Viewing

CMSC 435/634

Coordinate System / Space

- Origin + Axes
- Reference frame
- Convert by matrix
- $\vec{p}_{\text {table }}=$ TableFromPencil $\vec{p}_{\text {pencil }}$
- $\vec{p}_{\text {room }}=$ RoomFromTable TableFromPencil $\vec{p}_{\text {pencil }}$
- $\vec{p}_{\text {room }}=$ RoomFromPencil $\vec{p}_{\text {pencil }}$

Spaces

- Object / Model
- Logical coordinates for modeling
- May have several more levels
- World
- Common coordinates for everything
- View / Camera / Eye
- eye/camera at ($0,0,0$), looking down Z (or $-Z$) axis
- planes: left, right, top, bottom, near/hither, far/yon
- Normalized Device Coordinates (NDC) / Clip
- Visible portion of scene from ($-1,-1,-1$) to $(1,1,1)$
- Raster / Pixel / Viewport
- 0,0 to x-resolution, y-resolution
- Device / Screen
- May translate to fit actual screen

Nesting

- Room
- Desk
- Student
- Book
- Notebook
- Desk
- Student
- Notebook
- Table
- Laptop
- Blackboard
- Chalk
- Chalk
- Eraser

Matrix Stack

- Remember transformation, return to it later
- Push a copy, modify the copy, pop
- Keep matrix and update matrix and inverse
- Push and pop both

Model \rightarrow World / Model \rightarrow View

- Model \rightarrow World
- All shading and rendering in World space
- Transform all objects and lights
- Ray tracing implicitly does World \rightarrow Raster
- Model \rightarrow View
- Serves just as well for single view

World \rightarrow View

- Also called Viewing or Camera transform
- LookAt
- $\overrightarrow{\text { from }}, \overrightarrow{t o}, \overrightarrow{u p}$
- $[\vec{u}|\vec{v}| \vec{w} \mid \overrightarrow{\text { from }}]$
- Roll / Pitch / Yaw
- Translate to camera center, rotate around camera
- $R_{z} R_{x} R_{y} T$
- Can have gimbal lock
- Orbit
- Rotate around object center, translate out
- $T R_{z} R_{x} R_{y}$
- Also can have gimbal lock

View \rightarrow NDC

- Also called Projection transform
- Orthographic / Parallel
- Translate \& Scale to view volume
$-\left[\begin{array}{cccc}\frac{2}{r-1} & 0 & 0 & -\frac{r+1}{r-b} \\ 0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\ 0 & 0 & \frac{2}{n-f} & -\frac{n+f}{n-f} \\ 0 & 0 & 0 & 1\end{array}\right]$
- Perspective
- More complicated...

NDC \rightarrow Raster

- Also called Viewport transform
- $[-1,1],[-1,1],[-1,1] \rightarrow\left[-\frac{1}{2}, n_{x}-\frac{1}{2}\right],\left[-\frac{1}{2}, n_{y}-\frac{1}{2}\right],\left[-\frac{1}{2}, n_{z}-\frac{1}{2}\right]$
- Translate to [0, 2], [0, 2], [0, 2]
- Scale to $\left[0, n_{x}\right],\left[0, n_{y}\right],\left[0, n_{z}\right]$
- Translate to $\left[-\frac{1}{2}, n_{x}-\frac{1}{2}\right],\left[-\frac{1}{2}, n_{y}-\frac{1}{2}\right],\left[-\frac{1}{2}, n_{z}-\frac{1}{2}\right]$

$$
\left[\begin{array}{cccc}
\frac{n_{x}}{2} & 0 & 0 & \frac{n_{x}-1}{2^{2}} \\
0 & \frac{n_{y}}{2} & 0 & \frac{n_{y}-1}{2} \\
0 & 0 & \frac{n_{z}}{2} & \frac{n_{z}-1}{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Raster \rightarrow Screen

- Usually just a translation
- More complicated for tiled displays, domes, etc.
- Usually handled by windowing system

Perspective View Frustum

- Orthographic view volume is a rectangular volume
- Perspective is a truncated pyramid or frustum

Perspective Transform

- Ray tracing
- Given screen $\left(s^{x}, s^{y}\right)$, parameterize all points \vec{p}
- Perspective Transform
- Given \vec{p}, find $\left(s^{x}, s^{y}\right)$
- Use similar triangles
- $s^{y} / d=p^{y} / p^{z}$ So $s^{y}=d p^{y} / p^{z}$

Homogeneous Equations

- Same degree for every term
- Introduce a new redundant variable
- $a X+b Y+c=0$
- $X=x / w, Y=y / w$
- $a x / w+b y / w+c=0$
- $\rightarrow a x+b y+c w=0$
- $a X^{2}+b X Y+c Y^{2}+d X+e Y+f=0$
- $X=x / w, Y=y / w$
- $a x^{2} / w^{2}+b x y / w^{2}+c y^{2} / w^{2}+d x / w+e y / w+f=0$
- $\rightarrow a x^{2}+b x y+c y^{2}+d x w+e y w+f w^{2}=0$

Homogeneous Coordinates

- Rather than $(x, y, z, 1)$, use (x, y, z, w)
- Real 3D point is $(X, Y, Z)=(x / w, y / w, z / w)$
- Can represent Perspective Transform as 4×4 matrix

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{c}
p^{x} \\
p^{y} \\
p^{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
p^{x} \\
p^{y} \\
p^{z} \\
p^{z} / d
\end{array}\right] \rightarrow\left[\begin{array}{c}
d p^{x} / p^{z} \\
d p^{y} / p^{z} \\
d
\end{array}\right]
$$

Homogeneous Depth

$$
\left[\begin{array}{llcc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / d & 0
\end{array}\right]\left[\begin{array}{c}
p^{x} \\
p^{y} \\
p^{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
p^{x} \\
p^{y} \\
p^{z} \\
p^{z} / d
\end{array}\right] \rightarrow\left[\begin{array}{c}
d p^{x} / p^{z} \\
d p^{y} / p^{z} \\
d
\end{array}\right]
$$

- Lose depth information
- Can't get $d p^{\prime z} / p^{z}=p^{z}$
- Plus $x / z, y / z, z$ isn't linear
- Use Projective Geometry

Projective Geometry

- If x, y, z lie on a plane, $x / z, y / z, 1 / z$ also lie on a plane
- $1 / z$ is strictly ordered: if $z_{1}<z_{2}$, then $1 / z_{1}>1 / z_{2}$
- New matrix:

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
p^{x} \\
p^{y} \\
p^{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
p^{x} \\
p^{y} \\
1 \\
p^{z}
\end{array}\right] \rightarrow\left[\begin{array}{c}
p^{x} / p^{z} \\
p^{y} / p^{z} \\
1 / p^{z}
\end{array}\right]
$$

Getting Fancy

- Add scale \& translate
- Field of view
- near/far range

$$
\left[\begin{array}{cccc}
a & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & b & c \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
p^{x} \\
p^{y} \\
p^{z} \\
1
\end{array}\right]=\left[\begin{array}{c}
a p^{x} \\
a p^{y} \\
b p^{z}+c \\
-p^{z}
\end{array}\right] \rightarrow\left[\begin{array}{c}
-a p^{x} / p^{z} \\
-a p^{y} / p^{z} \\
-b-c / p^{z}
\end{array}\right]
$$

- $a=\operatorname{cotan}($ fieldOfView $/ 2$)
- Solve for $n \rightarrow-1$ and $f \rightarrow 1$
- $b=(n+f) /(n-f)$
- $c=(2 n f) /(f-n)$

On Field of View

- Given image dimensions, set distance
- Camera image sensor and focal length
- Given field of view angle in square window
- Non-square aspect ratio
- Given horizontal (or vertical) field of view
- Given diagonal field of view
- Off-center projection
- Tiled displays
- Head tracking

