Transforms

3D Transformations

CMSC 435/634

Transformation

Webster: The operation of changing one configuration or expression into another in accordance with a mathematical rule

Generic Transforms

Using Transformation

- Points on object represented as vector offset from origin
- Transform is a vector to vector function
 - $\vec{p}' = f(\vec{p})$
- Relativity:
 - From \vec{p}' point of view, object is transformed
 - From \vec{p} point of view, coordinate system changes
- ▶ Inverse transform, $\vec{p} = f^{-1}(\vec{p}')$

Composing Transforms

- Order matters
 - $R(T(\vec{p})) = R \circ T(\vec{p})$
 - $T(R(\vec{p})) = T \circ R(\vec{p})$

Inverting Composed Transforms

- Reverse order
 - $(R \circ T)^{-1}(\vec{p}') = T^{-1}(R^{-1}(\vec{p}'))$
 - $(T \circ R)^{-1}(\vec{p}') = R^{-1}(T^{-1}(\vec{p}'))$

Translation

$$ightharpoonup \vec{p}' = \vec{p} + \vec{t}$$

- lacksquare $ec{t}$ says where $ec{p}$ -space origin ends up $(ec{p}'=ec{0}+ec{t})$
- ▶ Composition: $\vec{p}' = (\vec{p} + \vec{t_0}) + \vec{t_1} = \vec{p} + (\vec{t_0} + \vec{t_1})$

Linear Transforms

▶ Matrix says where \vec{p} -space axes end up

$$\begin{bmatrix} a \\ d \\ g \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} b \\ e \\ d \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} c \\ f \\ i \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

► Composition: $\vec{p}' = M \ (N \ \vec{p}) = (M \ N)\vec{p}$

Transforms

Common Transforms
Linear Transforms

Common case: Scaling

► Inverse: $\begin{bmatrix} 1/s_x & 0 & 0 \\ 0 & 1/s_y & 0 \\ 0 & 0 & 1/s_z \end{bmatrix}$

Common case: Reflection

Negative scaling

Common case: Rotation

- ▶ Orthogonal, so $M^{-1} = M^T$
- ► Rotate around Z: $\vec{p}' = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \vec{p}$

Common case: Rotation

- ▶ Orthogonal, so $M^{-1} = M^T$
- ► Rotate around X: $\vec{p}' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \vec{p}$

Common case: Rotation

- ▶ Orthogonal, so $M^{-1} = M^T$
- ► Rotate around Y: $\vec{p}' = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \vec{p}$

Composing Transforms

- ► Scale by s along axis \vec{a}
 - ▶ Rotate to align \vec{a} with Z
 - ► Scale along Z
 - ► Rotate back

Rotate by α around X into XZ plane

- ► Projection of \vec{a} onto YZ: $\begin{bmatrix} 0 \\ a^y \\ a^z \end{bmatrix}$
- length $d = \sqrt{(a^y)^2 + (a^z)^2}$
- So $\cos \alpha = a^z/d$, $\sin \alpha = a^y/d$
- $R_X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a^z/d & -a^y/d \\ 0 & a^y/d & a^z/d \end{bmatrix}$
- $\qquad \qquad \mathsf{Result} \ \vec{a}' = \begin{bmatrix} a^{\mathsf{x}} \\ 0 \\ d \end{bmatrix}$

Rotate by β around Y to Z axis

- ▶ length = 1
- ▶ So $\cos \beta = d$, $\sin \beta = a^x$

$$P_Y = \begin{bmatrix} d & 0 & -a^X \\ 0 & 1 & 0 \\ a^X & 0 & d \end{bmatrix}$$

Result
$$\vec{a}'' = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Composing Transforms

► Scale by *s* along Z:
$$S_Z = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & s \end{bmatrix}$$

- ► Scale by s along axis \vec{a}
 - ▶ Rotate to align \vec{a} with Z
 - Scale along Z
 - Rotate back
 - $\vec{p}' = R_X^{-1} R_Y^{-1} S_Z R_Y R_X \vec{p}$

Affine Transforms

- ► Affine = Linear + Translation
- ► Composition? $A (B \vec{p} + \vec{t_0}) + \vec{t_1} = A B \vec{p} + A \vec{t_0} + \vec{t_1}$
- Yuck!

Homogeneous Coordinates

Add a '1' to each point

$$\vec{p}'^{x} = (a p^{x} + b p^{y} + c p^{z}) + t^{x}$$

$$\vec{p}'^{y} = (d p^{x} + e p^{y} + f p^{z}) + t^{y}$$

$$\vec{p}'^z = (g p^x + h p^y + i p^z) + t^z$$

$$1 = (0p^x + 0p^y + 0p^z) + 1$$

Homogeneous Coordinates

- - ightharpoonup $ec{t}$ says where the $ec{p}$ -space origin ends up
 - \vec{x} , \vec{y} , \vec{z} say where the \vec{p} -space axes end up
- Composition: Just matrix multiplies!

Composing Transforms

- ▶ Rotate by θ about line between \vec{p}_0 and \vec{p}_1 :
 - ▶ Translate \vec{p}_0 to origin
 - Rotate to align $\vec{p}_1 \vec{p_0}$ with Z
 - \triangleright Rotate by θ around Z
 - ▶ Undo $\vec{p}_1 \vec{p_0}$ rotation
 - Undo translation
- $T^{-1}R_X^{-1}R_Y^{-1}R_Z(\theta)R_YR_XT$

Vectors

- Transform by Jacobian Matrix
- Matrix of partial derivatives

$$\begin{vmatrix} \vec{p}^{\prime x} \\ \vec{p}^{\prime y} \\ \vec{p}^{\prime z} \end{vmatrix} = \begin{bmatrix} a \ p^{x} + b \ p^{y} + c \ p^{z} + t^{x} \\ d \ p^{x} + e \ p^{y} + f \ p^{z} + t^{y} \\ g \ p^{x} + h \ p^{y} + i \ p^{z} + t^{z} \end{bmatrix}$$

$$\Rightarrow J = \begin{bmatrix} \partial p^{\prime x} / \partial p^{x} & \partial p^{\prime x} / \partial p^{y} & \partial p^{\prime x} / \partial p^{z} \\ \partial p^{\prime y} / \partial p^{x} & \partial p^{\prime y} / \partial p^{y} & \partial p^{\prime y} / \partial p^{z} \\ \partial p^{\prime z} / \partial p^{x} & \partial p^{\prime z} / \partial p^{y} & \partial p^{\prime z} / \partial p^{z} \end{bmatrix}$$

$$\Rightarrow J = \begin{bmatrix} a & b & c \\ c & d & f \\ g & h & i \end{bmatrix}$$

Upper-left 3x3

Normals

- Normal should remain perpendicular to tangent vector
- $\vec{n} \cdot \vec{v} = \vec{n}' \cdot \vec{v}' = 0$

- $\vec{n'} = \vec{n}J^{-1}$
- Multiply by inverse on right
- ▶ OR multiply *column* normal by inverse transpose
 - $(J^{-1})^T = J$ if J is orthogonal (only rotations)