Vector Math

CMSC 435/634

Abstract Vectors

($\vec{u}, \vec{v}, \vec{w}$ vectors; a, b, c scalars)

- $\vec{u}+\vec{v}$ is a vector
- $a \vec{u}$ is a vector
- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
- $(a+b) \vec{u}=a \vec{u}+b \vec{u}$
- $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$

Abstract Vectors

($\vec{u}, \vec{v}, \vec{w}$ vectors; a, b, c scalars)

- $\vec{u}+\vec{v}$ is a vector
- $a \vec{u}$ is a vector
- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
- $(a+b) \vec{u}=a \vec{u}+b \vec{u}$
- $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$

Abstract Vectors

($\vec{u}, \vec{v}, \vec{w}$ vectors; a, b, c scalars)

- $\vec{u}+\vec{v}$ is a vector
- $a \vec{u}$ is a vector
- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
- $(a+b) \vec{u}=a \vec{u}+b \vec{u}$
- $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$

Abstract Vectors

($\vec{u}, \vec{v}, \vec{w}$ vectors; a, b, c scalars)

- $\vec{u}+\vec{v}$ is a vector
- $a \vec{u}$ is a vector
- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
- $(a+b) \vec{u}=a \vec{u}+b \vec{u}$
- $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$

Abstract Vectors

($\vec{u}, \vec{v}, \vec{w}$ vectors; a, b, c scalars)

- $\vec{u}+\vec{v}$ is a vector
- $a \vec{u}$ is a vector
- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
- $(a+b) \vec{u}=a \vec{u}+b \vec{u}$
- $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$

Abstract Vectors

($\vec{u}, \vec{v}, \vec{w}$ vectors; a, b, c scalars)

- $\vec{u}+\vec{v}$ is a vector
- $a \vec{u}$ is a vector
- $\vec{u}+\vec{v}=\vec{v}+\vec{u}$
- $(a+b) \vec{u}=a \vec{u}+b \vec{u}$
- $(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$

Basis Vectors

Vector as linear combination of basis vectors

- $\vec{v}=2 \hat{i}+1 \hat{j}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
- $\vec{v}=1 \hat{m}+2 \hat{n}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
- $\vec{v}=1 \hat{p}+1 \hat{q}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Basis Vectors

Vector as linear combination of basis vectors

- $\vec{v}=2 \hat{i}+1 \hat{j}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
- $\vec{v}=1 \hat{m}+2 \hat{n}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
- $\vec{v}=1 \hat{p}+1 \hat{q}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Basis Vectors

Vector as linear combination of basis vectors

- $\vec{v}=2 \hat{i}+1 \hat{j}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
- $\vec{v}=1 \hat{m}+2 \hat{n}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
- $\vec{v}=1 \hat{p}+1 \hat{q}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Basis Vectors

Vector as linear combination of basis vectors

- $\vec{v}=2 \hat{i}+1 \hat{j}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
- $\vec{v}=1 \hat{m}+2 \hat{n}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$
- $\vec{v}=1 \hat{p}+1 \hat{q}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
- Column: $\vec{v}=\left[\begin{array}{c}v^{0} \\ v^{1}\end{array}\right]$ (we'll usually use this form)
- Row: $\vec{v}=\left[\begin{array}{ll}v_{0} & v_{1}\end{array}\right]$ (some texts; I like for normals)

Matrices

- Matrix: $A=\left[\begin{array}{rr}a_{0}^{0} & a_{1}^{0} \\ a_{0}^{1} & a_{1}^{1}\end{array}\right]=\left[a_{j}^{i}\right]$
- Transpose: $A^{T}=\left[\begin{array}{cc}a_{0}^{0} & a_{0}^{1} \\ a_{1}^{0} & a_{1}^{1}\end{array}\right]=\left[\begin{array}{c}j \\ i_{i}\end{array}\right]$
- Multiply: $A B=\left[\begin{array}{rr}a_{0}^{0} & a_{1}^{0} \\ a_{0}^{1} & a_{1}^{1}\end{array}\right]\left[\begin{array}{ll}b_{0}^{0} & b_{1}^{0} \\ b_{0}^{1} & b_{1}^{1}\end{array}\right]=$

$$
\left[\begin{array}{ll}
a_{0}^{0} b_{0}^{0}+a_{1}^{0} b_{0}^{1} & a_{0}^{0} b_{1}^{0}+a_{1}^{0} b_{1}^{1} \\
a_{0}^{1} b_{0}^{0}+a_{1}^{1} b_{0}^{1} & a_{0}^{1} b_{1}^{0}+a_{1}^{1} b_{1}^{1}
\end{array}\right]=\left[a_{\alpha}^{i} b_{j}^{\alpha}\right]
$$

Adjoint and Inverse

- Inverse: $A^{-1} A=A A^{-1}=I$
- Determinant: $|A|$
- $|a|=a$
- Adjoint: $A^{*}=\operatorname{cof}(A)^{T}$ (matrix of cofactors $\operatorname{cof}(A)$)
- $A^{-1}=\frac{A^{*}}{|A|}$

Dot Product

- Also called inner product
- $\vec{u} \bullet \vec{v}$ is a scalar
- $\vec{u} \bullet \vec{v}=\vec{v} \bullet \vec{u}$
- $(a \vec{u}) \bullet \vec{v}=a(\vec{u} \bullet \vec{v})$
- $(\vec{u}+\vec{v}) \bullet \vec{w}=\vec{u} \bullet \vec{w}+\vec{v} \bullet \vec{w}$
- $\vec{v} \bullet \vec{v} \geq 0$
- $\vec{v} \bullet \vec{v}=0 \leftrightarrow \vec{v}=\overrightarrow{0}$
- Matrix notation: $\vec{u} \bullet \vec{v}=U^{T} V=u_{\alpha} v^{\alpha}$

Dot Product as Norm

- $\vec{v} \bullet \vec{v}=|\vec{v}|^{2}$
- $\vec{u} \bullet \vec{v}=|\vec{u}||\vec{v}| \cos \theta$
- Defines angle θ !
- If $|\vec{v}|=1$, gives projection of \vec{u} onto \vec{v}
- If $|\vec{u}|=|\vec{v}|=1$, gives just $\cos \theta$

Dot Product as Norm

- $\vec{v} \bullet \vec{v}=|\vec{v}|^{2}$
- $\vec{u} \bullet \vec{v}=|\vec{u}||\vec{v}| \cos \theta$
- Defines angle θ !
- If $|\vec{v}|=1$, gives projection of \vec{u} onto \vec{v}
- If $|\vec{u}|=|\vec{v}|=1$, gives just $\cos \theta$

Dot Product as Norm

- $\vec{v} \bullet \vec{v}=|\vec{v}|^{2}$
- $\vec{u} \bullet \vec{v}=|\vec{u}||\vec{v}| \cos \theta$
- Defines angle θ !
- If $|\vec{v}|=1$, gives projection of \vec{u} onto \vec{v}
- If $|\vec{u}|=|\vec{v}|=1$, gives just $\cos \theta$

Orthogonal \& Normal

- Orthogonal $=$ perpendicular: $\vec{u} \bullet \vec{v}=0$
- Normal (this usage) $=$ unit-length: $\vec{u} \bullet \vec{u}=1$
- Orthonormal: set of vectors both orthogonal and normal
- Orthogonal matrix: rows (\& columns) orthonormal
- For orthogonal matrices, $A^{-1}=A^{T}$

3D Cross Product

$\vec{u} \times \vec{v}$

- length $=$ area of parallelogram $=$ twice area of triangle
- $|\vec{u} \times \vec{v}|=|\vec{u}||\vec{v}| \sin (\theta)$
- direction $=$ perpendicular to \vec{u} and \vec{v} (right hand rule)

$$
\vec{u} \times \vec{v}=\left|\begin{array}{lll}
\hat{i} & & \\
\hat{j} & U & V \\
\hat{k} & &
\end{array}\right|=\left[\begin{array}{c}
u^{1} v^{2}-u^{2} v^{1} \\
u^{2} v^{0}-u^{0} v^{2} \\
u^{0} v^{1}-u^{1} v^{0}
\end{array}\right]
$$

Building an Orthogonal Basis

Vectors $\vec{u}, \vec{v}, \vec{w}$

- Gram-Schmidt (any dimension)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{v}-\hat{u}^{\prime} \quad\left(\vec{v} \bullet \hat{u}^{\prime}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\frac{\overrightarrow{u^{\prime}}}{\left|\overrightarrow{u^{\prime}}\right|}\left(\vec{v} \bullet \frac{\overrightarrow{u^{\prime}}}{\left|\vec{u}^{\prime}\right|}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \vec{u}^{\prime}}{\left|\overrightarrow{u^{\prime}}\right|^{2}}$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\overrightarrow{u^{\prime}} \vec{u}^{\prime} \cdot \vec{u}^{\prime}}{\vec{u}^{\prime}}$
- $\overrightarrow{w^{\prime}}=\vec{w}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \overrightarrow{u^{\prime}}}{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}-\overrightarrow{v^{\prime}} \overrightarrow{\vec{w} \bullet \overrightarrow{v^{\prime}}} \overrightarrow{v^{\prime} \bullet v^{\prime}}$
- Cross-product (3D only)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{w} \times \overrightarrow{u^{\prime}}$
- $\overrightarrow{w^{\prime}}=\overrightarrow{u^{\prime}} \times \overrightarrow{v^{\prime}}$

Building an Orthogonal Basis

Vectors $\vec{u}, \vec{v}, \vec{w}$

- Gram-Schmidt (any dimension)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{v}-\hat{u}^{\prime} \quad\left(\vec{v} \bullet \hat{u}^{\prime}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\frac{\overrightarrow{u^{\prime}}}{\left|\overrightarrow{u^{\prime}}\right|}\left(\vec{v} \bullet \frac{\overrightarrow{u^{\prime}}}{\left|\vec{u}^{\prime}\right|}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \vec{u}^{\prime}}{\left|\overrightarrow{u^{\prime}}\right|^{2}}$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\overrightarrow{u^{\prime}} \vec{u}^{\prime} \cdot \vec{u}^{\prime}}{\vec{u}^{\prime}}$
- $\overrightarrow{w^{\prime}}=\vec{w}-\overrightarrow{u^{\prime}} \frac{\vec{n} \cdot \overrightarrow{u^{\prime}}}{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}-\overrightarrow{v^{\prime}} \overrightarrow{\vec{w} \cdot \overrightarrow{v^{\prime}}} \overrightarrow{\vec{v}^{\prime} \bullet \overrightarrow{v^{\prime}}}$
- Cross-product (3D only)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{w} \times \overrightarrow{u^{\prime}}$
- $\overrightarrow{w^{\prime}}=\overrightarrow{u^{\prime}} \times \overrightarrow{v^{\prime}}$

Building an Orthogonal Basis

Vectors $\vec{u}, \vec{v}, \vec{w}$

- Gram-Schmidt (any dimension)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{v}-\hat{u}^{\prime} \quad\left(\vec{v} \bullet \hat{u}^{\prime}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\frac{\overrightarrow{u^{\prime}}}{\left|\overrightarrow{u^{\prime}}\right|}\left(\vec{v} \bullet \frac{\overrightarrow{u^{\prime}}}{\left|\vec{u}^{\prime}\right|}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \vec{u}^{\prime}}{\left|\overrightarrow{u^{\prime}}\right|^{2}}$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}{}$
- $\overrightarrow{w^{\prime}}=\vec{w}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \overrightarrow{u^{\prime}}}{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}-\overrightarrow{v^{\prime}} \overrightarrow{\vec{w} \bullet \overrightarrow{v^{\prime}}} \overrightarrow{v^{\prime} \bullet v^{\prime}}$
- Cross-product (3D only)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{w} \times \overrightarrow{u^{\prime}}$
- $\overrightarrow{w^{\prime}}=\overrightarrow{u^{\prime}} \times \overrightarrow{v^{\prime}}$

Building an Orthogonal Basis

Vectors $\vec{u}, \vec{v}, \vec{w}$

- Gram-Schmidt (any dimension)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{v}-\hat{u}^{\prime}\left(\vec{v} \bullet \hat{u}^{\prime}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\frac{\overrightarrow{u^{\prime}}}{\left|\overrightarrow{u^{\prime}}\right|}\left(\vec{v} \bullet \frac{\overrightarrow{u^{\prime}}}{\left|\vec{u}^{\prime}\right|}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \vec{u}^{\prime}}{\left|\overrightarrow{u^{\prime}}\right|^{2}}$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}{}$
- $\overrightarrow{w^{\prime}}=\vec{w}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \overrightarrow{u^{\prime}}}{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}-\overrightarrow{v^{\prime}} \overrightarrow{\vec{w} \bullet \overrightarrow{v^{\prime}}} \overrightarrow{v^{\prime} \bullet v^{\prime}}$
- Cross-product (3D only)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{w} \times \overrightarrow{u^{\prime}}$
- $\overrightarrow{w^{\prime}}=\overrightarrow{u^{\prime}} \times \overrightarrow{v^{\prime}}$

Building an Orthogonal Basis

Vectors $\vec{u}, \vec{v}, \vec{w}$

- Gram-Schmidt (any dimension)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{v}-\hat{u}^{\prime} \quad\left(\vec{v} \bullet \hat{u}^{\prime}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\frac{\overrightarrow{u^{\prime}}}{\left|\overrightarrow{u^{\prime}}\right|}\left(\vec{v} \bullet \frac{\overrightarrow{u^{\prime}}}{\left|\vec{u}^{\prime}\right|}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \vec{u}^{\prime}}{\left|\overrightarrow{u^{\prime}}\right|^{2}}$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\overrightarrow{u^{\prime}} \vec{u}^{\prime} \cdot \vec{u}^{\prime}}{\vec{u}^{\prime}}$
- $\overrightarrow{w^{\prime}}=\vec{w}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \overrightarrow{u^{\prime}}}{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}-\overrightarrow{v^{\prime}} \overrightarrow{\vec{w} \bullet \overrightarrow{v^{\prime}}} \overrightarrow{v^{\prime} \bullet v^{\prime}}$
- Cross-product (3D only)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{w} \times \overrightarrow{u^{\prime}}$
- $\overrightarrow{w^{\prime}}=\overrightarrow{u^{\prime}} \times \overrightarrow{v^{\prime}}$

Building an Orthogonal Basis

Vectors $\vec{u}, \vec{v}, \vec{w}$

- Gram-Schmidt (any dimension)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{v}-\hat{u}^{\prime}\left(\vec{v} \bullet \hat{u}^{\prime}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\frac{\overrightarrow{u^{\prime}}}{\left|\overrightarrow{u^{\prime}}\right|}\left(\vec{v} \bullet \frac{\overrightarrow{u^{\prime}}}{\left|\vec{u}^{\prime}\right|}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \vec{u}^{\prime}}{\left|\overrightarrow{u^{\prime}}\right|^{2}}$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}{}$
- $\overrightarrow{w^{\prime}}=\vec{w}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \overrightarrow{u^{\prime}}}{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}-\overrightarrow{v^{\prime}} \overrightarrow{\vec{w} \bullet \overrightarrow{v^{\prime}}} \overrightarrow{v^{\prime} \bullet v^{\prime}}$
- Cross-product (3D only)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{w} \times \overrightarrow{u^{\prime}}$
- $\overrightarrow{w^{\prime}}=\overrightarrow{u^{\prime}} \times \overrightarrow{v^{\prime}}$

Building an Orthogonal Basis

Vectors $\vec{u}, \vec{v}, \vec{w}$

- Gram-Schmidt (any dimension)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{v}-\hat{u}^{\prime}\left(\vec{v} \bullet \hat{u}^{\prime}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\frac{\overrightarrow{u^{\prime}}}{\left|\overrightarrow{u^{\prime}}\right|}\left(\vec{v} \bullet \frac{\overrightarrow{u^{\prime}}}{\left|\vec{u}^{\prime}\right|}\right)$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \vec{u}^{\prime}}{\left|\overrightarrow{u^{\prime}}\right|^{2}}$
$\overrightarrow{v^{\prime}}=\vec{v}-\overrightarrow{u^{\prime}} \frac{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}{}$
- $\overrightarrow{w^{\prime}}=\vec{w}-\overrightarrow{u^{\prime}} \frac{\vec{v} \cdot \overrightarrow{u^{\prime}}}{\overrightarrow{u^{\prime}} \cdot \overrightarrow{u^{\prime}}}-\overrightarrow{v^{\prime}} \overrightarrow{\vec{w} \bullet \overrightarrow{v^{\prime}}} \overrightarrow{v^{\prime} \bullet v^{\prime}}$
- Cross-product (3D only)
- $\overrightarrow{u^{\prime}}=\vec{u}$
- $\overrightarrow{v^{\prime}}=\vec{w} \times \overrightarrow{u^{\prime}}$
- $\overrightarrow{w^{\prime}}=\overrightarrow{u^{\prime}} \times \overrightarrow{v^{\prime}}$

