Illumination

Illumination

CMSC 435/634

Illumination

Illumination

Local Illumination

Interpolation

Illumination
_ Illumination

Illumination

Local Illumination

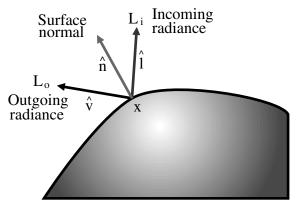
Interpolation

Illumination

- Effect of light on objects
- Mostly look just at intensity
 - ► Apply to each color channel independently
- Good for most objects
 - Not fluorescent
 - Not phosphorescent

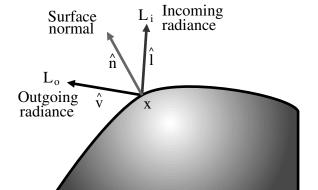
Local vs. Global

- Local
 - Light sources shining directly on object
- Global
 - Lights bouncing from objects onto other objects
 - Ambient Illumination
 - Approximate global illumination as constant color
 - ▶ Typically \sim 1% of direct illumination

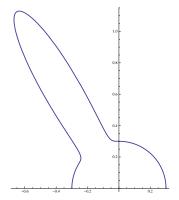

Local Illumination **BRDF** Rendering Equation

Models

BRDF


Bidirectional Reflectance Distribution Function

How much light reflects from L_i to L_o


Physically Plausible BRDF

- Positive
- Reciprocity
 - ▶ Same light from L_i to L_o as from L_o to L_i
- Conservation of Energy
 - ▶ Don't reflect more energy than comes in

Plotting BRDFs

- Polar plot of reflectance strength
 - ► For **one** view direction, showing light directions
 - ► For **one** light direction, showing view directions
- Reciprocity same if you swap view and light

Rendering Equation

Integral of all Incoming Light

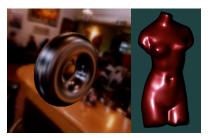
$$L_o(\hat{v}) = \int_{\Omega(\hat{n})} L_i(\hat{l}) f_r(\hat{v}, \hat{l}) \hat{n} \cdot \hat{l} d\omega(\hat{l})$$

Parts of this equation:

$$L_o(\hat{v})$$
 outgoing light in direction \hat{v}
 $\Omega(\hat{n})$ hemisphere above \hat{n} that can see this point
 $L_i(\hat{l})$ incoming light from direction \hat{l}
 $f_r(\hat{v},\hat{l})$ BRDF from \hat{l} to \hat{v}
 $\hat{n} \cdot \hat{l} d\omega(\hat{l})$ projection of differential solid angle onto surface

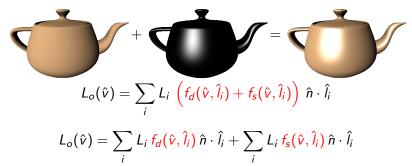
Rendering Equation for Point Lights

Sum for Each Light

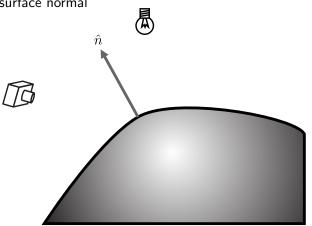

$$L_o(\hat{v}) = \sum_i L_i f_r(\hat{v}, \hat{l}_i) \, \hat{n} \cdot \hat{l}_i$$

Parts of this equation:

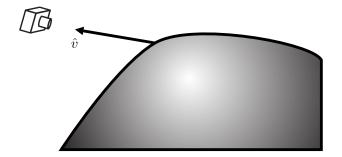
```
 \begin{array}{ll} L_o(\hat{v}) & \text{outgoing light in direction } \hat{v} \\ i & \text{lights that can see this point (where } \hat{n} \cdot \hat{l}_i > 0) \\ \hat{l}_i & \text{light direction to light } i \\ L_i & \text{incoming light for light } i \\ f_r(\hat{v}, \hat{l}) & \text{BRDF from } \hat{l}_i \text{ to } \hat{v} \\ \end{array}
```

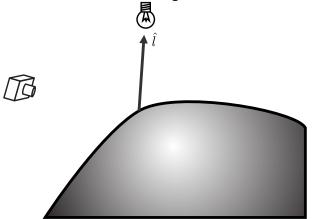

Results

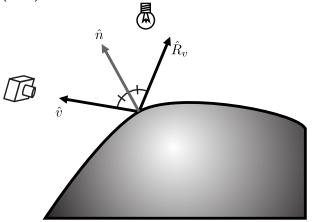
- Integrating full environment
- Light at one point, black elsewhere

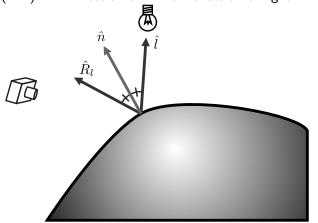


Decomposing BRDFs

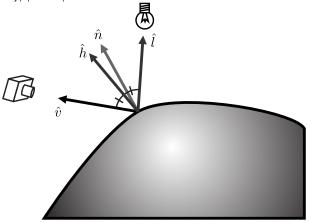

- Decompose BRDF into convenient parts
- Typical breakdown:
 - Diffuse (view independent)
 - Specular (view dependent near reflection)
 - Others less common, often ignored (e.g. retro reflection)


 \hat{n} : Unit surface normal


 \hat{v} : Unit vector from surface toward viewer


 $\hat{\it l}$: Unit vector from surface toward light

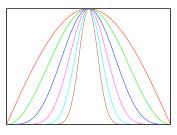
$$\hat{R}_{v} = 2\hat{n}(\hat{n} \cdot \hat{v}) - \hat{v}$$
: Direction of mirror reflection of view


$$\hat{R}_{l} = 2\hat{n}(\hat{n} \cdot \hat{l}) - \hat{l}$$
: Direction of mirror reflection of light

└ Models

Important directions

$$\hat{h}=(\hat{v}+\hat{l})/|\hat{v}+\hat{l}|$$
: Normal direction that would reflect \hat{v} to \hat{l}


Diffuse

- Also called Lambertian or Matte
- ► Total reflectance: $\sum_i L_i Kd \hat{n} \cdot \hat{l}_i$
- ▶ BRDF: Kd

Phong

- ▶ Strongest where \hat{R}_l lines up with \hat{v} or \hat{R}_v lines up with \hat{l}
- ► Total reflectance: $\sum_{i} L_{i} Ks (\hat{R_{v}} \cdot \hat{l_{i}})^{e}$
- ▶ Physically plausible version: $\sum_{i} L_{i} Ks (\hat{R_{v}} \cdot \hat{l_{i}})^{e} \hat{n} \cdot \hat{l}$
 - ▶ With energy-conserving *Ks*

Specular Microfacets

- ► Imagine random mirrored *microfacets*
- Normal Distribution Function (NDF)
 - Probability facet has normal \hat{h}
 - ▶ Only facets to reflect \hat{l} to \hat{v}
- Proportion of light or view blocked (geometry term)
 - Blocked light = shadowing
 - Blocked view = masking
- Fresnel term
 - ▶ Reflection from non-metals is stronger at glancing angles

- Models

Cook-Torrance

- ▶ Beckmann Distribution = Gaussian distribution of slope
- Shadow/Mask based on symmetric V-shaped microfacets
- ► BRDF: $D(\hat{n}, \hat{h}) \frac{G(\hat{n}, \hat{v}, \hat{l})}{4 \hat{n} \cdot \hat{v} \hat{n} \cdot \hat{l}} F(\hat{v}, \hat{l})$,
- ► Total reflectance: $\sum_{i} L_{i} Ks D(\hat{n}, \hat{h}_{i}) \frac{G(\hat{n}, \hat{v}, \hat{l}_{i})}{4 \hat{n} \cdot \hat{v} \hat{n} \cdot \hat{l}} F(\hat{v}, \hat{l}_{i}) \hat{n} \cdot \hat{l}$

Blinn-Phong

- Alternate formulation for Phong, similar behavior
- Strongest where \hat{h} lines up with \hat{n}
 - Function of \hat{h} , behaves like NDF
- ► Total reflectance (original form): $\sum_i L_i Ks (\hat{n} \cdot \hat{h}_i)^e$
- As NDF: $D(\hat{n}, \hat{h}_i) = \frac{e+2}{2\pi} (\hat{n} \cdot \hat{h}_i)^e$

Illumination
_ Interpolation

Illumination

Local Illumination

Interpolation

When to Compute

- ► Gouraud Shading = Compute per-vertex & interpolate
 - ► Lose sharp highlights
 - Subject to Mach banding
- ▶ Phong Shading = Interpolate normals & compute per-pixel

Phong Shading

- ▶ Phong shading can refer to lighting model **or** interpolation
- To save confusion:
 - Phong lighting
 - ► Phong interpolation