Analysis of Irregular Event Sequences using Deep Learning, Reinforcement Learning, and Visualization

Filip Dabek

11:00-1:00 Thursday 13 July 2017, ITE 346, UMBC

History is nothing but a catalogued series of events organized into data. Amazon, the largest online retailer in the world, processes over 2,000 orders per minute. Orders come from customers on a recurring basis through subscriptions or as one-off spontaneous purchases, resulting in each customer exhibiting their own behavioral pattern when it comes to the way in which they place orders throughout the year. For a company such as Amazon, that generates over $130 billion of revenue each year, understanding and uncovering the hidden patterns and trends within this data is paramount in improving the efficiency of their infrastructure ranging from the management of the inventory within their warehouses, distribution of their labor force, and preparation of their online systems for the load of users. With the ever increasingly availability of big data, problems such as these are no longer limited to large corporations but are experienced across a wide range of domains and faced by analysts and researchers each and every day.

While many event analysis and time series tools have been developed for the purpose of analyzing such datasets, most approaches tend to target clean and evenly spaced data. When faced with noisy or irregular data, it has been recommended to undergo a pre-processing step of converting and transforming the data into being regular. This transformation technique arguably interferes on a fundamental level as to how the data is represented, and may irrevocably bias the way in which results are obtained. Therefore, operating on raw data, in its noisy natural form, is necessary to ensure that the insights gathered through analysis are accurate and valid.

In this dissertation novel approaches are presented for analyzing irregular event sequences using a variety of techniques ranging from deep learning, reinforcement learning, and visualization. We show how common tasks in event analysis can be performed directly on an irregular event dataset without requiring a transformation that alters the natural representation of the process that the data was captured from. The three tasks that we showcase include: (i) summarization of large event datasets, (ii) modeling the processes that create events, and (iii) predicting future events that will occur.

Committee: Drs. Tim Oates (Chair), Jesus Caban, Penny Rheingans, Jian Chen, Tim Finin