Modeling

CMSC 435/634

Modeling?

Modeling
Creating a model of an object, usually out of a collection of simpler primitives

Primitive
A basic shape handled directly the rendering system

Primitives

Some common primitives

- Triangles \& Polygons
- Most common, usually the only choice for interactive
- Patches, Spheres, Cylinders, ...
- Often converted to simpler primitives within the renderer
- Volumes
- What's at each point in space?
- Often with some transparent material
- Few renderers handle both volume \& surface models

Composing primitives

- Collections of large numbers of primitives
- Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
- Set operations (union, intersection, difference) - Implicit Models \& Blobs
- Surface where $f(x, y, z)=0$ > Sum, product, etc. of simpler functions

Composing primitives

- Collections of large numbers of primitives
- Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
- Set operations (union, intersection, difference)
- Implicit Models \& Blobs
- Surface where $f(x, y, z)=0$
- Sum, product, etc. of simpler functions

Composing primitives

- Collections of large numbers of primitives
- Sometimes called Boundary Representation (BRep)
- Constructive Solid Geometry (CSG)
- Set operations (union, intersection, difference)
- Implicit Models \& Blobs
- Surface where $f(x, y, z)=0$
- Sum, product, etc. of simpler functions

Images: Paul Bourke

Modeling Approaches

Manual primitive creation

Procedural

Scan from physical object

From data (visualization)

Through image capture (image-based rendering)

Modeling Approaches

Manual primitive creation
Procedural
Fractals
Implicit Functions
Grammars
Simulations

Scan from physical object
From data (visualization)
Through image capture (image-based rendering)

Manual Creation

- Text editor
- Only very simple primitives and scenes
- High-level primitives
- Still need to combine several somehow
- Modeling programs
- Maya, 3D Studio, Houdini, Autocad, Blender, ...

Modeling Approaches

Manual primitive creation
Procedural
Fractals
Implicit Functions
Grammars
Simulations

Scan from physical object

From data (visualization)
Through image capture (image-based rendering)

Procedural Modeling

- Describe physical attributes through code
- Shape
- Output primitives
- Density
- Voxels
- Couple with a conversion or rendering algorithm
- Color, Texture
- Enhance an existing shape

Procedural Approaches

- Fractals
- Implicit Functions
- Grammars
- Simulations

Fractals

Complex structure through self-similarity across scales

- Recursive structure
- Small features look similar to larger features

Iterated Equations / Mandelbrot Set

$$
p^{\prime}=p^{2}+c
$$

Image: David E. Joyce

L Procedural
—Fractals

Iterated Replacement / Koch Curve

Iterated Replacement / Mountains

Randomness in replacement

Spectral Synthesis

- Spectral energy a function of frequency
- Higher frequency, less energy
- Characterizes roughness of surface
- Natural phenomena tend to be $1 / f$

Noise-Based Synthesis

Band-limited Perlin noise function

- Most energy between $1 / 2$ and 1 cycle per unit
- Average value is 0
- Random, but repeatable
- 1D, 2D, 3D \& 4D versions common

Spectral Synthesis

Sum noise octaves

- $n(x)+\frac{1}{2} n(2 x)+\frac{1}{4} n(4 x)+\ldots$
- Stop adding "..." when frequency is too high to see
- Also called fractional Brownian motion or fBm

Spectral Synthesis

Sum noise octaves

- $n(x)+\frac{1}{2} n(2 x)+\frac{1}{4} n(4 x)+\ldots$
- Stop adding "..." when frequency is too high to see
- Also called fractional Brownian motion or fBm

Spectral Synthesis

Sum noise octaves

- $n(x)+\frac{1}{2} n(2 x)+\frac{1}{4} n(4 x)+\ldots$
- Stop adding "..." when frequency is too high to see
- Also called fractional Brownian motion or fBm

Fractal Landscape

Landscape height is a fractal function of x, y

- Plus whatever embellishments make it look good

Image: Ken Musgrave

Multifractal

- Change roughness across fractal
- Scaling $\left(\frac{1}{2}, \frac{1}{4}, \ldots\right)$ becomes a function
- Here, scale is a function of altitude

Image: Ken Musgrave

Implicit Functions or Blobby Modeling

- Model as sum of implicit functions
- Surface at threshold

Liang, et al., PG'01

LProcedural
LImplicit Functions

Hybrid Implicit \& Polygonal

Bloomenthal, SIGGRAPH 85

Hypertexture

Add noise or turbulence to functions

Grammar-Based Modeling

- Use (mostly) context-free grammars (CFG) to specify structural change over generations
- Often used to simulate a biological growth process
- Plants
- Seashells
- L-systems (Lindenmeyer)

Context-Free Grammar

A CFG $G=(V, T, S, P)$ where

- V is a set of non-terminals
- T is a set of terminals
- S is the start symbol
- P is a set of productions (rules) of the form:
- $A \rightarrow x$, where $A \in V, x \in(V \cup T)^{*}$

Applying Grammar Rules

- Symbols
- A, B, straight line segments
- [], branch left 45°
- (), branch right 45°
- Rules

- Strings

Applying Grammar Rules

- Symbols
- A, B, straight line segments
- [], branch left 45°
- (), branch right 45°
- Rules
- $A \rightarrow A A$
- $B \rightarrow A[B] A A(B)$
- Strings

Applying Grammar Rules

- Symbols
- A, B, straight line segments

B

- [], branch left 45°
- (), branch right 45°
- Rules
- $A \rightarrow A A$
- $B \rightarrow A[B] A A(B)$
- Strings
- B
- $A[B] A A(B)$
- $A A[A[B] A A(B)] A A A A(A[B] A A(B))$

Applying Grammar Rules

- Symbols
- A, B, straight line segments
- [], branch left 45°
- (), branch right 45°
- Rules
- $A \rightarrow A A$

- $B \rightarrow A[B] A A(B)$
- Strings
- B
- $A[B] A A(B)$
- $\operatorname{AA}[A[B] A A(B)] A A A A(A[B] A A(B))$

Applying Grammar Rules

- Symbols
- A, B, straight line segments
- [], branch left 45°
- (), branch right 45°
- Rules
- $A \rightarrow A A$
- $B \rightarrow A[B] A A(B)$
- Strings
- B
- $A[B] A A(B)$
- $A A[A[B] A A(B)] A A A A(A[B] A A(B))$

L-System Examples

- Symbols
- [/] = push/pop
- $+/-=$ rotate left/right
- $A-Z=$ straight segment
- Rules
- $25.7^{\circ}, 7$ generations
- $X \rightarrow F[+X][-X] F X$
- $F \rightarrow F F$

L Procedural
-Grammars

L-System Examples

- Rules
- $22.5^{\circ}, 5$ generations
- $X \rightarrow$ $F-[[X]+X]+F[+F X]-X$
- $F \rightarrow F F$

L-System Examples

- Rules
- $22.5^{\circ}, 4$ generations
- $F \rightarrow F F-[F+F+F]+$ $[+F-F-F]$

Additions

- 3D structure
- Randomness
- Leaves
- Flowers

Prusinkiewicz, et al., SIGGRAPH 88

LProcedural
Grammars

Pruning

Prusinkiewicz, et al., SIGGRAPH 94

L Procedural
-Grammars

Pruning

Prusinkiewicz, et al., SIGGRAPH 94

Simulations

Biological

- Simulate growth, development

Physical

- Simulate formation or erosion

Modeling

ᄂ Procedural

Biological Simulations

Fowler, et al., SIGGRAPH 92

Fleischer, et al., SIGGRAPH 95

Biological Simulations

Fowler, et al., SIGGRAPH 92

Biological Simulations

Turk, SIGGRAPH 91

Physical Simulation

Erosion, Deposition

Kenji Nagashima, Visual Computer 1997

Modeling Approaches

Manual primitive creation
Procedural
Fractals
Implicit Functions
Grammars
Simulations

Scan from physical object
From data (visualization)
Through image capture (image-based rendering)

Scan from Objects

- General concept
- Find points on surface
- Connect into mesh
- Mechanical
- Triangulation
- Laser
- Structured Light
- Multiple Cameras
- CAT scan / MRI

Mechanical

- Touch tip to surface
- Measure angles

Triangulation

Point in space at intersection

- Ray from light A
- Ray through pixel B

Structured Light

- Point in space at intersection of color edge from light source/projector and ray through camera pixel

projected pattern

resulting model

Modeling Approaches

Manual primitive creation

Procedural
Fractals
Implicit Functions
Grammars
Simulations

Scan from physical object
From data (visualization)

Through image capture (image-based rendering)

Visualization

- Data
- measurements
- simulation
- information
- Present visually
- Increase understanding
- Recognize patterns

Modeling
L From data (visualization)

Visualization

Can be 3D Object

$\left\llcorner_{\text {From data (visualization) }}\right.$

Visualization

Can be 3D, but showing non-visual aspects.

$\left\llcorner_{\text {From data (visualization) }}\right.$

Visualization

Can be not traditionally geometric at all

Modeling Approaches

Manual primitive creation

Procedural
Fractals
Implicit Functions
Grammars
Simulations

Scan from physical object

From data (visualization)
Through image capture (image-based rendering)

Image-based Rendering

- Pixels in one or more cameras
- Color of point in space
- Color of light along one ray
- IBR
- Construct new novel view using only image data

