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Abstract—Microgrids are desired in remote areas, such as
islands and under developed countries. However, given the limited
capacities of local energy generation and storage in such a
community, it is extremely challenging for an isolated microgrid
to balance the power demand and generation in real-time with
dynamically changing energy demand. Meanwhile, more and
more sensing devices (such as smart meters) are deployed in
individual homes to monitor real-time energy data, which can be
helpful for homes and microgrid to better schedule the workload
and generation. However, it is still difficult to conduct real-
time distributed control due to the unreliable sensing devices
and communications between sensing devices and controllers.
To address these issues in microgrids, we designed a novel
approach for the system to i) process the collected sensing data, ii)
reconstruct the missing data caused by sensing error or unreliable
communication, and iii) predict the future demand for real-time
distributed control with missing data in extreme situations. The
control center then decides the operations of the local generator
and each home decides the scheduling of the flexible workload
of appliances based on the collected and predicted data. We
conducted extensive experiments and simulations with real world
energy consumption data from 100 homes for one year. The
evaluation results show that our design can recover the missing
data with more than 99% accuracy and our distributed control
can balance power demand and generation in real-time and
reduce the operational cost by 23%.

I. INTRODUCTION

Microgrids play a important role in energy cyber-physical
systems [1]. In a typical microgrid, it consists of local genera-
tors and energy storage (e.g., batteries) to provide power for a
small community with commercial and residential buildings.
Microgrids can provide power to places i) where the traditional
power grid does not exist due to the poor economy or
limited number of residences (e.g., islands); and ii) when the
traditional power grid is temporarily not functioning due to
severe weather conditions (e.g., storms). Therefore, microgrids
have gained increasing attention recently [2]. Due to the
very limited capacities of local energy storage and energy
generation, microgrids are more difficult to maintain than
traditional power grids. To ensure the stability and reliability
of a microgrid, we need to conduct real-time scheduling
and control the operations of local generators, batteries, and
controllable workloads of appliances to offset the dynamically
changing power demands of uncontrollable appliances.

Therefore, it is extremely important to collect the power
consumption and generation data for distributed control in
real-time, which becomes possible with the recent rapid de-
velopment of smart meters. However, the sensors in smart

meters and wireless communications between smart meters
and controllers are not 100% reliable. The microgrid controller
may encounter missing data and delayed data when conducting
the scheduling for generators and distributed control operations
in each home. Furthermore, to cope with the dynamically
changing demand, the microgrid controller needs information
to predict the future power demand to decide the operations
of local generators. Meanwhile, each home also needs to
predict its own future demand to schedule workloads. The
existing techniques on energy consumption forecasting are
mainly for long term offline forecast for large generators
[3], [4]. However, to realize real-time distributed control in a
microgrid, real-time data processing and short term prediction
is needed. In this paper, we propose a novel data management
technique for distributed control in a microgrid to process the
received data, reconstruct the missing data, and predict the
future power demand with existing data. The key idea is to
utilize the correlation between power, voltage and frequency
data of different homes in the microgrid. Then, the misses or
delayed data can be reconstructed with a portion of received
data or data from other homes. Because energy consumption
patterns in one home are limited due to the limited number
of appliances, it provides us opportunity to reconstruct the
missing data and predict future data in a short term based on
existing data and detected energy consumption patterns. With
the reconstructed and predicted data, the controller decides the
scheduling of workloads in each home and the operations of
generators to maintain the stability of the microgrid.

While the workload is scheduled in each home to avoid
power failures in the microgrid, the behaviors and comfort of
users should not be affected. Therefore, we choose the flexible
and controllable workloads of appliances for scheduling. For
example, water heaters are flexible and controllable loads be-
cause we only need to make sure that there is enough hot water
in water heaters when people use hot water. Our approach can
be easily extended to support any other types of flexible and
controllable workload (e.g., HVAC). For the local generator’s
scheduling, we adopt a widely used generator model and
propose an optimal algorithm to minimize the operational cost.
Specifically, we summarize our major contributions as follows:

e We conducted a systematic investigation on the correlation
between power, voltage, and frequency in a microgrid and
developed a holistic sets of correlations models (i.e., power-
voltage, frequency-voltage, temporal, and spatial correlation).
Through extensive experiments and simulations, we show that



Energy Storage

b}

Power
Generator |,

S

<)

oy

f=1

Q

=

jol

8 L

= 2 4 6 8 10 12
Time (Hour)

‘E T

()

5 1 i

£ 0 i L L

=% 1 2 3 4 5 6 7

Time (Day)

Fig. 2: Examples of data faults in energy monitoring

our design can recover the missing data with more than 99%
accuracy for the short term prediction.

e To reduce the operational cost of isolated microgrids, we
present holistic real-time scheduling algorithms for both local
generators and controllable loads in individual homes even
when there exists communication failures between control
center and individual homes.

e Utilizing the empirical energy consumption data from
100 residential homes, we conducted extensive simulations.
The results indicate that our proposed distributed control can
reliably balance power demand and generation in real-time and
reduce operational cost by 23%.

II. BACKGROUND AND MOTIVATION

A microgrid is a distributed electric power system that can
autonomously coordinate local generations and demands in a
dynamic manner [5]. Microgrids can operate in either grid-
connected mode or isolated mode, some of which are now
deployed in the US, Japan and European countries [6].

Background. In this paper, we consider a modern micro-
grid, illustrated in Figure 1, consists of generation technology
(e.g., local electricity generators) and batteries. To ensure
compatibility with the traditional power grid, we adopt the
microgrid architecture, which is similar to the one used in a
traditional power grid. If the microgrid is built from nothing
(e.g., island, where there is no electricity grid before), the
microgrid can be built the same architecture as traditional
grid with a distribution network across the community of
homes. If the microgrid is built from a traditional grid, we
only need to add local generators, batteries and a control
center into the microgrid. Within the microgrid, sensors are

deployed in each home to collect and send energy related data
(e.g., power, voltage and frequency) to the control center. The
control center decides the workload scheduling in each home
and the generations to balance the power demand and supply.

Motivation. To realize the real-time control, it is very
important to collect the energy related data from homes and
send back the control instructions in real-time. However, based
on our more than 6 years’ experiences of energy monitoring in
residential homes, the data collection from homes may suffer
from different types of faults: i) data point missing; ii) sensing
error; iii) communication delay; and iv) communication loss.
The first two faults are caused by the low reliability of sensors
due to the long-term monitoring. The latter two faults are
caused by unreliable wireless communication. We show some
examples of faults in Figure 2. The first one is caused by
sensing errors, which generate peaks but do not happen very
frequently (we observe average 1.5 seconds sensing error in 12
hours). The second one is whether we receive readings in the
cloud server. The Y-axis value is set to be 1 if there is a data
missing event. We can see the missing events are very bursty,
which means once we have a missing event, there will be high
probability there would be missing events in near future.

With the demand of real-time data collection and reality of
multiple different faults in monitoring, it is crucial to manage
the real-time collected data and reconstruct the missing data
for real-time control in a self-sustainable microgrid.

ITII. SYSTEM OVERVIEW

To ensure the reliability of the microgrid, we propose the
system design as shown in Figure 3, which includes three
main components: data management, central scheduler, and
local scheduler. In summary, our system works as follows:
i) power meters deployed in homes monitor the power con-
sumption, voltage and frequency in the power line, then send
collected data to control center; ii) control center receives the
collected data from homes and processes the data for missing
data reconstruction and future data prediction; iii) the central
scheduler decides the control instructions for each home and
generators based on the processed data; iv) individual homes
and the power generator execute the instructions from central
scheduler if control instructions are received; v) if control
instructions are not received by the individual homes and the
power generator, local scheduler will conduct local control in
these homes and the power generator will maintain the same
amount of power generation.
Data Management. Due to the sensing errors and unreliable
communication, it is highly possible we will miss important
energy data from sensors. To reconstruct and predict the sens-
ing data, we investigate the correlation models among energy
data for recovery. The received data will be used both for data
reconstruction and update for correlation model. Specifically,
we investigate i) correlation between power and voltage for
homes under the same transformer; ii) correlation between
frequency and voltage at individual homes; iii) temporal and
spatial correlation for power consumption of all homes. Based
on these correlations, the missing data can be reconstructed
and future data can be predicted for real-time control.
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Fig. 3: System overview

Central and Local Scheduler. Based on recovered and pre-
dicted data, the central scheduler decides control instructions
for both controllable workload in homes and the generation
from the power generator. The key idea of workload control
in each home is to turn on some appliances when power
consumption is low and turn off some appliances when power
consumption is high. In our paper, we use the workload of the
water heater as an example because its workload is flexible and
it is commonly installed in residential homes. Our design can
easily be extended to support the scheduling of HVAC systems.
The generation control is to decide the power supply from
generators. Because the power supply of generators cannot
be changed as fast as workload at homes, we schedule the
generators based on prediction of future power demand in the
microgrid. Batteries are used as buffer to offset the prediction
errors of the future power demand. Due to the unreliable
communication, control instructions may not be received at
the local home or generator, then the local scheduler conducts
local control based on the local sensing data.

IV. DATA MANAGEMENT

To reconstruct and predict the sensing data, in this section,
we introduce four correlation models for reconstructing the
missing data and predicting the future data. While most of
existing works focus on missing data reconstruction of a single
time series data [7], [8], we investigate the correlations among
multiple time series data (power consumption from multiple
homes, voltage and frequency) in microgrids and utilize the
correlation models to reconstruct the missing data.

A. Correlation Models

The most important part of data management is to build
and utilize the correlation models among the collected data.
Specifically, we identified and built four correlation models: 1)
correlation between power and voltage; ii) correlation between
frequency and voltage; iii) temporal correlation of power
consumption data in a single home; and iv) spatial correlation
between power consumption data from multiple homes.

1) Power Voltage Correlation: Without loss of generality,
we assume that N homes are connected under the same trans-
former (shown in Figure 4). According to the Electric Power
Distribution Handbook [9], a transformer can be considered
as a constant kVA device for a voltage from 100% to 105%.
If the power consumption of one home increases, the total
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Fig. 4: The topology of homes and the transformer

o122F ‘ : =
- Turn on appliance 1 Turn off appliance 2=>>| |
-g 120

gol 18 F Turn on appliance 2= il
E 116 F|— Home 1 B
%‘3 ——Home 2| Turn off appliance 1 >

'6' 114 | I I I i

> 0 2 4 6 8 10 12 14

Time (Minute)
Fig. 5: Relationship between power and voltage

current [ increases and voltage V' drops. We find that home
H,_;’s voltage value depends on i) the transformer’s output
voltage (V'); ii) the current from the transformer to H;_1;
and iii) resistances of the power line from the transformer
to H;_,. For example, H;’s voltage value only depends on
the transformer’s output voltage (V'), the current (I;) through
H,, and the resistance (i.e., R;). Based on the above analysis,
the voltage values at homes H;_; and H; can be calculated
by using Equation (1).

i N
Vii=V-=> > LRy i=12.,N (I
j=lk=j

To verify it, we conduct experiments with 2 homes under
the same transformer and keep power consumption at home
2 stable to study the power voltage relationship. The mea-
sured voltage in both homes are both related to the power
consumption in home 1 (shown in Figure 5). Thus, based
on Equation (1) and evaluation results, the voltage drop from
transformer to each home is in linear relationship of currents
going through the power line.

2) Frequency Voltage Relationship: A typical microgrid
may contain multiple transformers. Therefore, it is also impor-
tant to investigate the other features in a microgrid. According
to the Electric Power Distribution Handbook [9], frequency is
a good indicator of the relationship between power supply and
demand. If the power demand surpasses the power supply, then
the frequency decreases because the generator can not generate
enough power. Thus, the frequency should be related to the
total power consumption of the microgrid. Because voltage
is related to power supply and demand, thus, the frequency
value has a linear relationship with the voltage value. This
relationship can be modeled as follows:

AF = AV %)\ 2)

To verify it, we conduct experiments with 3 homes with one
month data. Two of them are under the same transformer while
the other home is under a different transformer. To make the
relationship clear to see, a typical example of the measured
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Fig. 6: Relationship between frequency and voltage

frequency and voltage relationship is shown in Figure 6. The
frequency value is well synchronized with the voltage value.

Based on Equation (2) and experimental results, the fre-
quency change in each home is in linear relationship of volt-
age change. Therefore, we can utilize the frequency voltage
relationship to recover the missing data.

3) Temporal Correlation: In a microgrid, we need to re-
construct the missing data and predict the power consumption
in the very near future (e.g., next 1 second) for real-time
control. Thus the power consumption data of yesterday or
last month is much less useful. To address this problem, we
leverage the power consumption signatures of appliances to
reconstruct the missing data and predict the short term power
consumption. This is because there are limited number of
power consumption signatures for different loads. To evaluate
this approach, we use the empirical data collected for 2 years
from a home to investigate the temporal correlation between
power consumption data. We run a power consumption signa-
ture detection algorithm on the data set to find the signatures.
Specifically, the similarity between two vectors is calculated
by using a Euclidean distance-based function as shown below:

1 |Si] ,
5] ;(Smf) S;(t)) 3)

|S;| is the length of signature .S;. If the distance of these
two vectors is small, then the similarity of two vectors is
high. Then we go through the data set to find the possible
signatures. To simplify the algorithm, we use a fixed length
of energy consumption patterns which achieves very effective
results (detailed in Section VI). As shown in Algorithm 1, the
signature set .S is empty initially. When ¢ < T, we calculate
the similarity between power consumption data and signatures
of each appliances based on Equation (3). If we find the
similarity between current power consumption and existing
signatures is higher than the current maximum similarity, we
reassign the maximum similarity and mark index = i. Then
we compare the maximum similarity we find to the threshold
of the minimum similarity ppin. If pmaz > Pmin, We then
detect a new signature S, add it to the signature set .S and
update ¢ = t + |Sye|. Otherwise, we update ¢ = t + 1 and
continue the detection process.

Based on the detection signatures, we can reconstruct the

missing data and predict the near future data as:
15;1/2

Pij =

2- (Pt +2 —|S;]) = Sj(x))

Pi(t+k) = S;(1S;1/2+k)+

=1
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“4)

Algorithm 1 Signatures Detection Algorithm
1. S=0

2: while t < T do

3: Pmazx = 0, indexr = —1;

4 for detected signature S; do

5: Calculate p; (t) based on Equation (3);
6: if p;(t) < pmaz then

7: Pmaz = pi(t), index = 1,

8 end if

9: end for

10: if prmaz > pmin then

11: Detect a new signature Speq and add to S;
12: t=t+1S;;

13: else

14: t=t+1;

15: end if

16: end while

Correlation

16 20 24

0 4 8

12
Time (Hour)
Fig. 7: Spatial correlation of different homes over time

where S; is the detected signature that has shortest distance
to {Pz(t — Z(Sj) + 1)7 <o ,Pi(t)}.

4) Spatial Correlation: Because homes in the same area
may have the similar power consumption pattern, we can use
the spatial correlation among power consumption of homes
for power consumption prediction. However, different homes
will have different correlations at different time. Thus, we
need to keep on updating the correlations among these homes
for prediction. To evaluate our idea, we use empirical power
consumption data collected from 100 homes for one month
to investigate the spatial correlation of power consumption
among different homes. The spatial correlation between homes
1 and 3, and homes 2 and 3 is shown in Figure 7. X-axis is
the time, Y-axis is the correlation between either homes 1
and 3 or homes 2 and 3. For most of the time, home 1 and
home 2 are quite similar to home 3. However, from hour 2 to
hour 4, home 1 is closer to home 3 while from hour 4 to 6,
home 2 is closer to home 3. Thus, we build a model to predict
the power consumption based on historical correlations among
homes. The correlation between two homes can be calculated
as: L L
i) =7 Y (Pla) = PB@) —7 Y (R) - P@))

r=t—I r=t—I
(5)

From the above equation, we can predict p;(t) based on
readings from other homes:

N

N
i1 2= ci(t)



If ¢;;(t) does not exist because of missing data, then we
replace ¢;;(t) with ¢;;(ty). Where ¢ is the latest time for
updating the correlation between homes 7 and j.

B. Data Reconstruction and Prediction

With the above four correlation models, we can reconstruct
the missing data and predict the future data for real-time
control. In order to schedule the controllable workload in
each home and maintain the stability of the microgrid, the
control center needs to collect the data of real-time power
consumption, voltage, and frequency. Then the reconstruction
process is executed as follows: i) if only part of the data is
missing in one home, the power voltage relationship can be
used to reconstruct the power consumption or voltage; ii) if
only frequency data is collected from one home, frequency
voltage correlation can be used to reconstruct the voltage and
then apply power voltage relationship to recover power; iii) if
no data is collected from one home, we can utilize the temporal
and spatial correlation to reconstruct the data; iv) if no data
is collected from any homes, only temporal correlation can be
used to reconstruct the data; and v) if all the data is collected
from one home, the collected data is applied to update the
correlation weight for temporal and spatial correlation models.

The prediction process is the same as the scenario that
no data is collected from any homes. Note the prediction
with temporal correlation is only accurate for short-term
data missing. Because generators can not be turned on/off
very frequently and the generation control needs long-term
power consumption prediction, other traditional consumption
prediction algorithms can be applied in this scenario.

V. CENTRAL AND LOCAL SCHEDULERS
With the reconstructed data and predicted future data, cen-
tral and local schedulers need to schedule the future generation
of generators and the controllable workload in each home. The
design goal is to balance the power demand and generation
with minimum operation cost in the microgrid.

A. Design Goal

Assume there are N homes in the microgrid and the power
consumption of home ¢ at time ¢ is g(¢). The microgrid has M
units of homogeneous local generators, each has a maximum
power output capacity L. Based on a common generator model
[10], we denote 3 as the startup cost of turning on a generator.
Startup cost 3 typically involves the heating up cost (in order
to produce high pressure gas or steam to drive the engine)
and the time-amortized additional maintenance costs resulted
from each startup (e.g., fatigue and possible permanent damage
resulted by stresses during startups). We denote y,, as the
sunk cost of maintaining a generator in its active state per
unit time, and y, as the operational cost per unit time for an
active generator to output an additional unit of energy. Note
that our design is not limited to any generator model. Table I
summarizes the definition of parameters. Our design goal is to
balance the power demand and generation while minimizing
the operational cost of power generators. The problem can
formulated as follows:

Notation | Definition

b;(t) Amount of energy in battery of home ¢ at time ¢
B; Battery’s capacity of home ¢

d;(t) Consumed power of home ¢ at time ¢

B Cost of changing output power of generator

L Maximum power output of generator

Ym Sunk cost of maintaining generator per time

Yo Operational cost of generator for output power
Pu Maximum ramping-up rate

Pd Maximum ramping-down rate

g(t) Output power of generator at time ¢

go(t) On/off status of generator at time ¢

no(t) Equals 1 if output of generator changes at time ¢

to Minimum time for generator to change output power

e;(t) Power from generator to home ¢ at time ¢
b (t) Power discharged from battery to home 4 at time ¢
b%(t) Power from generator to battery at time ¢
TABLE I: Definition of notations
M
Min > (y09(t) +ymgo( )+ Bno(t)[g(t) — g(t = 1)])
st 0<b(1) < Vi (a)
0 <bi(t) + ()—b”(t)SBi; Vi, t (b)
dit) < bf(t) +eilt); Vit (©)
N
Y (et) +bI(1) < g(t) < L; Ve (d)
=1
g (t) _go(t_to) <pu; Vit (6)
9o(t —to) = go(t) < pa; Vi ()
i=t+t, i=t—1
> goli) =to, Y go(i) =0:VE,ne(t) =1 (g)
i=t+1 i=t—t,

Constraints (a) and (b) ensures the battery energy level is
always not less than zero and not greater than the battery
capacity. Constraint (c¢) means a home consumes less energy
than the amount of energy it obtains from generator and
battery. Constraint (d) limits the output power of generator.
Constraints (e) and (f) mean that the speed of increasing and
decreasing generator power. Constraint (g) ensures that the
minimum time for generator to change output power is t,. The
object function and constraints are all linear functions, thus
the problem is a mixed integer programming problem, which
is NP-complete. In reality, it is not possible to obtain optimal
solutions in real-time for generation and workload scheduling.
Therefore, the central scheduler uses a heuristic approach to
solve this problem (detailed in §V-B). Furthermore, because
of the unreliable communication, the home controller may not
receive the control message from the control center. Therefore,
a distributed algorithm is proposed for the local scheduler to
schedule workload in each home (detailed in §V-C).

B. Central Scheduler

The central scheduler has the power consumption prediction
in next few seconds and next minimum on/off time of genera-
tor. Thus, central scheduler can schedule controllable workload
in homes to fulfill constraint (c¢) and schedule generation for
next minimum on/off time. Therefore, the optimization prob-
lem can be decomposed into two subproblems: i) generation



Algorithm 2 Generation Scheduling Algorithm

1: Calculate the power demand in next minimum on/off time AE(t+1,t+
to) based on Equation (7);
Cif AE(E+1,t+to) > b(t + 1) + g(t) - to then
Increase generation g*(¢) based on Equation (8);
selse if AE(t+ 1,6+ to) < b(t+ 1)+ g(t) - to — B then
Decrease generation g% (t) based on Equation (9);
else
Maintain the same generation g(t).
: end if

A Al

scheduling to fulfill the demand and minimize the operational
cost; and ii) workload scheduling in each home to stabilize
the aggregated demand.

1) Generation Scheduling: The key idea of the generation
scheduling is to turn on the generator when power demand
is low and turn off the generator when the power demand is
high. Note that it is not able to change the output power of
generator due to the minimum on/off time. Thus, we should
decide whether to change the output power of generator based
on power demand in the next minimum on/off time. At time ¢,
the power demand from time ¢+ 1 to ¢ 4+, can be calculated

as k=t+t, N

AB(t+ 1t +t) = > > dik) @

k=t+1 i=1

With the given demand, we need first to ensure the power
generation and energy storage in battery is higher than the
power demand. Assume the power generation at time ¢ is g(t),
we have three options: i) increasing generation with g*(t); ii)
decreasing generation with g%(t); and iii) maintaining the same
generation ¢(¢) in next minimum on/off time. The algorithm
of decision making for generation is shown in Algorithm 2.
If power demand is higher than energy storage in battery
and energy generation g(¢) in next ¢,, we have to increase
the power generation to avoid power outage (Lines 1-3).
To minimize the operation cost. The amount of generation
increase can be calculated as

() = AE(t+1,t4+1t,) —b(t+1) —g(t) - to ®
lo

Otherwise, we can either decrease power generation or
maintain the same generation. Note that there is extra cost for
changing output power of generator, thus, we only decrease
the power generation when the power demand is too low that
the battery can not store the extra power generation (Lines
4-5). The amount of generation decrease can be calculated as

Gl(t) = bt +1)+g(t) -t tB AE(t+1,t+1,) ©)
o

Otherwise, we maintain the same power generation g(t)
(Lines 6-8).

2) Workload Scheduling: The goal of workload scheduling
is to avoid power outage and minimize the extra cost for
changing power generation. The key idea is to turn off the
controllable workload when aggregated power demand is high
to avoid power outage and turn on the controllable workload
when power demand is low to maintain stable power demand.

Note that the demand in each home can be divided by con-
trollable workload d$(¢) and uncontrollable workload d (t):

di(t) = d*(t) + do(t) (10)

Based on the prediction of short time power consumption
in next time slot, our central scheduler decides the scheduling
the controllable workload demand in each home. At time ¢,
we can calculate power demand at time ¢ + 1 as

(1)

If power demand is higher tha;1 power generation and energy
storage in battery AE(t+ 1) > b(t + 1) + g(t + 1), we need to
turn off some controllable workload. Otherwise, if AE(t+1) <
b(t+1)+g(t+1), we need to turn on some controllable workload.
In our simulation, we utilize water heater as controllable
workload. Thus, If AE(t +1) > b(t + 1) + g(t + 1), we turn
off some water heaters in homes with less hot water demand
until AE(t+1) = b(t+1)+g(t+1). If AE(#+1) < b(t+1)+g(t+1),
we turn on some water heaters in homes with most hot water
demand until AE(t+1) =b(t+1) +g(t +1).

ABE(t+1) =) di(t+1)

C. Local Scheduler

However, if the communications between the control center
and homes are unreliable, the instructions for each home may
be lost or arrive late. Thus, we also provide a distributed
control when the control instructions from central controller
are not available. The key idea is to schedule controllable
workload based on power-voltage model proposed in §IV-Al
because the local voltage in each home can be used to infer
the aggregated power demand in the microgrid. However,
the problem is that every home may decide to turn on/off
controllable workload simultaneously to balance power supply
and demand because they can not communicate with each
other. Then it may cause an endless loop for each home to
turn on/off controllable workload at the same time, which is
not helpful to balance power generation and demand.

In our design, we take an adaptive feedback control to
enable homes to stabilize the power demand cooperatively.
When each home detects the power demand change (power
generation is relative stable since there exist minimum on/off
time for generators), it does not turn on/off controllable work-
load immediately but with some backoff time. The detailed
algorithm is shown in Algorithm 3. At time ¢, each home
calculates the consumption of its controllable workload and
estimate the change of power demand Ad in the microgrid by
utilizing power voltage correlation shown in § IV-Al (Line
1). When the power demand is stable, each home keeps
controllable workload with previous state. When it detects
either high or low demand and there is no backoff timer,
each home calculates backoff time ¢? (Lines 2-3). t can be
calculated as

b Ad

= N (12)

If t? # 0, home updates the timer (Lines 4-5). Then each home
check the timer again, if the timer expires, local controller



Algorithm 3 Local Scheduler Algorithm

1: Calculate AV, d$(t);

2: if AV; #£0 & t? = 0 then

3: Calculate t? based on Equation 12;
4: else if tll? # 0 then

5: tf = tli’ —1;

6: if AV; > 0 then

7: Increase controllable workload;
8 else if AV; < 0 then

9: Decrease controllable workload.
10: end if
11: end if

‘Temperature senso

(a) Water flow & temperature
monitor

(b) Energy monitoring

Fig. 8: Experiment setup in residential homes

immediately turns on the controllable workload when demand
is low and turn off the controllable workload when demand is
high (Lines 6-10).

VI. EXPERIMENTAL EVALUATIONS

In this section, we evaluate the performance of our design.
We collect empirical data of i) total power consumption and
water heater power consumption from 100 homes; ii) hot
water usage from three homes; and iii) voltage and frequency
data from three homes. Note that we only have control
access of three homes (in Binghamton, New York), in which
we collected hot water usage, power consumption of water
heaters, voltage and frequency data and all the experiments
are conducted in these three homes. For the rest 97 homes (in
Austin, Texas), we collected the power consumption data for
simulations. Because we do not have the hot water usage,
voltage and frequency data from these 97 homes, we use
water heater power consumption to generate the hot water
usage data and apply correlations among power, voltage and
frequency obtained from the experiments to generate voltage
and frequency data for simulations. The hot water usage
and power consumption are measured by water flow sensors
and eGauge sensors every second. The experiment setup of
one home is shown in Figures 8(a) and 8(b). The power
consumption in one year and water flow data in two months
are shown in 9 and Figure 10, respectively.

A. Basic Evaluation Results

In this section, we evaluate the effectiveness of our system,
which includes three metrics: i) data reconstruction accuracys;
ii) total operation cost in the microgrid; and iii) the impact on
homeowners’ hot water usage. All results are simulated with
the seven days’ empirical data of hot water usage and power
consumption. Because our design goal is to minimize the
operation cost of generator, we refer our design as MOC in the
latter description. The baseline we compared with is original
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power consumption in individual homes without workload
scheduling. In simulations of MOC, we also use baseline in the
first day since the correlation model needs to be trained based
on historical data. Thus we mainly compare the performance
of MOC and baseline for the rest of six days.

1) Reconstruction Accuracy: We run the detection algo-
rithm with one month data and predict the missing data for the
next month. The results are shown in Figure 11. The prediction
matches well with the ground truth. The maximum error of
prediction we observe is 0.498kW and the average error of
prediction is 0.0289kW .

We run spatial reconstruction algorithm to recover one
home’s energy data from other 99 homes. The results are
shown in Figure 13. The prediction overall is very close to
ground truth. The maximum error of prediction and average
error of prediction are 3.836kW and 0.131kW, respectively.

2) Generation and Consumption: To clearly illustrate the
difference between baseline and our design, we only show the
power consumption of baseline and our design for one day in
Figure 12. For power consumption without water heater, the
peak demand is mainly from 8am to 12am and from 6pm to
8pm. In the mean time, hot water usage is also during the
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Fig. 11: Prediction accuracy with temporal correlation model,
the right figure shows the average, 25 percentile and 75
percentile of the prediction error
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Fig. 13: Prediction accuracy with spatial correlation model

similar time. For baseline, when it detects hot water usage,
it turns on water heater immediately. Furthermore, because
different homes are highly possible to use hot water in similar
time of evening, the peak demand rises from 50.31kW to
75.45kW (at around 7pm and 11pm). The power of the water
heater in our simulation is 5.29kW, thus at least 5 homes turn
on water heaters at the same time. For the generation, because
it does not predict the future power consumption to smooth the
generation, the hourly generation changes very quickly, which
introduces more operation cost. For MOC, because it predicts
short-term and long-term power consumption in future, the
hourly generation is stable.

3) Total Cost: The total operation cost for generators for
a typical day are shown in Figure 14. In the beginning,
because the power consumption is low, the cost for different
approaches is similar. However, from 8am, power demand
increases quickly because most of the people wake up. Thus,
the operation cost increases quickly in baseline and the opera-
tion cost for MOC and offline optimal still increases linearly.
For six days’ simulations, the average daily operation cost
in baseline is $292.5 while daily operation cost for MOC is
$224.6, which is 23% lower.

4) Water Heater Scheduling: To better understand how
homes schedule water heater event, we show detailed water
heater energy consumption events of 15 homes in Figure 15.
To show the detailed difference between baseline and MOC,
we show the water heater events for 3 days. The upper figure
is the water heater events of the baseline in one home. For
the baseline, most of the water heater energy consumption
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Fig. 14: Total operation cost for generators
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Fig. 15: Water heater events over three days

events last for longer periods. This is because the water heaters
are turned on right after hot water usage. After people take a
shower or bath for ten minutes, the water heater will be turned
on for around 1 hour to reach the high temperature threshold.
The middle figure shows the water heater events of MOC in
one home. Compared to baseline, the water heater events are
more sparsely distributed to reduce the overlap of events from
different homes. The bottom figure shows the total events of
MOC in all 15 homes.

5) Hot Water Temperature: Though MOC allows homes
to turn on water heater earlier or later, MOC can also fulfill
users’ hot water usage efficiently. In Figure 17, we show the
distribution of difference between the targeted temperature
and the hot water temperature when there exists hot water
usage events. The targeted temperature of hot water in our
experiment is set as 50°C'. For the baseline, it turns on water
heater immediately after hot water usage, then the temperature
of hot water is always a little lower than the targeted hot water
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usage (mainly 1°C' lower than the targeted temperature in
Figure 17). For MOC, when a home predicts future hot water
usage, it can turn on water heater earlier to better fulfill the
hot water usage, thus the hot water temperature can be higher
than the targeted temperature for some time. In Figure 17, the
hot water temperature in the water tank is at most 2°C' lower
than the targeted temperature. Thus the impact of our design
on people’s hot water usage is very low.

B. Advanced Evaluations

Because our system is designed for severe environments,
such as islands, it is crucial to investigate the system’s sensi-
tivity under diverse settings.

1) Impact of Battery Capacity: Because battery is expen-
sive and has limited life-time, it is important to investigate the
system benefit with different capacities of batteries. We show
the power consumption and generation with three different
battery capacities in Figure 16. The top figure shows the
scenario with no battery in the system. Because there is no
battery, the generators needs to generate the maximum power
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in its working period to avoid power outage, which introduces
high energy waste. The middle figure shows the results with
30kWh battery capacity. With the battery, the difference
between generation and consumption can be offset, thus the
overall generation is reduced. For the bottom figure, with very
high battery capacity, the generator can only generate the
average power consumption in the next hour, thus the overall
generation is minimized. The operation, battery and total cost
for different battery capacities are shown in Figure 18. With
higher battery capacity, the operation cost decreases especially
from no battery to 10kWh battery. However, the decrease
slows down with higher battery capacity. For the total cost, we
find that microgrid with 20kW h battery performs best since
it balances cost between generation and batteries.

2) Impact of Data Missing Rate: With different environ-
ments, the data missing rate can be quite different. Thus, it
is important to study the reconstruction accuracy of our data
management design under different scenarios. In these sets
of simulations, we simulated the accurate data to generate
missing data with different missing rate from 4% to 20%. The
results of reconstruction accuracy are shown in Figure 19. With
the increase of data missing rate, reconstruction accuracy de-
creases slowly. Even with 20% data missing rate, the average
of reconstruction accuracy is above 80%. Thus, our design is
robust in situations with high data missing rate.

3) Impact of Instruction Missing Rate: In the mean time,
the instruction missing rate can also be quite different under
different environments. Thus, we study the performance of
centralized control (instruction missing rate r; is 0%) and
distributed design (instruction missing rate r; is 100%). We
simulated the different instruction missing rate for two extreme
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cases (shown in Figure 19). The water heater is turned on
and off more frequently when r; is 100%. That is because
each home lacks the knowledge of behaviors of other homes,
thus they may collide to turn on/off water heater and then
immediately turn off/on water heater. The frequent on/off
operations will decrease the lifetime of water heater. However,
total cost for different instruction missing rate is similar, which
is not included due to the limited space.

VII. RELATED WORK

Our work is related to the following areas of previous work:

Energy Management. Different techniques are proposed for
energy management in either demand side or generation [11],
[12]. In [13], a decentralized optimal load control mechanism
is proposed to provide contingency reserve in the presence of
sudden demand-supply mismatch. In [14], a model predictive
control algorithm is proposed to co-schedule HVAC control,
EV scheduling and battery usage to reduce the building energy
consumption. In [15], stochastic and robust optimization are
applied for real-time price based demand response manage-
ment. In [16], an optimal solution is provided to trade off
between quantity and quality of variable renewable energy
source in smart grid. Different from existing work, our paper
presents a holistic approach of real-time scheduling for both
demand in individual homes and generation of the local
generators in microgrids.
Missing Data Management. There have been various works
in the research community to investigate how to manage
missing data in cyber-physical systems [17]. Traditionally the
approach to obtaining missing values for linear time series has
involved the use of curve fitting [18]. Autoregressive integrated
moving average (ARIMA) model is fitted to time series data
to predict future points in the time series data [7]. Maximum
likelihood based approach is applied to estimate the missing
data [8]. Different from existing work, we investigate the
correlation between different energy data in microgrids and
utilize the correlation models to cope with unreliable sensors
and wireless communication.

VIII. SUMMARY
The biggest challenge of maintaining a self-sustainable mi-
crogrid is to balance the power demand and generation in real-
time with dynamically changing power demand. Furthermore,

the unreliable data collection and communication between
homes and the control center in a microgrid makes the real-
time control even harder. To address these issues, we propose
a novel data management technique to process the collected
data, reconstruct the missing data caused by sensing error or
unreliable communication, and predict the future demand for
real-time control with missing data in extreme situations. The
control center then decides the scheduling of the workload
of appliances in each home and the operations of the local
generator based on the collected and predicted data. Through
extensive experiments and simulations, we show that our
design can recover the missing data with 99% accuracy and our
distributed control can balance power demand and generation
and reduce operation cost by 23%.
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