CMPE 311

Instruction Sets:
Characteristics and Functions
Addressing Modes

Slides modified from multiple sources
1. William Stallings Computer Organization and Architecture, 7t Edition
2.James Peckol, Embedded systems Design

What Is an Instruction Set?

The complete collection of instructions that
are understood by a CPU

Machine Code
Binary
Usually represented by assembly codes

Elements of an Instruction

Operation code (opcode)
— Do this: ADD, SUB, MPY, DIV, LOAD, STOR

Source operand reference

— To this: (address of) argument of op, e.g.
register, memory location

Result operand reference
— Put the result here (as above)

Next instruction reference (often implicit)
— When you have done that, do this: BR

Example: Simple Instruction Format
(using two addresses)

4 bits

6 bits

6 bits

Opcode

Operand Reference

Operand Reference

16 bits

>

Instruction Cycle State Diagram

Instruction Operand Operand
fetch fetch store
F'y A r'y
Multiple Multiple
operands results
\ 4 v
Instruction Instruction Operand Data Operand
address operation —p address . ——p address
] .] Operation]
calculation decoding calculation calculation
Instruction complete, Return for string

fetch next instruction or vector data

Design Decisions (1)

* Operation
— How many ops?
— What can they do?
— How complex are they?
« Data types (length of words, integer
representation)
* Instruction formats
— Length of op code field

— Length and number of addresses (e.qg., Implicit
addressing)

Design Decisions (2)

* Registers
— Number of CPU registers available

— Which operations can be performed on which
registers? General purpose and specific
registers

» Addressing modes (see later)
 RISC v CISC

Instruction Types

« Data transfer: registers, main memory,
stack or I/O

« Data processing: arithmetic, logical

» Control: systems control, transfer of
control

Data Transfer Instructions

» Are responsible for moving data around
iInside the processor as well as brining In
data or sending data out

 Examples: Store, load, exchange, move,
set, push, pop
» Each Instruction should have:

* source and destination (memory, register,
Input/output port)

« amount of data

Register i Register | Register k

l Register i I_>

Register |

Memory

Register k

Input Port
Output Port

fig_01_16

Data Transfer Instructions Example

LD destination, source

ST source, destination

MOVE destination, source
XCH destination, source
PUSH/POP

IN/JOUT destination, source

Load--source operand transferred to destination operand can be
either register or memory location.

Store—source operand transferred to destination operand source
must be a register and the destination must be memory.

Transfer from register to register or memory to memory.
Interchange the source and destination operands.

Operand pushed onto or popped off of the stack.

Transfer data from or {0 an input/output port.

Arithmetic

« Add, Subtract, Multiply, Divide for signed
integer (+ floating point and packed
decimal) — may involve data movement

* May Iinclude
— Absolute (i.e |al|)

— Increment (i.e a++)
— Decrement (i.e a--)
— Negate (i.e -a)

Logical

» Bitwise operations: AND, OR, NOT, XOR,
CMP, SET

» Shifting and rotating functions, e.g.

— logical right shift for unpacking: send 8-bit
character from 16-bit word

— arithmetic right shift: division and truncation
for odd numbers

— arithmetic left shift: multiplication without
overflow

Different (a) Logical right shift
Shift

Instructions lﬁ:‘ e B P ﬁ-

b1 Lagical L=t shifi

P W Wi Wi e W "V
Sissignbitisi = = =

{1t Arcithmoenc right shill

P i P “
s - - -

fd 1 Arithmetie L st

_/_zr_’;’:ﬁq =

{e=) Right molate

N N — >

0 el ot

Systems Control and Execution Flow

* The execution flow captures the order of
evaluation/execution of each instruction

— Sequential

— Branch

— Loop

— Procedure or Function call

Branch

» SKip, e.qg., Increment and skip if zero:
ISZ Reqgl, cf. jJumping out from loop

» Branch instructions: BRZ X (branch to X if
result is zero), BRP X (positive), BRN X
(negative), BRE X,R1,R2 (equal)

* Procedure (economy and modularity): call
and return

Unconditional
Branch

Branch Instruction

Memory
Address

200
201
— 202
203

-
-

-

210
211

Instruction

SUB X. Y
BRZ 211

BRE R1, R2, 235

-

-
-
-

Conditional
Branch

Conditional
Branch

Addresses
4000

4100
4101

4500

4600
dn01

4650
dn51

4500

Nested Procedure Calls

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

{a) Calls and returns

Main
Program

Procedure
Procl

Procedure
Proc2

W74

(b) Execution sequence

STI - Store immediate
LDI / LOADI - Load Immediate
MOVI - Move Immediate

fig_01_20

MSB

LSB
31 0
operation gg operand1 gg operand0
Register Direct
Register 2 - Register 3
X=Yy,;
MSB LSB
3 0
operation 5 g operand1 E 3 operand0
Data

: J
Register Indirect ‘\.
\
)
\
Register 2 Register 3 /_/ E

/

V\ ‘

2 r

MOVE R2, *R3 M /

-~ /
So /
x = *yPtr; Wi 7
N '
\\ -~ ,l’

fig_01 22

