

NVIDIA Graphics, Cg, and NVIDIA Graphics, Cg, and
TransparencyTransparency

Mark Kilgard

Graphics Software Engineer

NVIDIA Corporation

GPU Shading and Rendering
Course 3
July 30, 2006

OutlineOutline

• NVIDIA graphics hardware

– seven years for GeForce + the future

• Cg—C for Graphics

– the cross-platform GPU programming language

• Depth peeling
– out-of-order transparency now practical

Seven Years of GeForceSeven Years of GeForce

DX9c2.0Transparency antialiasing, quad-GPUGeForce 7800 GTX2005

DX9c2.0

Vertex textures, structured fragment
branching, non-power-of-two textures,
generalized floating-point textures, floating-
point texture filtering and blending, dual-GPU

GeForce 6800 Ultra2004

DX9c2.1Single-board dual-GPU, process efficiencyGeForce 7900 GTX2006

DX91.5

Vertex program branching, floating-point
fragment programs, 16 texture units, limited
floating-point textures, color & depth
compression

GeForce FX2003

DX8.11.4Early Z culling, dual-monitorGeForce4 Ti 46002002

DX81.4
Programmable vertex transformation, 4 texture
units, dependent textures, 3D textures, shadow
maps, multisampling, occlusion queries

GeForce32001

DX71.3
Hardware transform & lighting, configurable
fixed-point shading, cube maps, texture
compression, anisotropic texture filtering

GeForce 2562000

Direct3D
Version

OpenGL
VersionNew FeaturesProduct

2006: the GeForce 7900 GTX board2006: the GeForce 7900 GTX board

512MB/256-bit GDDR3
1600 MHz effective
8 pieces of 8Mx3216x PCI-Express

DVI x 2

sVideo
TV Out

SLI Connector

2006: the GeForce 7900 GTX GPU2006: the GeForce 7900 GTX GPU

278 million transistors
650 MHz core clock
1,600 MHz GDDR3 effective memory clock
256-bit memory interface

Notable Functionality
• Non-power-of-two textures with mipmaps
• Floating-point (fp16) blending and filtering
• sRGB color space texture filtering and

frame buffer blending
• Vertex textures
• 16x anisotropic texture filtering
• Dynamic vertex and fragment branching
• Double-rate depth/stencil-only rendering
• Early depth/stencil culling
• Transparency antialiasing

2006: GeForce 7950 GX2, SLI2006: GeForce 7950 GX2, SLI--onon--aa--cardcard

DVI x 2

sVideo
TV Out

16x PCI-Express

Sandwich of two
printed circuit

boards

Two GeForce 7 Series GPUs
500 Mhz core

1 GB video memory
512 MB per GPU

1,200 Mhz effective

Effective 512-bit
memory

interface!

GeForce PeakGeForce Peak
Vertex Processing TrendsVertex Processing Trends

M
ill

io
ns

 o
f v

er
tic

es
 p

er
 s

ec
on

d

Vertex units 1 1 2 3 6 8 8 2×8

rate for trivial 4x4
vertex transform

exceeds peak
setup rates—allows
excess vertex
processing

Assumes Alternate
Frame Rendering
(AFR) SLI Mode

GeForce PeakGeForce Peak
Triangle Setup TrendsTriangle Setup Trends

M
ill

io
ns

 o
f t

ria
ng

le
s

pe
r

se
co

nd

assumes 50%
face culling

Assumes Alternate
Frame Rendering
(AFR) SLI Mode

GeForce PeakGeForce Peak
Memory Bandwidth TrendsMemory Bandwidth Trends

G
ig

ab
yt

es
 p

er
 s

ec
on

d

128-bit interface 256-bit interface

Two physical 256-bit
memory interfaces

Effective GPUEffective GPU
Memory BandwidthMemory Bandwidth

• Compression schemes

– Lossless depth and color (when multisampling) compression

– Lossy texture compression (S3TC / DXTC)

– Typically assumes 4:1 compression

• Avoid useless work

– Early killing of fragments (Z cull)

– Avoid useless blending and texture fetches

• Very clever memory controller designs

– Combining memory accesses for improved coherency

– Caches for texture fetches

NVIDIA Graphics Core andNVIDIA Graphics Core and
Memory Clock RatesMemory Clock Rates

M
eg

ah
er

tz
 (

M
hz

)

DDR memory
transition—
memory rates
double physical
clock rate

GeForce PeakGeForce Peak
Texture Fetch TrendsTexture Fetch Trends

M
ill

io
ns

 o
f t

ex
tu

re
 fe

tc
he

s
pe

r
se

co
nd

Texture units 2×4 2×4 2×4 2×4 16 24 24 2×24

assuming no texture
cache misses

GeForce PeakGeForce Peak
Depth/StencilDepth/Stencil--only Fillonly Fill

assuming no
read-modify-write

M
ill

io
ns

 o
f d

ep
th

/s
te

nc
il

pi
xe

l u
pd

at
es

pe
r s

ec
on

d

double speed
depth-stencil
only

GeForce Transistor Count and GeForce Transistor Count and
Semiconductor ProcessSemiconductor Process

M
ill

io
ns

 o
f t

ra
ns

is
to

rs

Process (nm) 180 180 150 130 130 110 90 90

More performance
with fewer transistors:
Architectural &
process efficiency!

GeForce 7900 GTX ParallelismGeForce 7900 GTX Parallelism

Triangle Setup/Raster

Shader Instruction Dispatch

Fragment Crossbar

Memory
Partition

Memory
Partition

Memory
Partition

Memory
Partition

Z-Cull

8 Vertex Engines

24 Fragment Shaders

16 Raster Operation Pipelines

16

GeForce
FX 5900

GeForce
6800 Ultra

Vertex

Fragment

2nd Texture
Fetch

3 6

4+4

Raster Color

Raster Depth

4+4 16+16

GeForce
7900 GTX

Hardware
Unit

8

24

16+16

2005: Comparison to CPU2005: Comparison to CPU

Pentium Extreme Edition 840
• 3.2 GHz Dual Core

• 230M Transistors

• 90nm process

• 206 mm^2

• 2 x 1MB Cache

• 25.6 GFlops

GeForce 7800 GTX
• 430 MHz

• 302M Transistors

• 110nm process

• 326 mm^2

• 313 GFlops (shader)

• 1.3 TFlops (total)

2006: Comparison to CPU2006: Comparison to CPU

Intel Core 2 Extreme X6800
• 2.93 GHz Dual Core

• 291M Transistors

• 65nm process

• 143 mm^2

• 4MB Cache

• 23.2 GFlops

GeForce 7900 GTX
• 650 MHz

• 278M Transistors

• 90nm process

• 196 mm^2

• 477 GFlops (shader)

• 2.1 TFlops (total)

Giga Flops ImbalanceGiga Flops Imbalance

Intel Core
2 Extreme

X6800

GeForce
7900 GTX

0

100

200

300

Theoretical programmable
IEEE 754 single-precision
Giga Flops

Future NVIDIA GPU directionsFuture NVIDIA GPU directions

• DirectX 10 feature set
– Massive graphics functionality upgrade

• Language and tool support
– Performance tuning and content development

• Improved GPGPU
– Harness the bandwidth & Gflops for non-graphics

• Multi-GPU systems innovation
– Next-generation SLI

DirectX 10DirectX 10--class GPU functionalityclass GPU functionality

• Generalized programmability, including

– Integer instructions

– Efficient branching

– Texture size queries, unfiltered texel fetches, & offset fetches

– Shadow cube maps for omni-directional shadowing

– Sourcing constants from bind-able buffer objects

• Per-primitive programmable processing

– Emits zero or more strips of triangles/points/lines

– New line and triangle adjacency primitives

– Output to multiple viewports and buffers

PerPer--primitive processing example:primitive processing example:
Automatic silhouette edge renderingAutomatic silhouette edge rendering

emit edge
of adjacent
triangles

that face
opposite
directions

New triangle adjacency primitive =
3 conventional vertices +
3 vertices for adjacent triangles

More DirectX 10More DirectX 10--class GPU functionalityclass GPU functionality

• Better blending
– Improved blending control for multiple draw buffers

– sRGB and 32-bit floating-point framebuffer blending

• Streamed output of vertex processing to buffers
– Render to vertex array

• Texture improvements
– Indexing into an “array” of 2D textures

– Improved render-to-texture

– Luminance-alpha compressed formats

– Compact High Dynamic Range texture formats

– Integer texture formats

– 32-bit floating-point texture filtering

Uses of DirectX 10 functionalityUses of DirectX 10 functionality

GPU Marching Cubes

GPU Cloth

Styled Line Drawing

Deformable Collisions

Sparkling Sprites Table-free Noise
Deep Waves GPU Fluid

Simulation

DirectX 10DirectX 10--classclass
functionality parityfunctionality parity

• Feature parity
– DirectX 10-class features available via OpenGL

– Cross API portability of programmable shading
content through Cg

• Performance parity
– 3D API agnostic performance parity

on all Windows operating systems

• System support parity
– Linux, Mac, FreeBSD, Solaris

– Shared code base for drivers

MultiMulti--GPU SupportGPU Support

• Original SLI was just the
beginning

– Quad-SLI

– SLI support infuses all
NVIDIA product design and
development

• New SLI APIs for
application-control of
multiple GPUs

• SLI for notebooks

– Better thermals and power

Vertex
Cores

Fragment
Cores

Raster Color
Cores

Raster Depth
Cores

GeForce
7900 GTX

Hardware
Unit

8

24

16+16

GeForce
7900 GTX Quad SLI

32

96

64+64

Cg: C for GraphicsCg: C for Graphics

Cg: C for GraphicsCg: C for Graphics

• Cg as it exists today
– High-level, inspired mostly by C

– Graphics focused

• API-independent

– GLSL tied to OpenGL; HLSL tied to Direct3D; Cg works for both

• Platform-independent

– Cg works on PlayStation 3, ATI, NVIDIA, Linux,
Solaris, Mac OS X, Windows, etc.

• Production language and system
– Cg 1.5 is part of 3D content creation tool chains

– Portability of Cg shaders is important

Evolution of CgEvolution of Cg

C
(AT&T, 1970’s)

C++
(AT&T, 1983)

Java
(Sun, 1994)

RenderMan
(Pixar, 1988)

PixelFlow
Shading

Language
(UNC, 1998)

Real-Time
Shading Language
(Stanford, 2001)

Cg / HLSL
(NVIDIA/Microsoft, 2002)

IRIS GL
(SGI, 1982)

OpenGL
(ARB, 1992)

Direct3D
(Microsoft, 1995)

Reality Lab
(RenderMorphics,

1994)

General-purpose languages

Graphics Application
Program Interfaces

Shading Languages

Cg 1.5Cg 1.5

• Current release of Cg
– Supports Windows, Linux, Mac (including x86 Macs) + now Solaris

– Shader Model 3.0 profiles for Direct3D 9.0c

– Matches Sony’s PlayStation 3 Cg support

– Tool chain support: FX Composer 2.0

• New functionality
– Procedural effects generation

– Combined programs for multiple domains

– New GLSL profiles to compile Cg to GLSL

• Improved compiler optimization

FX Composer for Cg shader authoringFX Composer for Cg shader authoring

• Shaders are
assets

– Portability matters

• So express
shaders in a multi-
platform, multi-API
language

– That’s Cg

Future: Modernizing CgFuture: Modernizing Cg

• Opportunity to re-think the Cg language

– Experience-driven

– Shader writing was programming-in-the-small

• But not anymore!

• Provide better abstraction mechanisms

– Must be backward compatible

• Challenge: Instead of inventing yet-another shading
language-specific keyword, think how a C++
programmer express the feature

– Think templates and classes

Cg DirectionsCg Directions

• DirectX 10-class feature support
– Primitive (geometry) programs

– Constant buffers

– Interpolation modes

– Read-write index-able temporaries

– New texture targets: texture arrays, shadow cube maps

• Incorporate established C++ features, examples:
– Classes

– Templates

– Operator overloading

– But not runtime features like new/delete, RTTI, or exceptions

Why C++?Why C++?

• Already inspiration for much of Cg
– Think of Cg’s first-class vectors simply as classes

• Functionality in C++ is well-understood and
popular

• C++ is biased towards compile-time
abstraction
– Rather than more run-time focus of Java and C#

– Compile-time abstraction is good since GPUs lack
the run-time support for heaps, garbage collection,
exceptions, and run-time polymorphism

Logical ProgrammableLogical Programmable
Graphics PipelineGraphics Pipeline

3D
Application

or Game

3D API:
OpenGL or

Direct3D Driver

Programmable
Vertex

Processor

Primitive
Assembly

Rasterization
& Interpolation

3D API
Commands

Transformed
Vertices

Assembled
Polygons,
Lines, and

Points

GPU
Command &

Data Stream

Programmable
Fragment
Processor

Rasterized
Pre-transformed

Fragments

Transformed
Fragments

Raster
Operations

Framebuffer

Pixel
Updates

GPU
Front
End

Pre-transformed
Vertices

Vertex Index
Stream

Pixel
Location
Stream

CPU – GPU Boundary

Program vertex and fragment
domains

Future LogicalFuture Logical
Programmable Graphics PipelineProgrammable Graphics Pipeline

3D
Application

or Game

3D API:
OpenGL or

Direct3D Driver

Programmable
Vertex

Processor

Primitive
Assembly

Rasterization
& Interpolation

3D API
Commands

Transformed
Vertices

Output assembled
Polygons, Lines, and Points

GPU
Command &

Data Stream

Programmable
Fragment
Processor

Rasterized
Pre-transformed

Fragments

Transformed
Fragments

Raster
Operations

Framebuffer

Pixel
Updates

GPU
Front
End

Pre-transformed
Vertices

Vertex Index
Stream

Pixel
Location
Stream

CPU – GPU Boundary

Programmable
Primitive
Processor

Input assembled Polygons,
Lines, and Points

New per-primitive “geometry”
programmable domain

Pass ThroughPass Through
Geometry Program ExampleGeometry Program Example

BufferInit<float4,6> flatColor;

TRIANGLE void passthru(AttribArray<float4> position : POSITION,
AttribArray<float4> texCoord : TEXCOORD0)

{
flatAttrib(flatColor:COLOR);
for (int i=0; i<position.length; i++) {

emitVertex(position[i], texCoord[i]);
}

}

Primitive’s attributes arrive as “templated”
attribute arrays

Length of attribute arrays depends on the
input primitive mode, 3 for TRIANGLE

Bundles a vertex based on
parameter values and semantics

Makes sure flat attributes
are associated with the
proper provoking vertex
convention

flatColor initialized from
constant buffer 6

Depth peelingDepth peeling

• Brute force order-independent transparency
algorithm [Everitt 2001]

• Approach
– Render transparent objects repeatedly

• Each pass peels successive color layer using dual-depth buffers

– Composite peeled layers in order

• Caveats
– Typically makes “thin film” assumption

– No refraction or scattering

Transparency: The Good vs. the UglyTransparency: The Good vs. the Ugly

Peeled layer visualizationPeeled layer visualization

composite
layers

Fragment count per layer

Another example: The Good vs. the UglyAnother example: The Good vs. the Ugly

Another peeled layer visualizationAnother peeled layer visualization

composite
layers

Fragment count per layer

RealReal--time transparency demotime transparency demo

Depth peeling: How it worksDepth peeling: How it works

• Conventional depth buffer after rendering

– Color buffer has color of closest fragment

– Depth buffer has depth of closest fragment

• Re-use the depth buffer!

– Make depth buffer into a shadow map

– Clear a 2nd depth buffer

– Discard fragments if fragment depth is closer than corresponding pixel’s
depth in shadow map

– Save color buffer for compositing

– Repeat this with current depth buffer to peel another layer

• Prior depth buffer works as “back stop” for next pass

– Discard fragments closer or as close as last pass for every pixel

Optimizations for realOptimizations for real--time depth peelingtime depth peeling

• Optimizations
– Render-to-texture to ping-pong between 2 back stop depth

buffers (no depth buffer copies)

– Shadow mapping for 2nd read-only “back stop” depth buffer

– Asynchronous occlusion queries to determine fragments still
being peeled

– Threshold to stop peeling

– Smart front-to-back (“under”) compositing

• Result: 120+ fps depth peeling for peeling and
composting up to 14 layers as needed

So is transparency a solved problem?So is transparency a solved problem?

• Bounding the error

– Assume a lower bound on opacity of objects

• …and an upper bound on layers peeled

– worstCaseError = (1-minOpacity)maxLayers

• Example: 20% min. opacity with 15 peeled layers

• Remaining potential transparency could be off by just 3.5% if looking
through 15 layers of 20% opacity (worst possible case)

– Typical cases are much, much better than that

• As occlusion query can provide a count of mis-ordered pixels

• Arguably could be for a certain class of transparency

– Mostly opaque scenes with thin film transparency like windows

– CAD models made of virtual Jell-O®

ConclusionsConclusions

• NVIDIA GPUs
– Expect more compute and bandwidth increases >> CPUs

– DirectX 10 = large functionality upgrade for graphics

• Cg, the only cross-API, multi-platform language for
programmable shading
– Think shaders as content, not GPU programs trapped inside

applications

• Depth peeling
– Harnessing the GPU’s brute force for transparency

