# 3D Transformations 

CMSC 435/634

## Transformation

Webster: The operation of changing one configuration or expression into another in accordance with a mathematical rule


## Using Transformation

- Points on object represented as vector offset from origin
- Transform is a vector to vector function
- $\vec{p}^{\prime}=f(\vec{p})$
- Relativity:
- From $\vec{p}^{\prime}$ point of view, object is transformed
- From $\vec{p}$ point of view, coordinate system changes
- Inverse transform, $\vec{p}=f^{-1}\left(\vec{p}^{\prime}\right)$



## Composing Transforms

- Order matters
- $R(T(\vec{p}))=R \circ T(\vec{p})$
- $T(R(\vec{p}))=T \circ R(\vec{p})$

$L_{\text {Generic }}$ Transforms


## Inverting Composed Transforms

- Reverse order
$-(R \circ T)^{-1}\left(\vec{p}^{\prime}\right)=T^{-1}\left(R^{-1}\left(\vec{p}^{\prime}\right)\right)$
$-(T \circ R)^{-1}\left(\vec{p}^{\prime}\right)=R^{-1}\left(T^{-1}\left(\vec{p}^{\prime}\right)\right)$



## Translation

- $\vec{p}^{\prime}=\vec{p}+\vec{t}$
$-\left[\begin{array}{l}p^{\prime x} \\ p^{\prime y} \\ p^{\prime z}\end{array}\right]=\left[\begin{array}{l}p^{x} \\ p^{y} \\ p^{z}\end{array}\right]+\left[\begin{array}{l}t^{x} \\ t^{y} \\ t^{z}\end{array}\right]=\left[\begin{array}{l}p^{x}+t^{x} \\ p^{y}+t^{y} \\ p^{z}+t^{z}\end{array}\right]$
- $\vec{t}$ says where $\vec{p}$-space origin ends up $\left(\vec{p}^{\prime}=\overrightarrow{0}+\vec{t}\right)$
- Composition: $\vec{p}^{\prime}=\left(\vec{p}+\overrightarrow{t_{0}}\right)+\overrightarrow{t_{1}}=\vec{p}+\left(\overrightarrow{t_{0}}+\overrightarrow{t_{1}}\right)$



## Linear Transforms

$$
\left[\begin{array}{l}
p^{\prime x} \\
p^{\prime y} \\
p^{\prime z}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
p^{x} \\
p^{y} \\
p^{z}
\end{array}\right]
$$

- Matrix says where $\vec{p}$-space axes end up

$$
\begin{aligned}
{\left[\begin{array}{l}
a \\
d \\
g
\end{array}\right] } & =\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{l}
b \\
e \\
h
\end{array}\right] } & =\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \\
{\left[\begin{array}{l}
c \\
f \\
i
\end{array}\right] } & =\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

- Composition: $\vec{p}^{\prime}=M(N \vec{p})=(M N) \vec{p}$


## Common case: Scaling

$-\left[\begin{array}{l}p^{\prime x} \\ p^{\prime y} \\ p^{\prime z}\end{array}\right]=\left[\begin{array}{l}s_{x} p^{x} \\ s_{y} p^{y} \\ s_{z} p^{z}\end{array}\right]=\left[\begin{array}{ccc}s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & s_{z}\end{array}\right]\left[\begin{array}{l}p^{x} \\ p^{y} \\ p^{z}\end{array}\right]$

- Inverse: $\left[\begin{array}{ccc}1 / s_{x} & 0 & 0 \\ 0 & 1 / s_{y} & 0 \\ 0 & 0 & 1 / s_{z}\end{array}\right]$



## Common case: Reflection

- Negative scaling
$-\left[\begin{array}{l}p^{\prime x} \\ p^{\prime y} \\ p^{\prime z}\end{array}\right]=\left[\begin{array}{c}-p^{x} \\ p^{y} \\ p^{z}\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}p^{x} \\ p^{y} \\ p^{z}\end{array}\right]$



## Common case: Rotation



- Orthogonal, so $M^{-1}=M^{T}$
- Rotate around Z: $\vec{p}^{\prime}=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right] \vec{p}$


## Common case: Rotation



- Orthogonal, so $M^{-1}=M^{T}$
- Rotate around $\mathrm{X}: \vec{p}^{\prime}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right] \vec{p}$


## Common case: Rotation



- Orthogonal, so $M^{-1}=M^{T}$
- Rotate around $Y: \vec{p}^{\prime}=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right] \vec{p}$


## Composing Transforms

- Scale by $s$ along axis $\vec{a}$
- Rotate to align $\vec{a}$ with Z
- Scale along Z
- Rotate back

Rotate by $\alpha$ around X into XZ plane

- Projection of $\vec{a}$ onto $Y Z:\left[\begin{array}{c}0 \\ a^{y} \\ a^{z}\end{array}\right]$
- length $d=\sqrt{\left(a^{y}\right)^{2}+\left(a^{z}\right)^{2}}$
- So $\cos \alpha=a^{z} / d, \sin \alpha=a^{y} / d$
- $R_{X}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & a^{z} / d & -a^{y} / d \\ 0 & a^{y} / d & a^{z} / d\end{array}\right]$
- Result $\vec{a}^{\prime}=\left[\begin{array}{c}a^{x} \\ 0 \\ d\end{array}\right]$

Rotate by $\beta$ around Y to Z axis

- $\vec{a}^{\prime}=\left[\begin{array}{l}a^{x} \\ 0 \\ d\end{array}\right]$
- length $=1$
- So $\cos \beta=d, \sin \beta=a^{x}$
- $R_{Y}=\left[\begin{array}{ccc}d & 0 & -a^{x} \\ 0 & 1 & 0 \\ a^{x} & 0 & d\end{array}\right]$
- Result $\vec{a}^{\prime \prime}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$


## Composing Transforms

- Scale by $s$ along Z: $S_{Z}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s\end{array}\right]$
- Scale by $s$ along axis $\vec{a}$
- Rotate to align $\vec{a}$ with Z
- Scale along Z
- Rotate back
- $\vec{p}^{\prime}=R_{X}^{-1} R_{Y}^{-1} S_{Z} R_{Y} R_{X} \vec{p}$


## Affine Transforms

- Affine $=$ Linear + Translation
- Composition? $A\left(B \vec{p}+\overrightarrow{t_{0}}\right)+\overrightarrow{t_{1}}=A B \vec{p}+A \overrightarrow{t_{0}}+\overrightarrow{t_{1}}$
- Yuck!


## Homogeneous Coordinates

- Add a ' 1 ' to each point
$-\left[\begin{array}{c}p^{\prime x} \\ p^{\prime y} \\ p^{\prime z} \\ 1\end{array}\right]=\left[\begin{array}{ccc|c}a & b & c & t^{x} \\ d & e & f & t^{y} \\ g & h & i & t^{z} \\ \hline 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}p^{x} \\ p^{y} \\ p^{z} \\ 1\end{array}\right]$
- $\vec{p}^{\prime x}=\left(a p^{x}+b p^{y}+c p^{z}\right)+t^{x}$
- $\vec{p}^{y}=\left(d p^{x}+e p^{y}+f p^{z}\right)+t^{y}$
- $\vec{p}^{z}=\left(g p^{x}+h p^{y}+i p^{z}\right)+t^{z}$
- $1=\left(0 p^{x}+0 p^{y}+0 p^{z}\right)+1$


## Homogeneous Coordinates

$-\left[\begin{array}{c}p^{\prime x} \\ p^{\prime y} \\ p^{\prime z} \\ 1\end{array}\right]=\left[\begin{array}{lll|l}a & b & c & t^{x} \\ d & e & f & t^{y} \\ g & h & i & t^{z} \\ \hline 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}p^{x} \\ p^{y} \\ p^{z} \\ 1\end{array}\right]$

- $\vec{p}^{\prime}=\left[\begin{array}{lll|l}\vec{x} & \vec{y} & \vec{z} & \vec{t}\end{array}\right] \vec{p}$
- $\vec{t}$ says where the $\vec{p}$-space origin ends up
- $\vec{x}, \vec{y}, \vec{z}$ say where the $\vec{p}$-space axes end up
- Composition: Just matrix multiplies!


## Composing Transforms

- Rotate by $\theta$ about line between $\vec{p}_{0}$ and $\vec{p}_{1}$ :
- Translate $\vec{p}_{0}$ to origin
- Rotate to align $\vec{p}_{1}-\overrightarrow{p_{0}}$ with Z
- Rotate by $\theta$ around Z
- Undo $\vec{p}_{1}-\overrightarrow{p_{0}}$ rotation
- Undo translation
- $T^{-1} R_{X}^{-1} R_{Y}^{-1} R_{Z}(\theta) R_{Y} R_{X} T$


## Vectors

- Transform by Jacobian Matrix
- Matrix of partial derivatives

$$
\left[\begin{array}{l}\vec{p}^{\prime x} \\ \vec{p}^{\prime y} \\ \vec{p}^{\prime z}\end{array}\right]=\left[\begin{array}{lll}a p^{x}+b p^{y}+c p^{z}+t^{x} \\ d p^{x}+e p^{y}+f p^{z}+t^{y} \\ g p^{x}+h p^{y}+i p^{z}+t^{z}\end{array}\right]
$$

$>J=\left[\begin{array}{lll}\partial p^{\prime x} / \partial p^{x} & \partial p^{\prime x} / \partial p^{y} & \partial p^{\prime x} / \partial p^{z} \\ \partial p^{\prime y} / \partial p^{x} & \partial p^{\prime y} / \partial p^{y} & \partial p^{\prime y} / \partial p^{z} \\ \partial p^{\prime z} / \partial p^{x} & \partial p^{\prime z} / \partial p^{y} & \partial p^{\prime z} / \partial p^{z}\end{array}\right]$

- J $=\left[\begin{array}{lll}a & b & c \\ c & d & f \\ g & h & i\end{array}\right]$
- Upper-left $3 \times 3$


## Normals

- Normal should remain perpendicular to tangent vector
- $\vec{n} \cdot \vec{v}=\vec{n}^{\prime} \cdot \vec{v}^{\prime}=0$
- $\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}\end{array}\right]\left[\begin{array}{c}v^{x} \\ v^{y} \\ v^{z}\end{array}\right]=\left(\left[\begin{array}{lll}n_{x} & n_{y} & n_{z}\end{array}\right] J^{-1}\right)\left(J\left[\begin{array}{c}v^{x} \\ v^{y} \\ v^{z}\end{array}\right]\right)=0$
- $\overrightarrow{n^{\prime}}=\vec{n} J^{-1}$
- Multiply by inverse on right
- OR multiply column normal by inverse transpose
- $\left(J^{-1}\right)^{T}=J$ if $J$ is orthogonal (only rotations)

