@c{HOUSE-IN-URBAN-AVERAGE-AREA} @c{HOUSE-IN-UNIVERSITY-AREA}

@c{AVERAGE-AGE-HOUSE})

Ancestors: (@c{THING} @c{CLASSIC-THING} @c{INANIMATE-THING}

@c{HOUSE-IN-URBAN-AREA} @c{APARTAMENT} @c{HOUSE})

Role Fillers and Restrictions

Available-services[0 ; 9] => @c{SERVICE}

Date-of-construction![1 ; 1] -> (1980)

=> @c{INTEGER}

Number-of-bedrooms![1 ; 1] -> (0)

=> @c{INTEGER}

Location![1 ; 1] -> (@i{SHADYSIDE})

=> @c{GEOGRAPHIC-LOCATION}

Basic-rent![1 ; 1] -> (100.0)

=> @c{FLOAT}

Rent![1 ; 1] -> (350.0)

=> @c{FLOAT}

Status![1 ; 1] -> (FOR-RENT)

@i{MY-HOUSE}

Analogous rules compute the actual rent for every combination of the location and the age features.

Re-evaluation of a house's cost

Another functionality provided by the KB is the re-evaluate the cost of a house in case the values of the evaluation
parameters change. For example, it can happen that an urban area changes from poor to average-level if improve-
ments are made or, viceversa, residential areas can be degraded to average level if poorer areas expand toward
them, making the neighborhood less safe and fancy.

Location is one of the dimentions along with our houses are classi�ed and it is used as an evaluation parameter.
As the classi�cation of an area changes, all the houses in that area are reclasssi�ed and the cost of the house gets
modi�ed consequently (unless it had been stated by the house's owner, as described in the previous section).

Given the following de�nition of Squirrel Hill as a residential area

> (cl-print-ind @squirrel-hill)

@i{SQUIRREL-HILL} ->

Derived Information:

Primitive ancestors: (@c{GEOGRAPHIC-LOCATION} @c{INANIMATE-THING}

@c{CLASSIC-THING})

Parents: (@c{AREA-OF-PITTSBURGH} @c{URBAN-RESIDENTIAL-AREA})

Ancestors: (@c{THING} @c{CLASSIC-THING} @c{INANIMATE-THING}

@c{GEOGRAPHIC-LOCATION} @c{URBAN-AREA})

One-of Restr: (@i{OAKLAND} @i{WILKINSBURG} @i{HILL-DISTRICT}

@i{SOUTH-SIDE} @i{SHADYSIDE}

@i{SQUIRREL-HILL} @i{NORTH-HILL} @i{DOWNTOWN})

Role Fillers and Restrictions

Area-type[1 ; 6] -> (@i{RESIDENTIAL})

=> @c{AREA-PROPERTY}

Part-of-city![1 ; 1] -> (@i{PITTSBURGH})

=> @c{CITY}

@i{SQUIRREL-HILL}

3



Determining the cost of a house

Let's consider the process of de�ning the renting price of a house (the process to de�ne a selling price is analogus).
Two situations are taking into consideration.

� The house's landlord wants to gain a certain pro�t and states the rent when he makes its house available to
the agency. In this case, the stated amount is immediately assigned to the rent attribute of the individual
inserted in the KB to represent the house to be rented.

� The landlord decides to keep the rent on the market's standards and defers to the agency its evaluation.

In the latter case, the rent is computed considering the house's features. As soon as a house enters the KB,
a rule that de�nes its basic rent �res. The basic rent is the lowest rent that an house with a certain number of
bedrooms can have2. For example, the following rule states that the basic rent for an e�cency is 100$.

(cl-add-rule 'efficency-rent @efficency

'(fills basic-rent 100.0)

:filter '(and house-for-rent (TEST-C cl-basic-rent-unfilled?)))

Analogous rules de�ne the basic price for houses with a di�erent number of bedrooms.3

Once the basic cost has been assigned, another rule increments it depending on the house's age and position.
For example, the following rules increment the basic rent of 3.5 if a house is new and it is located in an average-level
area

(cl-add-filler-rule 'increase-price-if-new-and-average-level

@house-in-urban-average-level-area

@price 'modify-basic-price :args '(3.5)

:filter '(and new-house house-on-sale

(TEST-C cl-basic-price-filled-and-price-unfilled?)))

Therefore, the de�nition of the following e�cency for rent:

(cl-create-ind 'my-house '(and efficency house-for-rent

(fills date-of-construction 1980)

(fills location shadyside)))

brings to the creation of the following individual

2It is assumed to be the cost of an old house located in a miserable area
3All the rules mentioned in this section are in the �le \house-rules.cl"

2



A Classic Knowledge Base for a Real Estate Agency

C

This �le is part of:

AT&T Bell Laboratories and University of Pittsburgh

CLASSIC Knowledge Representation System Tutorial

Copyright AT&T and University of Pittsburgh 1994

The Real Estate Agency Knowledge Base

The knowledge base developed manages data for an immaginary Real Estate agency. It constists of two main
hierarchies: the hierarchy that organizes available houses and the taxonomy of agency's clients.

The Houses' Taxonomy

The root of the Houses' hierarchy is the concept of house. For the agency's purposes, a house is de�ne by its
location, the number of bedrooms, the date of construction, the available services (laundry, garage, parking lot,
supermarket, schools...) Further classi�cation is performed along dimentions de�ned by these properties:

� number of bedrooms. Along this dimension houses are classi�ed as e�cency, one-bedroom, two-bedroom,
three-bedroom, and more-than-three-bedroom.

� Date-of-construction. This property de�nes the three categories old-house, average-age-house, new-house.

� Location. Fillers for this role belong to the class geographic-location1 . In this work I am focusing on houses
in the Pittsburgh area, that are de�ned as house-in-urban-area. A further classi�cation is induced by the
particular Pittsburgh area (Squirrel-Hill, Oakland, South Side...), where a house is located.

Areas within a city can be classi�ed as residential, average-level, poor, miserable, university-area and bussiness-

area and a corresponding class is de�ned for houses located in each of these categories.

� Houses can be single houses, buildings or apartments. Since apartments are part of other houses, rules as
been de�ned that perform inheritance along the part-of relation. Therefore, an apartment that is part of a
building built in 1987 and located in Shadyside will automatically acquire these properties once inserted in
the KB.

� Houses can be for rent or on sale. Houses on sale have a basic selling price and an actual selling price, while
houses in the second category have a basic rent and an actual rent. The distinction between basic cost (price
or rent) and actual cost is due to the fact that there are two ways to determine the actual cost of an house,
as will be explained in the following section.

1The de�nition of this concepts and of its subconcepts can be found in the �le \generic-kb.cl"

1


