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Abstract

This paper analyzes the correctness of the subsumption algorithm used in classic,
a description logic-based knowledge representation system that is being used in practical
applications. In order to deal e�ciently with individuals in classic descriptions, the de-
velopers have had to use an algorithm that is incomplete with respect to the standard,
model-theoretic semantics for description logics. We provide a variant semantics for de-
scriptions with respect to which the current implementation is complete, and which can
be independently motivated. The soundness and completeness of the polynomial-time sub-
sumption algorithm is established using description graphs, which are an abstracted version
of the implementation structures used in classic, and are of independent interest.

1. Introduction to Description Logics

Data and knowledge bases are models of some part of the natural world. Such models
are often built from individual objects that are inter-related by relationships and grouped
into classes that capture commonalities among their instances. Description logics (DLs),
also known as terminological logics, form a class of languages used to build and access such
models; their distinguishing feature is that classes (usually called concepts) can be de�ned
intensionally|in terms of descriptions that specify the properties that objects must satisfy
to belong to the concept. These descriptions are expressed using some language that allows
the construction of composite descriptions, including restrictions on the binary relationships
(usually called roles) connecting objects.

As an example, consider the description

GAME u �4 participants u 8participants:(PERSON u gender :Female):1

This description characterizes objects in the intersection (u) of three sub-descriptions:
GAME|objects that belong to the atomic concept; �4 participants|objects with at least
four �llers for the participants role; and 8participants:(PERSON u gender : Female)|objects
all of whose participants �llers are restricted to belong to PERSONs, which themselves have
gender role �lled by the value Female.

1. The notation used for descriptions here is the standard notation in the description logic community
(Baader et al., 1991). The classic notation is not used because it is more verbose.
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A key di�erence between DLs and the standard representation formalisms based on
First-Order Logic, e.g., relational and deductive databases, is that DLs provide an arena
for exploring new sets of \logical connectives"|the constructors used to form composite
descriptions|that are di�erent from the standard connectives such as conjunction, universal
quanti�ers, etc.. Therefore, DLs provide a new space in which to search for expressive
yet e�ectively computable representation languages. Moreover, although it is possible to
translate many aspects of DLs currently encountered into First Order Logic, reasoning with
such a translation would be a very poor substitute because DL-based systems reason in a
way that does not resemble standard theorem proving (e.g., by making use of imperative
programming features).

Descriptions such as the one above can be used in several ways in a knowledge base
management system (KBMS) based on a description logic:

1. To state queries: The KBMS can locate all the objects that satisfy the description's
properties.

2. To de�ne and classify concepts: Identi�ers can be attached to descriptions, in the man-
ner of views in relational DBMSs. The system can in addition automatically determine
the \subclass" relationship between pairs of such concepts based on their de�nitions.
For example, a concept de�ned by the above description would be subsumed by a
concept de�ned by \games with at least two participants" (GAME u �2 participants).

3. To provide partial information about objects: It is important to understand that dis-
tinct DL descriptions can be ascribed to arbitrary individuals (e.g., \today's game
of cards|individual Bgm#467|will have exactly two participants from the following
set of three : : : , all of whom like tea and rum"). Note that unlike database sys-
tems, DL-based KBMSs do not require descriptions to be prede�ned. This provides
considerable power in recording partial knowledge about objects.

4. To detect errors: It is possible to determine whether two descriptions are disjoint,
whether a description is incoherent or not, and whether ascribing a description to an
individual leads to an inconsistency.

Quite a number of KBMSs based on description logics have been built, including classic
(Resnick et al., 1992), loom (MacGregor & Bates, 1987), and back (Peltason et al., 1987).
Such systems have been used in several practical situations, including software information
bases (Devanbu et al., 1991), �nancial management (Mays et al., 1987), con�guration man-
agement (Owsnicki-Klewe, 1988; Wright et al., 1993), and data exploration. Additional
signs that DLs are signi�cant subjects of study are the several recent workshops on DLs
(Nebel et al., 1991; Peltason et al., 1991; AAAI, 1992).

1.1 On the Tractability and Completeness of DL Implementations

The fundamental operation on descriptions is determining whether one description is more
general, or subsumes, another, in the sense that any object satisfying the latter would also
satisfy the conditions of the former. In parallel with the surge of work on �nding tractable
yet expressive subsets of �rst order logic, the DL research community has been investigating
the complexity of reasoning with various constructors. The �rst result in this area (Levesque
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& Brachman, 1987) showed that even a seemingly simple addition to a very small language
can lead to subsumption determination becoming NP-hard. A more recent, striking pair of
results (Patel-Schneider, 1989b; Schmidt-Schauss, 1989) shows that adding the ability to
represent equalities of role compositions makes the complexity of the subsumption problem
leap from quadratic to undecidable.

There are three possible responses to these intractability results:

� Provide an incomplete implementation of the DL reasoner, in the sense that there
are inferences sanctioned by the standard semantics of the constructors that are not
performed by the algorithm. This approach, explicitly adopted by the loom system
implementers (MacGregor & Bates, 1987), and advocated by some users (Doyle &
Patil, 1991), has one major di�culty: how can one describe to users the inferences
actually drawn by the implementation so that systems with known properties can be
implemented on top of such KBMS? Two solutions to this problem have been sug-
gested: alternative semantic accounts (based on weaker, 4-valued logics, for example)
(Patel-Schneider, 1989a), and proof-theoretic semantics (Borgida, 1992).

� Provide a complete implementation of a speci�c DL reasoner, acknowledging that in
certain circumstances it may take an inordinate amount of time. This approach,
followed in systems such as kris (Baader & Hollunder, 1991), has the problem of
unpredictability: when will the system \go o� into the wild blue yonder"? And of
course, in some circumstances this is impossible to even attempt since the reasoning
problem is undecidable.

� Carefully devise a language of limited expressive power for which reasoning is tractable,
and then provide a complete implementation for it. This was the approach chosen
by the designers of such languages as kandor (Patel-Schneider, 1984) and krypton

(Brachman et al., 1983), and is close to the approach in classic (Borgida et al.,
1989).

A hidden di�culty in the second and third approach is to produce an implementation
that is correct (\complete") with respect to the semantics. This di�culty is illustrated by
the discovery, several years later, that the implementation of kandor, as well as candide
(Beck et al., 1989), was in fact incomplete, and its subsumption problem is NP-hard (Nebel,
1988), rather than polynomial, as was claimed; this happened despite the fact thatKandor
is a very \small" language in comparison with other DLs, and its implementation appeared
to be evidently correct. To avoid such problems, it is necessary to produce convincing
demonstrations that the algorithm is correct; several such proofs have in fact already ap-
peared in the DL literature (e.g., (Patel-Schneider, 1987; Hollunder & Nutt, 1990; Donini
et al., 1991)), albeit only for languages that have not seen use in practical applications.

1.2 Outline

The classic 12 system is a reasoner based on a moderately complicated DL. It is being
used in commercial (Wright et al., 1993) and prototype applications at AT&T, and is made
available to academic researchers by AT&T Bell Laboratories.

2. classic 1 is the �rst released version of classic. A new version, classic 2, with a more expressive DL,
has recently been released.
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One purpose of this paper is to provide a rigorous formal analysis of the correctness
and e�ciency for the classic DL subsumption algorithm.3 We start by presenting such
a result for a subset of the language, which we call Basic classic. The subsumption
algorithm relies on the transformation of descriptions into a data structure, which we call
description graphs, and which are a generalization of A�-Kaci's psi-terms (1984). In the
process of normalizing such a graph to a canonical form, we remove obvious redundancies
and explicate certain implicit facts, encoding in particular the in�nite set of inferences that
can be drawn from so-called \coreference constraints". The correctness of the subsumption
algorithm is demonstrated rigorously by showing how to construct (inductively) a counter-
model in case the algorithm returns the answer \no".

Next, we explore the e�ect of adding individuals to descriptions. We show that, using
individuals, one can encode disjunctive information leading to the need to examine combina-
torially many possibilities. The classic implementation is in fact incomplete with respect
to the standard semantics. The second contribution of this paper is then a well-motivated,
understandable, and small change to the standard semantics that alleviates this problem.
We extend the subsumption algorithm and its proof of correctness to deal with individuals
under the modi�ed semantics, thereby characterizing in some sense the \incompleteness"
of the reasoner.

This paper therefore illustrates all three paradigms described above, albeit in a non-
standard manner for the second paradigm, and does so for the �rst time on a realistic
language with signi�cant practical use.

2. Basic CLASSIC

Descriptions in Basic classic are built up from a collection of atomic concept names, role
names, and attribute names. Roles and attributes are always atomic but descriptions can
be built up using operators/constructors such as value restrictions and number restrictions,
as we indicate below.

Basic classic incorporates objects from the host programming language,4 called host
individuals, which form a distinct group from classic individuals; only the latter can have
roles or attributes of their own, the former being restricted to be role or attribute �llers.

The denotational semantics of classic descriptions starts, as usual, with a domain of
values, �, subsets of which are extensions for descriptions, while subsets of � � � are
extensions of roles and attributes. This domain is in fact disjointly divided into two realms,
the host realm, �H , containing objects corresponding to host language individuals, and the
classic realm �C , containing the other objects. Every description, except for THING, which
denotes the entire domain has as its extension a subset of either the classic realm or the
host realm. (NOTHING denotes the empty set, which is therefore both a classic and host
concept.) The extension of a role in a possible world is a relation from the classic realm to
the entire domain, while the extension of an attribute is a function from the classic realm
into the entire domain.

3. In empirical tests (Heinsohn et al., 1992), classic has emerged as the fastest of the current DL
implementations.

4. A general scheme for incorporating such host objects is described in (Baader & Hanschke, 1991).
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Host descriptions are relatively simple: (i) HOST-THING, denoting the entire host realm,
�H ; (ii) special, pre-de�ned names corresponding to the types in the host programming lan-
guage; and (iii) conjunctions of the above descriptions. The descriptions corresponding to
the host programming language types have pre-de�ned extensions and subsumption re-
lationships, mirroring the subtype relationship in the host programming language. This
subtype relationship is satis�ed in all possible worlds/interpretations. We require that (i)
all host concepts have an extension that is either of in�nite size or is empty; (ii) that if
the extensions of two host concepts overlap, then one must be subsumed by the other, i.e.,
types are disjoint, unless they are subtypes of each other; and (iii) that a host concept has
an in�nite number of extra instances than each of its child concepts. (These conditions are
needed to avoid being able to infer conclusions from the size of host descriptions.) This
allows for host concepts like INTEGER, REAL, COMPLEX, and STRING, but not BOOLEAN
or NON-ZERO-INTEGER.

Non-host (classic) descriptions in Basic classic are formed according to the following
syntax:

Syntax Constructor Name

CLASSIC-THING
E Atomic Concept Name
C u D Intersection
8R:C Role Value Restriction
8A:C Attribute Value Restriction
�n R Minimum Number Restriction
�mR Maximum Number Restriction
A1� : : :�Ak =B1� : : :�Bh Equality Restriction

where E is an atomic concept name; C and D are classic descriptions; R is a role; A, Ai,
and Bj are attributes; n,k,h are positive integers; and m is a non-negative integer. The set
of constructors in Basic classic was judiciously chosen to result in a language in which
subsumption is easy to compute.

The denotational semantics for descriptions in Basic classic is recursively built on the
extensions assigned to atomic names by a possible world:

De�nition 1 A possible world/interpretation, I, consists of a domain, �, and an inter-
pretation function :I . The domain is disjointly divided into a classic realm, �C , and a host
realm, �H . The interpretation function assigns extensions to atomic identi�ers as follows:

� The extension of an atomic concept name E is some subset EI of the classic realm.

� The extension of an atomic role name R is some subset RI of �C ��.

� The extension of an atomic attribute name A is some total function AI from �C to
�.

The extension CI of a non-atomic classic description is computed as follows:

� CLASSIC-THINGI = �C.

� (Cu D)I = CI \ DI .
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� (8p:C)I = fd 2 �C j 8x (d; x) 2 pI ) x 2 CIg, i.e., those objects in �C all of
whose p-role or p-attribute �llers are in the extension of C;

� (�n p)I (resp. (�n p)I) is those objects in �C with at least (resp. at most) n �llers
for role p.

� (A1� : : :�Ak=B1� : : :�Bh)
I = fd 2 �C j Ak

I(: : :A1
I(d)) = Bh

I(: : :B1
I(d))g, i.e.,

those objects in �C with the property that applying the composition of the extension
of the Ais and the composition of the extension of the Bjs to the object both result in

the same value.5

A description, D1, is then said to subsume another, D2, if for all possible worlds I, D2
I �

D1
I.

Of key interest is the computation of the subsumption relationship between descriptions
in Basic classic. Subsumption computation is a multi-part process. First, descriptions
are turned into description graphs. Next, description graphs are put into canonical form,
where certain inferences are explicated and other redundancies are reduced by combining
nodes and edges in the graph. Finally, subsumption is determined between a description
and a canonical description graph.

To describe in detail the above process, we start with a formal de�nition of the notion
of description graph (De�nition 2), and then present techniques for

� translating a description to a description graph (Section 2.2), which requires merging
pairs of nodes, and pairs of graphs (De�nitions 4 and 5);

� putting a description graph into canonical form (Section 2.3);

� determining whether a description subsumes a description graph (Algorithm 1).

To prove the correctness of this approach, we need to show that the �rst two steps
lead us in the right direction, i.e., that the following three questions are equivalent: \Does
description D subsume description C?", \Does description D subsume graph GC?", and
\Does description D subsume graph canonical(GC)?". To do this, we need to de�ne the
formal semantics of both descriptions and graphs (De�nitions 1 and 3), and then prove the
results (Theorems 1 and 2). To prove the \completeness" of the subsumption algorithm, we
show that if the algorithm does not indicate that D subsumes canonical(GC), then we can
construct an interpretation (\graphical world") in which some object is in the denotation
of canonical(GC) but not that of D.

2.1 Description Graphs

One way of developing a subsumption algorithm is to �rst transform descriptions into a
canonical form, and then determine subsumption relationships between them. Canonical
descriptions can normally be thought of as trees since descriptions are terms in a �rst order
term language. The presence of equality restrictions in classic signi�cantly changes the

5. Note that both attribute chains must have a de�nite value, and that all but the last cannot evaluate to
host individuals, since these cannot have attributes.
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Figure 1: A description graph.

handling of subsumption because they introduce relationships between di�erent pieces of
the normal form. Most signi�cantly, in the presence of equalities, a small description, such
as 8friend:TALL u friend= friend�friend, can be subsumed by descriptions of arbitrary size,
such as

8friend:(8friend:(: : :(8friend:TALL) : : :)):

In order to record such sets of inferences in the canonical form, we will resort to a graph-
based representation, suggested by the semantic-network origins of description logics, and
the work of A�-Kaci (1984).

Intuitively, a description graph is a labelled, directed multigraph, with a distinguished
node. Nodes of the graph correspond to descriptions, while edges of the graph correspond
to restrictions on roles or attributes. The edges of the graph are labelled with the role name
and the minimum and maximum number of �llers associated with the edge, or just with the
attribute name. The nodes of the graph are labelled with concept names associated with
the node concept. For example, Figure 1 is a description graph, which, as we shall see later,
corresponds to the description GAME u 8participants:PERSON u coach= (captain�father).

Because equality restrictions (and hence the non-tree portions of the graph) involve only
attributes, edges labelled with roles are all cut-edges, i.e., their removal increases by one the
number of connected components of the graph. This restriction is important because if the
graph is in tree form, there is really no di�erence between a graphical and a linear notation,
and a semantics is simple to develop. If the graph is a general directed acyclic graph,
then there is the problem of relating the semantics generated by two di�erent paths in the
graph that share the same beginning and ending nodes. If the graph contains cycles, the
problem of developing a correct semantics is even more di�cult, as a simplistic semantics
will be non-well-founded, and some sort of �xed-point or model-preference semantics will be
required. Fortunately, any non-tree parts of our graphical notation will involve attributes
only, and because attributes are functional, our job will be much easier.

As a result of the above restrictions, it is possible to view a description graph as having
the following recursive structure: (i) There is a distinguished node r, which has an \island"
of nodes connected to it by edges labelled with attributes. (ii) Nodes in this island may
have 0 or more edges labelled with roles leaving them, pointing to distinguished nodes of
other description graphs. (iii) These graphs share no nodes or edges in common with each
other, nor with the islands above them.

283



Borgida & Patel-Schneider

Because of this recursive structure, it is easier to represent description graphs using a
recursive de�nition, instead of the usual graph de�nition. This recursive de�nition is similar
to the recursive de�nition of a tree, which states that a tree consists of some information
(the information on the root of the tree) plus a set of trees (the children of the root of the
tree). As description graphs are more complex than simple trees, we will have to use a
two-part de�nition.

De�nition 2 A description graph is a triple, hN;E; ri, consisting of a set N of nodes; a
bag E of edges (a-edges) labelled with attribute names; and a distinguished node r in N .
Elements of E will be written hn1; n2;Ai where n1 and n2 are nodes and A is an attribute
name.

A node in a description graph is a pair, hC;Hi consisting of a set C of concept names
(the atoms of the node), and a bag H of tuples (the r-edges of the node). An r-edge is a
tuple, hR; m;M;Gi, of a role name, R; a min, m, which is a non-negative integer; a max,
M , which is a non-negative integer or 1; and a (recursively nested) description graph G,
representing the restriction on the �llers of the role. (G will often be called the restriction
graph of the node.)

Concept names in a description graph are atomic concept names, host concept names,
THING, CLASSIC-THING, or HOST-THING.

Descriptions graphs are provided extensions starting from the same possible worlds I
as used for descriptions. However, in addition we need a way of identifying the individuals
to be related by attributes, which will be given by the function �.

De�nition 3 Let G = hN;E; ri be a description graph and let I be a possible world. Then
the interpretation GI of G, and the interpretation nI of each of the nodes in N , are recur-
sively (and mutually) de�ned as follows:

An element, d, of � is in GI , i� there is some function, �, from N into � such that

1. d = �(r);

2. for all n 2 N �(n) 2 nI ;

3. for all hn1; n2;Ai 2 E we have h�(n1);�(n2)i 2 AI , (which is equivalent to �(n2) =
AI(�(n1)), since A

I is a function).

An element, d, of � is in nI , where n = hC;Hi, i�

1. for all C 2 C, we have d 2 CI ; and

2. for all hR; m;M;Gi 2 H,

(a) there are between m and M elements, d0, of the domain such that hd; d0i 2 RI

and

(b) d0 2 GI for all d0 such that hd; d0i 2 RI .
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2.2 Translating Descriptions to Description Graphs

A Basic classic description is turned into a description graph by a recursive process,
working from the \inside out". In this process, description graphs and nodes are often
merged.

De�nition 4 The merge of two nodes, n1 � n2, is a new node whose atoms are the union
of the atoms of the two nodes and whose r-edges are the union of the r-edges of the two
nodes6.

De�nition 5 The merge of two description graphs, G1 �G2, is a description graph whose
nodes are the disjoint union7 of the non-distinguished nodes of G1 and G2 plus a new
distinguished node. The edges of the merged graph are the union of the edges of G1 and G2,
except that edges touching on the distinguished nodes of G1 or G2 are modi�ed to touch the
new distinguished node. The new distinguished node is the merge of the two distinguished
nodes of G1 and G2.

The rules for translating a description C in Basic classic into a description graph GC
are as follows:

1. A description that consists of a concept name is turned into a description graph with
one node and no a-edges. The atoms of the node contains only the concept name.
The node has no r-edges.

2. A description of the form �n R is turned into a description graph with one node and
no a-edges. The node has as its atoms CLASSIC-THING and has a single r-edge with
role R, min n, max 1, and restriction GTHING.

3. A description of the form �n R is turned into a description graph with one node and
no a-edges. The node has as its atoms CLASSIC-THING and a single r-edge with role
R, min 0, max n, and restriction GTHING.

4. A description of the form 8R:C, with R a role, is turned into a description graph with
one node and no a-edges. The node has as its atoms CLASSIC-THING and has a single
r-edge with role R, min 0, max 1, and restriction GC.

5. To turn a description of the form C u D into a description graph, construct GC and
GD and merge them.

6. To turn a description of the form 8A:C, with A an attribute, into a description graph,
�rst construct the description graph hNC ; EC; rCi for C. The description graph for
8A:C is hNC [ ftg; EC [ fht; rC ;Aig; ti, where t is the node hfCLASSIC-THINGg; fgi.

7. To turn a description of the form A1� : : :�An =B1� : : :�Bm into a description graph
�rst create a distinguished node, node r, with CLASSIC-THING as its atoms, and a
node e, with THING as its atoms. For 1 � i � n � 1 create a node ai, with its atoms

6. Note that duplicate edges, such as ones joining ni to ni, are not removed, since the edges form a bag.
7. In taking the disjoint union of two sets, elements of one may be systematically renamed �rst to make

sure that the sets are non-overlapping.
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being CLASSIC-THING. For 1 � j � m � 1 create a node bj , with its atoms being
CLASSIC-THING. None of the ai or bj have r-edges.

If n = 1, create the edge hr; e;A1i; if n > 1 then create edges hr; a1;A1i, han�1; e;Ani,
and hai�1; ai;Aii for 2 � i � n� 1.

Similarly, if m = 1, create the edge hr; e;B1i; if m > 1 then create edges hr; b1;B1i,
hbm�1; e;Bmi, and hbi�1; bi;Bii for 2 � i � m� 1.

This creates two disjoint paths, one for the Ai and one for the Bj, from the distin-
guished node to the end node.

Figure 1 presents a view of a description graph constructed in this fashion from the
description GAME u 8participants:PERSON u coach= captain�father:

Now we want to show that this process preserves extensions. As we use the merge
operations we �rst show that they work correctly.

Lemma 1 If n1 and n2 are nodes then (n1 � n2)I = nI1 \n
I
2 . If D1 and D2 are description

graphs then (D1 �D2)
I = DI

1 \DI
2 .

Proof: Since the components (atoms and r-edges) of the merged node are obtained by
unioning the components of the respective nodes, and since the interpretation of a node
is the intersection of the interpretation of its components, the result is obviously true for
nodes.

For merging graphs, the only di�erence is that the root nodes are replaced by their
merger in all edges, as well as the root. But then an element of (D1 �D2)I is clearly an
element of both DI

1 and DI
2 . Conversely, since we take the disjoint union of the other nodes

in the two graphs, the mapping functions �1 and �2 in De�nition 3 can simply be unioned,
so that an element of both DI

1 and DI
2 is an element of the merged root node, and hence

of (D1 �D2)I .

Theorem 1 For all possible worlds, the extension of a description is the same as the ex-
tension of its description graph.

Proof: The proof is by structural induction on descriptions.

The extension of concept names, cardinality restrictions, and 8-restrictions on roles
can be easily seen to agree with the extension of description graphs formed from them.
Lemma 1 shows that conjunction is properly handled. For 8-restrictions on attributes, the
construction is correct because attributes are functional.

For equalities A1� : : :�An=B1� : : :�Bm the construction forms a description graph with
two disjoint paths from the distinguished node to an end node, one labelled by the Ai,
through nodes ai, and the other labelled by the Bj, through nodes bj . If

d 2 (A1� : : :�An =B1� : : :�Bm)
I = fd 2 �C j Ak

I(: : :A1
I(d)) = Bh

I(: : :B1
I(d))g;

then de�ning �(ai) = Ai
I(: : :A1

I(d)) and �(bj) = Bj
I(: : :B1

I(d))g, yields the mapping
required by De�nition 3. The converse is satis�ed by the requirement in De�nition 3 that
for each a-edge hn1; n2;Ai 2 E, we have �(n2) = AI(�(n1)).
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2.3 Canonical Description Graphs

In the following sections we will occasionally refer to \marking a node incoherent"; this
consists of replacing it with a special node having no outgoing r-edges, and including in
its atoms NOTHING, which always has the empty interpretation. Marking a description
graph as incoherent consists of replacing it with a description graph consisting only of an
incoherent node. (Incoherent graphs are to be thought of as representing concepts with
empty extension.)

Description graphs are transformed into canonical form by repeating the following nor-
malization steps whenever possible for the description graph and all its descendants.

1. If some node has in its atoms a pre-de�ned host concept, add HOST-THING to its
atoms. If some node has an atomic concept name in its atoms, add CLASSIC-THING
to its atoms. For each pre-de�ned host concept in the atoms of the node, add all the
more-general pre-de�ned host concepts to its atoms.

2. If some node has both HOST-THING and CLASSIC-THING in its atoms, mark the
node incoherent. If some node has in its atoms a pair of host concepts that are not
related by the pre-de�ned subsumption relationship, mark the node incoherent, since
their intersection will be empty.

3. If any node in a description graph is marked incoherent, mark the description graph
as incoherent. (Reason: Even if the node is not a root, attributes must always have a value,

and this value cannot belong to the empty set.)

4. If some r-edge in a node has its min greater than its max, mark the node incoherent.

5. If some r-edge in a node has its description graph marked incoherent, change its max
to 0. (Reason: It cannot have any �llers that belong to the empty set.)

6. If some r-edge in a node has a max of 0, mark its description graph as incoherent.
(Reason: This normalization step records the equivalence between �0R and 8R:NOTHING,

and is used then to infer that a concept with 8R:C for arbitrary C subsumes �0R.)

7. If some node has two r-edges labelled with the same role, merge the two edges, as
described below.

8. If some description graph has two a-edges from the same node labelled with the same
attribute, merge the two edges.

To merge two r-edges of a node, which have identical roles, replace them with one r-
edge. The new r-edge has the role as its role, the maximum of the two mins as its min, the
minimum of the two maxs as its max, and the merge of the two description graphs as its
restriction.

To merge two a-edges hn; n1;Ai and hn; n2;Ai, replace them with a single new edge
hn; n0;Ai, where n0 results from merging n1 and n2, i.e., n0 = n1 � n2. (If n1 = n2 then
n0 = n1.) In addition, replace n1 and n2 by n

0 in all other a-edges of this description graph.
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We need to show that the transformations to canonical form do not change the extension
of the graph. The main di�culty is in showing that the two edge-merging processes do not
change the extension.

Lemma 2 Let G = hN;E; ri be a description graph with two mergeable a-edges and let
G0 = hN 0; E0; r0i be the result of merging these two a-edges. Then GI = G0I.
Proof: Let the two edges be hn; n1;Ai and hn; n2;Ai and the new node n0 be n1 � n2.

Choose d 2 GI , and let � be a function fromN into the domain satisfying the conditions
for extensions (De�nition 3) such that �(r) = d. Then �(n1) = �(n2) because both are
equal to AI(�(n)). Let �0 be the same as � except that �0(n0) = �(n1) = �(n2). Then
�0 satis�es De�nition 3, part 3, for G0, because we replace n1 and n2 by n0 everywhere.
Moreover, �0(n0) = �(n1) 2 nI1 \ nI2 , which, by Lemma 1, equals (n1 � n2)

I ; so part 2 is
satis�ed too, since n0 = n1 � n2. Finally, if the root is modi�ed by the merger, i.e., n1 or
n2 is r, say n1, then d = �(n1) = �0(n0), so part 1 of the de�nition is also satis�ed.

Conversely, given arbitrary d 2 G0I , let �0 be the function stipulated by De�nition 3 such
that �0(r0) = d. Let � be the same as �0 except that �(n1) = �(n0) and �(n2) = �0(n0).
Then the above argument can be traversed in reverse to verify that � satis�es De�nition 3,
so that d 2 GI .

Lemma 3 Let n be a node with two mergeable r-edges and let n0 be the node with these
edges merged. Then nI = n0I .

Proof: Let the two r-edges be hR; m1;M1; G1i and hR; m2;M2; G2i.
Let d 2 nI . Then there are between m1 (m2) and M1 (M2) elements of the domain, d

0,
such that hd; d0i 2 RI . Therefore there are between the maximum of m1 and m2 and the
minimum of M1 and M2 elements of the domain, d

0, such that hd; d0i 2 RI . Also, all d0 such
that hd; d0i 2 RI are in GI

1 (GI
2 ). Therefore, all d

0 such that hd; d0i 2 RI are in GI
1 \ GI

2 ,
which equals (G1 � G2)

I by Lemma 1. Thus d 2 n0I .
Let d 2 n0I . Then there are between the maximum of m1 and m2 and the minimum of

M1 and M2 elements of the domain, d
0, such that hd; d0i 2 RI . Therefore there are between

m1 (m2) and M1 (M2) elements of the domain, d0, such that hd; d0i 2 RI . Also, all d0 such
that hd; d0i 2 RI are in (G1 �G2)

I = GI
1 \GI

2 . Therefore, all d
0 such that hd; d0i 2 RI are

in GI
1 (GI

2). Therefore d 2 nI .

Having dealt with the issue of merging, we can now return to our desired result: showing
that \normalization" does not a�ect the meaning of description graphs.

Theorem 2 For all possible worlds I, the extension of the canonical form of a description
graph, G, resulting from a Basic classic description is the same as the extension of the
description.

Proof: Steps 1 and 2 are justi�ed since GI is a subset of either �H or �C , which are
disjoint.

Step 3 is justi�ed by the fact that, by the de�nition of description graphs, there must
be an element of the domain in the extension of each node in a description graph.

Steps 4, 5, and 6 are easily derived from De�nition 3.

Steps 7 and 8 are dealt with in the preceding two lemmas.
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2.4 Subsumption Algorithm

The �nal part of the subsumption process is checking to see if a canonical description graph
is subsumed by a description. It turns out that it is possible to carry out the subsumption
test without the expense of normalizing the candidate subsumer concept.

Algorithm 1 (Subsumption Algorithm) Given a description D and description graph
G = hN;E; ri, subsumes?(D; G) is de�ned to be true if and only if any of the following
conditions hold:

1. The description graph G is marked incoherent.

2. D is equivalent to THING. (This is determined by checking �rst if D=THING, or by
recursively testing whether D subsumes the canonical description graph GTHING.)

3. D is a concept name and is an element of the atoms of r.

4. D is �n R and some r-edge of r has R as its role and min greater than or equal to n.

5. D is �n R and some r-edge of r has R as its role and max less than or equal to n.

6. D is 8R:C and some r-edge of r has R as its role and G0 as its restriction graph and
subsumes?(C; G0).

7. D is 8R:C and subsumes?(C; GTHING) and r has CLASSIC-THING in its atoms. (Rea-
son: 8R:THING only requires the possibility that R be applicable to an object, which is absent

for host values.)

8. D is 8A:C and some a-edge of G is of the form hr; r0;Ai, and subsumes?(C; hN;E; r0i).

9. D is 8A:C and subsumes?(C; GTHING) and r has CLASSIC-THING in its atoms.

10. D is A1� : : :�An=B1� : : :�Bm and the paths A1; : : : ;An and B1; : : : ;Bm exist in G

starting from r and end at the same node.

11. D is A1� : : :�An=B1� : : :�Bm with An the same as Bm and the paths A1; : : : ;An�1
and B1; : : : ;Bm�1 exist in G starting from r and end at the same node, which has
CLASSIC-THING in its atoms. (Reason: If Ai

I(: : :A1
I(d)) = Bj

I(: : :B1
I(d)) then

FI(Ai
I(: : :A1

I(d))) = FI(Bj
I(: : :B1

I(d)))

for any attribute F, as long as the attribute is applicable (i.e., the value is not in the host

domain).)

12. D is C u E and both subsumes?(C; G) and subsumes?(E; G) are true.
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2.5 Correctness of Subsumption Algorithm

The soundness of this algorithm is fairly obvious, so we shall not dwell on it. The complete-
ness of the algorithm is, as usual, more di�cult to establish. First we have to show that
for any canonical description graph or node that is not marked as incoherent, a possible
world having a non-empty extension for the description graph or node can be constructed.
We will do this in a constructive, inductive manner, constructing a collection of such pos-
sible worlds, called the graphical worlds of a description graph. A graphical world has a
distinguished domain element that is in the extension of the description graph or node.

A common operation is to merge two possible worlds.

De�nition 6 Let I1 and I2 be two possible worlds. The merge of I1 and I2, I1 � I2, is
a possible world with classic realm the disjoint union of the classic realm of I1 and the
classic realm of I2. The extension of atomic names in I1�I2 is the disjoint union of their
extensions in I1 and I2.

It is easy to show that the extension of a description, a description graph, or a node in
I1 � I2 is the union (disjoint union for the classic realm, regular union for the host realm)
of its extensions in I1 and I2.

Another operation is to add new domain elements to a possible world. These new domain
elements must be in the classic realm. The extension of all atomic identi�ers remain the
same except that the new domain elements belong to some arbitrary set of atomic concept
names and have some arbitrary set of �llers (�ller) for each role (attribute). Again, it is
easy to show that a domain element of the original world is in an extension in the original
world i� it is in the extension in the augmented world.

Given a node, n, that is not marked as incoherent, we construct the graphical worlds
for n as follows:

1. If the atoms of n are precisely THING, then n can have no r-edges, because the only
constructs that cause r-edges to be created also add CLASSIC-THING to the atoms.
Any possible world, with any domain element the distinguished domain element, is a
graphical world for n.

2. If the atoms of n include HOST-THING, then n can have no r-edges. Any possible
world, with distinguished element any domain element in the extension of all the
atoms of n and in no other host concepts, is a graphical world for n. (Because of
the requirements on the host domain, there are an in�nite number of these domain
elements.)

3. If the atoms of n include CLASSIC-THING, then for each r-edge, hR; m;M;Gi, in n,
construct between m and M graphical worlds for G. This can be done for any number
between m and M because if m > 0 then G is not marked incoherent, and if G is
marked incoherent then M = 0.

No two of these graphical worlds should have the same host domain element as their
distinguished element. (Again, this is possible because the extension of a host concept
is either empty or in�nite.) Now merge all the graphical worlds for each r-edge into
one possible world. Add some new domain elements such that one of them is in exactly
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the extensions of the atoms of n and has as �llers for each R exactly the distinguished
elements of the appropriate graphical worlds. This domain element will have the
correct number of �llers for each r-edge, because of the disjoint union of the classic
realms in the merge process and because of the di�erent host domain elements picked
above; therefore it is in the extension of n. Thus the resulting world is a graphical
world for n.

Given a description graph, G = hN;E; ri, that is not marked incoherent, we construct
the graphical worlds for G as follows: For each node n 2 N construct a graphical world for
n. This can be done because none of them are marked incoherent. Merge these graphical
worlds. Modify the resulting world so that for each hn1; n2;Ai 2 E the A-�ller for the
distinguished node of the graphical world from n1 is the distinguished node of the graphical
world from n2. It is easy to show that the distinguished node of the graphical world of r is
in the extension of G, making this a graphical world for G.

Now we can show the �nal part of the result.

Theorem 3 If the subsumption algorithm indicates that the canonical description of some
graph G is not subsumed by the Basic classic description D, then for some possible world
there is a domain element in the extension of the graph but not in the extension of D.
Therefore G is not subsumed by D.

Proof: The proof actually shows that if the subsumption algorithm indicates that some
canonical description graph, G, is not subsumed by some description, D, then there are
some graphical worlds for G such that their distinguished domain elements are not in the
extension of D. Remember that the subsumption algorithm indicates thatG is not subsumed
by D, so G must not be marked as incoherent and thus there are graphical worlds for G.

The proof proceeds by structural induction on D. Let G = hN;E; ri.

� If D is an atomic concept name or a pre-de�ned host concept, then D does not occur
in the atoms of r. By construction, in any graphical world for G the distinguished
domain element will not be in the extension of D. Similarly, if D is CLASSIC-THING
or HOST-THING, then the distinguished domain elements will be in the wrong realm.
If D is THING, then it is not possible for the subsumption algorithm to indicate a
non-subsumption. In each case any graphical world for G has the property that its
distinguished domain element is not in the extension of D.

� If D is of the form D1 u D2 then the subsumption algorithm must indicate that G
is not subsumed by at least one of D1 or D2. By the inductive hypothesis, we get
some graphical worlds of G where the distinguished domain elements are not in the
extension of D1 or not in the extension of D2, and thus are not in the extension of D.

� If D is the form �n R then either the r-edge from r labelled with R has min less than
n or there is no such r-edge.

In the former case there are graphical worlds for G in which the distinguished node
has n� 1 �llers for R, because n is greater than the min on the r-edge for R, and thus
the distinguished node is not in the extension of D.
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In the latter case, there are graphical worlds for G in which its distinguished node
has any number of �llers for R. Those with n � 1 �llers have the property that their
distinguished node is not in the extension of D.

� If D is of the form �n R then either the r-edge from r labelled with R has max greater
than n (including 1) or there is no such r-edge.

In the former case there are graphical worlds for G in which the distinguished node
has n + 1 �llers for R, because n is less than the max on the r-edge for R, and thus
the distinguished node is not in the extension of D.

In the latter case, there are graphical worlds for G in which its distinguished node
has any number of �llers for R. Those with n + 1 �llers have the property that their
distinguished node is not in the extension of D.

� If D is of the form 8R:C, where R is a role, then two cases arise.

1. If subsumes?(C; GTHING) then CLASSIC-THING is not in the atoms of r. Then
there are some graphical worlds for G whose distinguished element is in the host
realm, and thus not in the extension of D.

2. Otherwise, either there is an r-edge from r with role R and description graph H

such that subsumes?(C; H) is false or there is no r-edge from r with role R. Note
that the extension of C is not the entire domain, and thus must be a subset of
either the host realm or the classic realm.

In the former case H is not marked incoherent (or else the subsumption could
not be false) and the max on the r-edge cannot be 0. Thus there are graphical
worlds for H whose distinguished element is not in the extension of C and there
are graphical worlds for G that use these graphical worlds for H as distinguished
domain element R-�llers. In these graphical worlds for G the distinguished ele-
ment is not in the extension of D.

In the latter case, pick graphical worlds for G that have some distinguished node
R-�ller in the wrong realm. In these graphical worlds for G the distinguished
element is not in the extension of D.

� If D is of the form 8A:C where A is an attribute then two cases arise.

1. If subsumes?(C; GTHING) then CLASSIC-THING is not in the atoms of r. Then
there are some graphical worlds for G whose distinguished element is in the host
realm, and thus not in the extension of D.

2. Otherwise, either there is an a-edge from r with attribute A to some other node
r0 such that subsumes?(C; H) is false, where H = hN;E; r0i; or there is no a-edge
from r with attribute A. Note that the extension of C is not the entire domain,
and thus must be a subset of either the host realm or the classic realm.

In the former case H is not marked incoherent, because G is not marked inco-
herent. Thus there are graphical worlds for H whose distinguished element is
not in the extension of C. Given any graphical world for H , a graphical world
for G can be formed simply by changing the distinguished domain element. If
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the original graphical world's distinguished element is not in the extension of C,
then the new graphical world's distinguished element will not be in the extension
of D, as required.

In the latter case, pick graphical worlds for G that have their distinguished node
A-�ller in the wrong realm. In these graphical worlds for G the distinguished
element is not in the extension of D.

� If D is of the form A1� : : :�An=B1� : : :�Bm several cases again arise.

1. If one of the paths A1; : : : ;An�1 or B1; : : : ;Bm�1 does not exist in G starting
from r, then �nd the end of the partial path and use graphical worlds in which
the domain element for this node has an element of the host domain as its �ller
for the next attribute in the path. Then one of the full paths will have no �ller.

2. If the paths A1; : : : ;An and B1; : : : ;Bm exist in G starting from r but end at
di�erent nodes, then use graphical worlds in which the domain elements for
these two nodes are di�erent.

3. If one of the paths A1; : : : ;An and B1; : : : ;Bm does not exist in G starting from
r but the paths A1; : : : ;An�1 and B1; : : : ;Bm�1 both exist in G starting from r

and end at the same node then either CLASSIC-THING is not in the atoms of this
node or An 6= Bm. In the former case use graphical worlds in which the domain
element for this node is in the host realm. In the latter case use graphical worlds
that have di�erent �llers for An and Bm for the domain element for this node.

4. If one of the paths A1; : : : ;An and B1; : : : ;Bm does not exist in G starting from
r but the paths A1; : : : ;An�1 and B1; : : : ;Bm�1 both exist in G starting from r

and end at di�erent nodes then use graphical worlds that have di�erent �llers
for the domain elements of these nodes or that have the domain elements in the
host realm.

In all cases we have that either one of AnI(: : :A1
I)(d) or BmI(: : :B1

I)(d) does not
exist or An

I(: : :A1
I)(d) 6= Bm

I(: : :B1
I)(d), so the distinguished domain element is

not in the extension of D.

2.6 Implementing the subsumption algorithm

In this section we provide some further comments about the actual subsumption algorithm
used by the classic system, including a rough analysis of its complexity.

As we have described it, deciding whether description C subsumes D is accomplished in
three phases:

1. Convert D into a description graph GD.

2. Normalize GD.

3. Verify whether C subsumes GD.

Step 1: Conversion is accomplished by a simple recursive descent parser, which takes
advantage of the fact that the syntax of description logics (i.e., the leading term construc-
tor) makes them amenable to predictive parsing. Clearly, constructing graphs for �xed sized
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terms (like at-least) is constant time (if we measure size so that an integer is size 1 no mat-
ter how large), while the time for non-recursive terms (like same-as) is proportional to their
length. Finally, recursive terms (like all, and) only require a �xed amount of additional
work, on top of the recursive processing. Therefore, the �rst stage can be accomplished in
time proportional to the size of the input description. In order to speed up later processing,
it will be useful to maintain various lists, such as the lists of atomic concept identi�ers,
or roles/attributes, in sorted order. This sorting needs to be done initially (later, ordering
will be maintained by performing list merges) and this incurs, in the worst case a quadratic
overhead in processing8. In any case, the total size of the graph constructed (including the
sizes of the nodes, etc.) is proportional to the size of the original concept description.

Step 3: Checking whether a description C subsumes a description graph GD, can be
seen to run in time proportional to the size of the subsuming concept, modulo the cost
of lookups in various lists. Since these are sorted, the lookup costs are bounded by the
logarithm of the size of the candidate subsumee graph, so the total cost is bounded by
O(j C j � log j GD j).

Step 2: Normalization is accomplished by a post-order traversal of the description
graph: in processing a description graph hN;E; ri, each node in N is normalized �rst inde-
pendently (see details below), and afterwards the attribute edges E are normalized. This
later task involves identifying multiple identically-labelled attribute edges leaving a node
(this is done in one pass since the attribute edges are grouped by source node, and sorted
by attribute name), and \merging" them. Merging two edges is quite easy in and of it-
self, but when merging the nodes at their tips, we must be careful because node mergers
may cascade; for example, if a concept has the form a1= b1 u a2= b2 u : : : u an= bn u
a1= a2 u a2= a3 u : : : u an�1= an then the original graph will have 2n + 1 nodes, but 2n
of these are collapsed by normalization step 8. To discover this e�ciently, we use a version
of A�-Kaci's algorithm for unifying 	-terms (A��t-Kaci, 1984; A��t-Kaci & Nasr, 1986); the
algorithm relies on the UNION-FIND technique to identify nodes to be merged, and runs
in time just slightly more than linear in the number of nodes in N . Therefore the cost of
the non-recursive portion of graph normalization is roughly linear in the number of nodes
in it.

The merging of two description graph nodes is quite similar to the normalization of
a single node: the atomic concept identi�er lists need to sorted/merged, with duplicates
eliminated on the y. This can be done in time proportional to the size of the nodes
themselves, if we make the size of the node include the size of the various lists in it, such as
atoms. The processing of role edges leaving a node is, again, one of identifying and merging
identically-labelled edges. (But in this case the mergers of labelled edges do not interact, so
a single pass over the role-edge list is su�cient.) The cost of non-recursive aspects of any
such merger is once again proportional to the size of the local information.

We are therefore left with the problem of bounding the total number of procedure calls
to NormalizeGraph, NormalizeNode, MergeEdge, and MergeNode, and then bounding the
sizes of the nodes being merged.

NormalizeGraph and NormalizeNode are called exactly once on every (sub)graph and
node in the original graph, as part of the depth-�rst traversal, and as argued above, on

8. We tend not to use fancy sorting techniques since these lists are not likely to be very long.
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their own they contribute at most time proportional to the total size of the original graph,
which was proportional to the size of the original description.

The number of calls to MergeEdge and MergeNode is not so simply bounded however {
the same node may be merged several times with others. However, these calls are paired,
and each invocation of MergeNode reduces the number of nodes in the graph by one. There-
fore, since the number of nodes is not incremented elsewhere, the total number of calls to
MergeEdge and MergeNode is bounded by the number of nodes in the original graph. The
only problem is that the non-recursive cost of a call to MergeNode depends on the size of
the argument nodes, and each call may increase the size of the remaining node to be the
sum of the sizes of the two original nodes.

Therefore, if the original concept had size S, with the graph having n nodes, each of size
vi, then the worst case cost would result from the iterative summation of sizes:

(vi1 + vi2) + (vi1 + vi2 + vi3) + (vi1 + vi2 + vi3 + vi4) + : : :

= n � vi1 + (n� 1) � vi2 + : : :+ 1 � vin

Given that n and all vj are bounded by S, clearly the above is in the worst case O(S3).
In fact, given the constraint that

P
j=1 nvj = S, it is possible to argue that the worst case

cost will occur when vj = 1 for every j, (i.e., when n = S), in which case the cost is really
just O(S2).

There are other theoretical improvements that could be attempted for the algorithm
(e.g., merging nodes in the correct order of increasing size) as well as its analysis (e.g., only
nodes in graphs at the same depth in the tree can be merged).

We remark that like all other description logics, classic permits identi�ers to be associ-
ated with complex descriptions and then these identi�ers can be used in other descriptions
(though no recursion is allowed). The expansion of identi�ers is a standard operation which
can lead to exponential growth in size in certain pathological cases (Nebel, 1990), making
the subsumption problem inherently intractable. As with the type system of the program-
ming language Standard ML, such pathological cases are not encountered in practice, and
the correct algorithm is simple, straightforward and e�cient in normal cases (unlike the
correct algorithm for reasoning with the set constructor, say).

Because users rarely ask only whether some concept subsumes another, but rather are
interested in the relationship between pairs of concepts, classic in fact constructs the
normalized description graph of any description given to it. This suggests that it might be
better to check whether one description graph subsumes another one, rather than checking
whether a description subsumes a graph. In general, this works quite well, except that we
would have to verify that the attribute edges in the subsumer graph form a subgraph of the
subsumee's attribute edges. Since edges are uniquely labelled after normalization, this is not
inherently hard, but it still requires a complete traversal (and hence marking/unmarking)
of the upper graph. We have therefore found it useful to encode as part of the description
graph's root the same-as restrictions that lead to the construction of the corresponding a-
edges; then, during subsumption testing, the only aspect of the subsumer related to same-as
which is checked is this list of same-as pairs.

Also, the above description of the algorithm has tried to optimize the cost of normal-
ization, which dominates when checking a single subsumption. If in the overall use of a
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system (e.g., processing individuals), inquiries about the restrictions on roles/attributes are
frequent, and space usage is not a problem, then it may be practically advantageous to
maintain the r-edges and a-edges of a node in a hash table, rather than a sorted list, in
order to speed up access. (Note that for merging r-edges, one must however still have some
way of iterating through all the values stored in the hash table.)

3. Individuals in Descriptions

In practical applications where DLs have been used, such as integrity constraint checking, it
is often very useful to be able to specify ranges of atomic values for roles. The most common
examples of this involve integers, e.g., \the year of a student can be 1,2,3 or 4", or what are
called enumerated types in Pascal, e.g., \the gender of a person is either M or F". One way
to allow such constraints is to introduce a new description constructor, a set description,
which creates a description from a list of individual names, and whose obvious extension is
the set consisting of the extensions of the individuals that appear in the list. This construct
could be used in terms like 8year:f1 2 3 4g. Another useful constructor involving individuals
is a �lls restriction, p : I, which denotes objects that have the extension of the individual I
as one of the �llers for the relationship denoted by role or attribute p. (Note that for an
attribute, q, 8q:fIg is the same as q : I.)

Within the paradigm of DLs, these constructors are quite useful and can in fact be used
to express new forms of incomplete information. For example, if we only know that Ringo
is in his early �fties, we can simply assert that Ringo is described by 8age:f50 51 52 53 54g.
The constructors can also be used to ask very useful queries. For example, to �nd all the
male persons it su�ces to determine the instances of gender :M.

The new constructors do interact with previous ones, such as cardinality constraints:
clearly the size of a set is an upper cardinality bound for any role it restricts. This interaction
is not problematic as long as the individuals in the set are host values, since such individuals
have properties that are �xed and known ahead of time. However, once we allow classic
individuals as members of sets, then the properties of these individuals might themselves
a�ect subsumption. As a simple example, if we know that Ringo is an instance of the
concept ROCK-SINGER (which we shall write as Ringo 2 ROCK-SINGER) then the extension
of 8friends:ROCK-SINGER is always a superset of the extension of 8friends:fRingog.

This is disturbing because then the classi�cation hierarchy of de�nitions would change as
new facts about individuals are added to the knowledge base. De�nitions are not meant to
be contingent of facts about the current world. Therefore, subsumption is usually de�ned to
be independent of these \contingent" assertions. As we shall see below, the use of individual
properties in description subsumption also leads to intractability.

3.1 Complex Subsumption Reasoning: An Example

Traditional proofs of intractability (e.g. (Levesque & Brachman, 1987)) have occasionally
left users of DLs puzzled over the intuitive aspects of a language which make reasoning
di�cult. For this reason we present an example that illustrates the complexity of reasoning
with the set description.

Suppose that we have the concept of JADED-PERSON as being one who wants only to
visit the Arctic and/or the Antarctic, wherever there are penguins:
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JADED-PERSON
:
= 8wantsToVisit:(fArctic Antarcticg u 8hasPenguins!:fYesg)

Suppose we do not remember which is the Arctic and which the Antarctic; but we do know
that the South Pole is located in one of these two places, and that there are penguins there,
while the North Pole is located in one of these two places, and there are no penguins there.
Assuming that isLocatedIn! and hasPenguins! are attributes|roles with exactly one �ller,
we can record

Southpole 2 8isLocatedIn!:(fArctic Antarcticg u 8hasPenguins!:fYesg)
Northpole 2 8isLocatedIn!:(fArctic Antarcticg u 8hasPenguins!:fNog)

We are thus unable to distinguish the exact location of the Southpole and Northpole; however,
since hasPenguins! has a single �ller, exactly one of Arctic and Antarctic can (and in fact
must) have Yes as �ller for hasPenguins!, and therefore exactly one of them is the location
of Southpole.

As a result of these facts, we know that the extension of JADED-PERSON must be a
subset of the extension of �1wantsToVisit in any database containing the above facts about
Southpole and Northpole.

Observe that we have here not just an occasional worse-case behavior, but a generalized
di�culty in reasoning with set descriptions. Because subsumption ignores assertions about
individuals, this does not (yet) show that subsumption per se must perform these inferences.
A simple transformation, given in the appendix, establishes this fact, by converting the
recognition of individuals into a question about the subsumption of two descriptions by
making all the individuals involved attribute-�llers for new dummy attributes, and their
descriptions as restrictions on these attributes. As a result, if the description is non-empty
then these attribute values must satisfy the corresponding restrictions.

3.2 A Modi�ed Semantics for Individuals

We have seen two problems with individuals appearing in descriptions: (1) the e�ect of
\mutable facts" on extensional relationships between \immutable" descriptions, and (2)
the computational intractability of subsumption caused by the appearance of individuals in
descriptions.

To deal with the �rst problem, it is reasonable to restrict the computation of subsump-
tion so that it cannot access \database facts" about individuals, such as their role �llers, so
that all individuals are treated like host identi�ers. This is a procedural description of some
aspect of reasoning, in the same sense as negation-by-failure is in Prolog. As with Prolog,
it would be desirable to �nd a semantic account of this phenomenon.

A semantics that ignores mutable facts when determining subsumption is not hard to
devise|all that is required is to have two di�erent sets of possible worlds corresponding
to a KB containing both concepts and individuals. One set consists of all possible worlds
that model all the information in the KB; the second consists of all possible worlds that
model only the information about concepts (and roles and attributes). When asking ques-
tions about individuals, the �rst set of possible worlds must be considered; when asking
subsumption questions, the second, larger, set must be considered, thus ignoring any e�ects
of the mutable facts.
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However, this semantics does not solve the computational problem with individuals
in descriptions. To deal with this problem, the semantics of individuals are modi�ed as
follows: instead of mapping individuals into separate elements of the domain, as is done in
a standard semantics, individuals are mapped into disjoint subsets of the domain, intuitively
representing di�erent possible realizations of that (Platonic) individual.

Therefore, the semantics of the set constructor is now stated as follows: Domain value
d belongs to the extension of fB1 : : : Bng i� d belongs to the extension of one of the Bi.
An associated change in the notion of cardinality is required|two elements of the domain
are considered congruent if they belong to the extension of the same individual or if they
are identical. The cardinality of a set of elements of the domain is then the size of the set
modulo this congruence relationship. This means that occurrences of di�erent identi�ers in
description(s) are guaranteed to be unequal, but distinct occurrences of the same individual
identi�er are not guaranteed to denote the same individual.

Here are two consequences of this stance:

1. Looking at the descriptions of Southpole and Northpole in Section 3.1, the distinct
occurrences of Arctic might be satis�ed by distinct domain elements, with di�erent role
�llers. (In greater detail: the extension of Arctic might include domain elements d1 and
d2, with d1 satisfying condition hasPenguins! :Yes, while d2 satis�es hasPenguins! :No.
If Southpole is then located in d1, while Northpole is located in d2, then we still have
both satisfying isLocatedIn! :Arctic. Similarly for domain elements d3 and d4 in the
extension of Antarctic. Therefore one could have two places to visit where there are
penguins, d1 and d3.)

2. Even though an individual may have a description that includes

isLocatedIn! :Arctic u originatesIn! :Arctic;

it need not satisfy the condition isLocatedIn! = originatesIn!, since the equality restric-
tion requires identity of domain values.

4. Adding Individuals to CLASSIC

Individuals can occur in both classic and host descriptions. The following constructs create
classic descriptions:

R : I
A : I
fI1 : : : Ing

where A is an attribute, R is a role, I is the name of a classic individual or a host value,
collectively called individuals, and Ij are names of classic individuals. New host descriptions
can be constructed using fI1 : : : Ing, where the Ij are host values.

The interpretation function :I is extended to individual identi�ers, by requiring that II

be a non-empty subset of �C , if I is syntactically not recognized to be a host individual, and
making II= fIg for host values I. As stated earlier, the interpretations of distinct identi�ers
must be non-overlapping.

The interpretation CI of non-atomic descriptions is modi�ed as follows:
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� p : II = fd 2 �C j 9x (d; x) 2 pI ^ x 2 IIg

� fI1 : : : Ing
I =

S
k I
I
k if the Ik are all classic individuals; fI1 : : : Ing

I = fI1 : : : Ing if Ik
are all host individuals; empty otherwise.

� (�n p)I (resp. (�n p)I) is those objects in �C with at least (resp. at most) n non-
congruent �llers for role p

The development of the subsumption algorithm in Section 2 is then modi�ed to take
into account the added constructs with the modi�ed semantics introduced earlier.

First description graphs are extended. A node of a description graph is given a third
�eld, which is either a �nite set of individuals or a special marker denoting the \universal"
set. This �eld is often called the dom of the node. Both a-edges and r-edges are given an
extra �eld, called the �llers of the edge. This �eld is a �nite set of individuals. Where
unspeci�ed, as in constructions in previous sections, the dom of a node is the universal set
and the �llers of an a-edge or an r-edge is the empty set.

The semantics of description graphs in De�nition 3 are extended to the following:

De�nition 7 Let G = hN;E; ri be a description graph and let I be a possible world.

An element, d, of � is in GI , i� there is some function, �, from N into � such that

1. d = �(r);

2. for all n 2 N �(n) 2 nI ;

3. for all hn1; n2;A; F i 2 E we have h�(n1);�(n2)i 2 AI , and for all f 2 F , �(n2) 2 fI .

An element, d, of � is in nI , where n = hC;H; Si, i�

1. for all C 2 C, we have d 2 CI ;

2. for all hR; m;M;G; F i 2 H,

(a) there are between m and M elements, d0, of the domain such that hd; d0i 2 RI ;

(b) d0 2 GI for all d0 such that hd; d0i 2 RI ; and

(c) for all f 2 F there is a domain element, d0, such that hd; d0i 2 RI and d0 2 fI

3. If the S is not the universal set then 9f 2 S such that d 2 fI .

When merging nodes, the dom sets are intersected. Merging description graphs is un-
changed. When merging a-edges and r-edges, the sets of �llers are unioned.

The translation of descriptions into description graphs is extended by the following rules:

8. A description of the form R : I is turned into a description graph with one node and
no a-edges. The node has as its atoms CLASSIC-THING and a single r-edge with role
R, min 0, max 1, and �llers fIg. The description graph restricting this r-edge is
GCLASSIC-THING if I is a classic individual, and GHOST-THING otherwise.
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9. A description of the form A : I is turned into a description graph with two nodes with
a single a-edge between them. The distinguished node of the graph is the source of
the a-edge. It has no r-edges and has as atoms CLASSIC-THING. The other node
also has no r-edges. It has as atoms CLASSIC-THING if I is a classic individual, and
HOST-THING otherwise. The a-edge has as its single �ller I.

10. A description of the form fI1 : : : Ing is turned into a description graph with one node.
The node has as dom the set containing I1 through In, and no r-edges. The atoms of
the node is HOST-THING if all of the individuals are host values, and CLASSIC-THING
if all of the individuals are classic individual names. (Note that the parser ensures
that individuals either must all be host values or must all be classic individual names.)

A short examination shows that Theorem 1 is true for these graphs, i.e., the extension of
description graphs formed using these rules is the same as the extension of the description
from which they were formed.

The following transformations are added to the canonicalization algorithm:

9. If the dom of a node is empty, mark the node incoherent.

10. If a host value in the dom of a node is not in all the atoms of the node, remove it from
the dom.

11. If an a-edge has more than one �ller, then mark the description graph as incoherent.

12. If an a-edge has a �ller and the node at its end has the universal dom, make the dom
be the �ller.

13. If the �ller of an a-edge is not included in the dom of the node at its end, mark the
description graph as incoherent.

14. If a node has only one element in its dom, make this element be the �ller for all the
a-edges pointing to it.

15. If the �llers of some r-edge are not a subset of the dom of the distinguished node of
the restriction graph of the edge, mark the node of the r-edge incoherent.

16. If the min on an r-edge is less than the cardinality of �llers on it, let the min be this
cardinality.

17. If the max on an r-edge is greater than the cardinality of the dom on the distin-
guished node of the description graph of the r-edge, make the max of this edge be the
cardinality of the dom.

18. If the min on an r-edge is greater than or equal to the cardinality of the dom on the
distinguished node of the restriction graph of the r-edge, let the �llers of the edge be
the union of its �llers and the dom above. (If min is greater than the cardinality, then
steps 4 and 17 detect the inconsistency.)
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19. If the max on an edge is equal to the cardinality of �llers on the edge, let the dom
on the distinguished node of the description graph of the r-edge be the intersection of
the dom and the �llers. (If max is less than the cardinality, steps 18 and 4 detect the
inconsistency.)

Note that in the new canonical form all a-edges pointing to a single node have the same
value for their �llers, and that if this is not the empty set, then the node has this set as the
value for its dom.

The proofs of Lemmas 3 and 2 also work for this extension of description graphs. The
proof of Theorem 2 can then be extended for these graphs.

The subsumption algorithm from page 289 is extended as follows:

13. D is R : I and some r-edge of r has role R and �llers including I.

14. D is A : I and some a-edge from r has attribute A and �llers including I.

15. D is fI1 : : : Ing and the dom of r is a subset of fI1 : : : Ing.

Again, the soundness of the extended algorithm is fairly obvious. The completeness
proof has the following additions to the construction of graphical worlds:

� The extension of classic individual names starts out empty.

� When constructing graphical worlds for a node that includes HOST-THING in its
atoms and has a non-universal dom, pick only those domain elements corresponding
to the elements of its dom.

� When constructing graphical worlds for a node that includes CLASSIC-THING in its
atoms and has a non-universal dom, add the distinguished domain element to the
extension of one of its dom elements.

� When constructing graphical worlds for the r-edges of a node, ensure that each element
of the �llers of the r-edge has the distinguished element of at least one of the graphical
worlds in its extension by either adding them to the extension or using appropriate
host domain elements. (This can be done because the �llers must be a subset of the
dom of the distinguished node of the graphical world and any host values must belong
to its atoms.)

The �llers for a-edges need not be considered here because they are \pushed" onto the nodes
in the canonicalization process.

The proof of Theorem 3 is then extended with the following cases:

� If D is of the form fI1 : : : Ing then the dom of r is not a subset of fI1; : : : ; Ing. Thus
there are graphical worlds for G in which the distinguished domain element is not in
the extension of any of the Ij.

� If D if of the form A : I then either the a-edge from r labelled with A does not have
�ller I or there is no such a-edge.
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In the former case the node pointed to by the a-edge cannot have as its domain the
singleton consisting of I. Therefore there are graphical worlds for G that have their
distinguished node A-�ller not in the extension of I, as required.

In the latter case, pick graphical worlds for G that have their distinguished node A-
�ller in the wrong realm. In these graphical worlds for G the distinguished element is
not in the extension of D.

� If D is of the form R : I then either the r-edge from r labelled with R does not have
�ller I or there is no such r-edge.

In the former case either the cardinality of the dom of the distinguished node of the
description graph of this r-edge is greater than the min, m, of the r-edge, or the dom
does not include I. If the dom does not include I, then all graphical worlds for the
node have their distinguished element not in the extension of I, as required. If the
dom does include I, then there are at least m elements of the dom besides I, and the
�llers of the r-edge are a subset of the set of these elements. There are thus graphical
worlds for G that use only these elements, as required.

In the latter case, pick graphical worlds for G that have some distinguished node R-
�ller in the wrong realm. In these graphical worlds for G the distinguished element is
not in the extension of D.

This shows that the subsumption algorithm given here is sound and complete for the
modi�ed semantics presented here.

5. Complete CLASSIC

We now make a �nal pass to deal with some less problematic aspects of classic descriptions
that have not been appropriately covered so far.

classic allows primitive descriptions of the form (PRIMITIVE D T), where D is a
description, and T is a symbol. The extension of this is some arbitrary subset of the
extension of D, but is the same as the extension of (PRIMITIVE E T), provided that D
and E subsume each other. In this way one can express EMPLOYEE, a kind of a person
who must have an employee number, as

(PRIMITIVE (PERSON u �1 employeeNr) employee)

This construct can be removed by creating for every such primitive an atomic concept (e.g.,
EMPLOYEEHOOD) and then replacing the de�nition of the concept by the conjunction
of the necessary conditions and this atom, in this case EMPLOYEEHOOD u (PERSON u
�1 employeeNr). Care has to be taken to use the same atomic concept for equivalent prim-
itives.

classic permits the declaration of disjoint primitives, essentially allowing one to state
that the extensions of various atomic concepts must be disjoint in all possible worlds. To
deal with such declarations, we need only modify the algorithm for creating canonical graphs
by adding a step that marks a node as incoherent whenever its atoms contains two identi�ers
that have been declared to be disjoint.
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To allow an approximate representation for ideas that cannot be encoded using the
constructors expressly provided, classic allows the use of test-de�ned concepts, using the
following syntax:

(TEST [host-language Boolean function])

e.g., (TEST Prime-Number-Testing-Function).9 For the purposes of subsumption, these are
treated as \black-boxes", with semantics assigned as for atomic concepts. (Test concepts
have a real e�ect on reasoning at the level of individuals, where they can perform constraint
checking.)

With these simple additions, the above algorithm is a sound and complete subsumption
algorithm for descriptions in classic 1, under the modi�ed semantics introduced in this
paper.

6. Summary, Related Work, and Conclusions

We believe this paper makes two kinds of contributions: First, the paper presents an ab-
stracted form of the subsumption algorithm for the classic description logic, and shows
that it is e�cient and correct under the modi�ed semantics. This is signi�cant because
previous claims of correct and e�cient subsumption algorithms in implemented DLs such
as kandor (Patel-Schneider, 1984) and candide (Beck et al., 1989) have turned out to be
unfounded (Nebel, 1988).

A tractability proof for a language like Basic classic is claimed to exist (but is not
proven) in (Donini et al., 1991), and an alternate proof technique may be found by consid-
ering a restriction of the (corrected) subsumption algorithm in (Hollunder & Nutt, 1990).

Description graphs have also turned out to be of interest because they support further
theoretical results about DLs, concerning their learnability (Cohen & Hirsh, 1994; Pitt &
Frazier, 1994)|results which would seem harder to obtain using the standard notation for
DLs.

Second, this paper investigates the e�ect of allowing individuals to appear in descrip-
tions of DLs. As independently demonstrated in (Lenzerini & Schaerf, 1991), adding a
set description introduces yet another source of intractability, and we have provided an
intuitive example illustrating the source of di�culties. The implementers of the classic
system, like others who do not use refutation/tableaux theorem-proving techniques, chose
not to perform all inferences validated by a standard semantics, not just because of the
formal intractability result but because no obvious algorithm was apparent, short of enu-
merating all possible ways of �lling roles. The subset of inferences actually performed was
initially described procedurally: \facts" about individuals were not taken into account in
the subsumption algorithm. This paper provides a denotational semantic account for this
incomplete set of inferences. The formal proof of this being a correct account is a corollary
of the completeness proof for the subsumption algorithm in Section 4, and the observation
that the graph construction and subsumption algorithms in that section do indeed ignore

9. In order to deal with the two realms, classic in fact provides two constructors: H-TEST and C-
TEST, for host and classic descriptions, but this does not cause any added complications besides
keeping track of the correct realm.
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the properties of the individuals involved. The one di�erence between the original imple-
mentation of classic and the current semantics is that attribute paths ending with the
same �ller were used to imply an equality condition. As noted in Section 3.2, the modi�ed
semantics does not support this inference, and it was taken out of the implementation of
classic. It is signi�cant that the change to the standard semantics is small, easy to explain
to users (either procedurally or semantically), and only a�ects the desired aspects of the
language (i.e., all reasoning with Basic classic remains exactly as before).
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A. Intractability of Reasoning with ONE-OF

We present here a formal proof that subsumption with set descriptions is in fact NP-hard.10

We will show that if a term language allows a set description then it will need to
do \case analysis" in order to check whether the extension of an individual belongs to a
description or not; this is because this constructor behaves like disjunction if its elements can

10. Our original result was submitted for publication in 1990. A di�erent, independent, proof of the same
result has since been outlined in (Lenzerini & Schaerf, 1991).

306



Subsumption in CLASSIC

be extensions of individuals whose membership in all terms is not known a priori, i.e., non-
host individuals. In particular, we will show how to encode the testing of unsatis�ability of a
formula in 3CNF as the question of recognizing an individual as an instance of a description.
Since this problem is known to be NP-hard, we have strong indication of its intractability.

Start with a formula F , in 3CNF. Using DeMorgan's laws, construct formula G, which is
the negation of F , and which is in 3DNF. Testing the validity of G is equivalent to checking
the unsatis�ability of F .

Construct for every propositional symbol p used in F , two individual names P and P̂.
(Here P̂ will represent the negation of p.) Each individual will have attribute truthValue,
with possible �llers True and False

P; P̂ 2 8truthValue:fTrue Falseg:

To make sure that P and P̂ have exactly one, and opposite, truth values, we create two more
individual names, Yesp and Nop, with additional attributes approve and deny respectively,
whose �llers need to have truth value True and False respectively:

Yesp 2 8approve:(fP P̂g u 8truthValue:fTrueg)
Nop 2 8deny:(fP P̂g u 8truthValue:fFalseg)

Now, given the formula G = C1 _ C2 _ : : : _ Cn, create individual names C1, C2,
: : : , Cn, each with role conjuncts containing the propositions that are its conjuncts. For
example, if C1 = p ^ :q ^ :r then

C1 2 8conjuncts:fP Q̂ R̂g u �3 conjuncts:

Finally, construct individual G to have C1, C2, : : : , Cn as possible �llers for a new role
disjunctsHolding:

G 2 8disjunctsHolding:fC1C2 : : : Cng:

The formula G will then be valid i� there is always at least one disjunct that holds.
This is equivalent to membership in the concept VALID-FORMULAE de�ned as

�1 disjunctsHolding u 8disjunctsHolding:(8conjuncts:(8truthValue:fTrueg)):

The above shows that recognizing whether individuals are instances of descriptions is
intractable in the presence of set descriptions, minimum number restrictions, and value
restrictions.

We can convert this into a question concerning the subsumption of two descriptions by
essentially making all the individuals involved attribute-�llers for new dummy attributes,
and their descriptions as restrictions on these attributes. Then if the description is non-
empty then these attribute values must satisfy the corresponding restrictions.

So, de�ne concept UPPER to be

8formula:VALID-FORMULAE

and de�ne concept LOWER to be
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8dummy1-p:(fPg u [P 0s concept descriptor ]) u
8dummy2-p:(fP̂g u [P̂ 0s concept descriptor ]) u
8dummy3-p:(fYespg u : : :) u
8dummy4-p:(fNopg u : : :) u
: : :

8dummy5-ci:(fCig u : : :) u
: : :

8formula:(fGg u : : :)

Then in any database state either concept LOWER has no instances, in which case it is
a subset of the extension of UPPER, or it has at least one instance, in which case the
individual names �lling the various dummy attributes must have the properties ascribed to
them, whence C will be in VALID-FORMULAE (and hence UPPER will subsume LOWER) i�
C is valid, which completes the proof.
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