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ABSTRACT
Due to limited energy storage units in microgrids, how to
regulate peak demand is one of the main challenges. Thus,
researchers propose di↵erent techniques to flatten peak de-
mand in individual residential buildings. However, if each
home in the grid flattens peak demand only with its own
power consumption information, it is possible that peak
demand of the microgrid would not be flattened but only
shifted to another period. Therefore, it is critical for homes
to cooperate with each other to flatten peak demand. In this
paper, we utilize the power-voltage relationship in individual
homes to enable that each home can infer the information
of power consumption in the community by locally moni-
toring the voltage value on the common power line. The
inferred information is then used for homes to flatten peak
demand of the microgrids in a distributed manner. Further-
more, we leverage existing thermal appliances (e.g., water
heaters) as thermal “batteries” in individual homes instead
of purchasing batteries to flatten peak demand. We eval-
uate our system’s performance by conducting experiments
and extensive empirical data driven simulations. Evaluation
results indicate that our design enables homes to e↵ectively
flatten peak demand by more than 29% without a↵ecting
homeowners’ behaviors.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in Other Sys-
tems—Command and control

General Terms
Measurement, Design, Management

1. INTRODUCTION
The microgrids enables a small number of homes to be

interconnected and share electricity generation and energy
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storage. The microgrid is getting more popular because it
can be disconnected from the power grid and provide high
reliability. Given extremely limited energy storage units
in microgrids, energy is normally consumed as generated.
To meet short periods of peak demand, a significant por-
tion of energy generation infrastructure in power grids is
reserved with high operational costs. In traditional power
grids, utility companies spend extremely expensive invest-
ment to meet with high peak demand which rarely occurs.
For example, Energex (an Australian electric power distri-
bution company) used 13% of its $8.8 billion infrastructure
for only 100 hours to match peak demand within the whole
year of 2010 [3]. In microgrids, with less amount of homes,
it is more likely that large portion of homes may consume
energy at the same time. Thus, the peak demand compared
to average power consumption can be much higher in mi-
crogrids, which introduces higher operation costs for peak
demand. To flatten peak demand in microgrids, researchers
have proposed two di↵erent approaches: i) workload shift-
ing [6] and ii) energy storage (e.g., batteries) [12, 17]. For
workload shifting, homeowners have to reschedule their ap-
pliances’ workloads to avoid peak energy consumption peri-
ods, which is inconvenient for the homeowners. For energy
storage approach, large batteries are charged when the de-
mand is low and discharged when the demand is high [12].
However, large batteries are expensive and have high energy
conversion loss during the charging and discharging stages.
Furthermore, in these approaches, each home flattens peak
demand only with its own power consumption information,
which may result in peak demand shifting but not flattening.
Thus, it is critical to let homes in the grid cooperate with
each other to flatten the peak demand. One possible solution
is to measure peak demand with a meter in the transformer
and then broadcast the information by a central controller
to all the homes. However, the central controller would have
to broadcast the information frequently to enable real-time
control in each home, which introduces high communica-
tion overhead. The major challenge is to notify each home
the aggregated power consumption of the community in a
distributed manner without leaking private information of
individual homes.

To address this challenge, we investigate the relationship
between aggregated power consumption of the community
and voltage at each home. The main observation is that
voltage at each home decreases when aggregated power con-



sumption increases. To generalize this observation, we build
the power-voltage relationship model. Note that the fre-
quency is used in traditional power grid to infer aggregated
power consumption. However, the frequency is only sen-
sitive when there is huge power consumption change in the
power grid and the frequency measurement equipments (e.g.,
PMUs) are expensive. Thus, we investigate the relation-
ship between aggregated power consumption and voltage in-
stead of frequency in microgrids. Based on this model, each
home can infer aggregated power consumption of the com-
munity in real-time by monitoring its own voltage value and
power consumption through the common power line. Be-
cause homes can only infer the aggregated power consump-
tion, the privacy of individual homes’ power consumption
can be protected. With the aggregated power consumption,
each home can either schedule its workloads or utilize bat-
tery to avoid high power consumption of the community.

To further avoid the high investment of batteries, we lever-
age the existing thermal appliances (e.g., water heaters) as
thermal batteries in individual homes to cooperatively flat-
ten peak demand. In our paper, we use water heaters in
small residential buildings as a case study to demonstrate
the feasibility. The main reasons are i) unlike the additional
high cost investment required by large batteries or ice stor-
age machines [7], water heaters are existing appliances in
homes; ii) according to the technical report from the U.S.
Energy Information Administration [1], 18% of total house-
hold energy is used by water heaters in the U.S.; and iii)
energy can be “stored” in the water heater for a relatively
long period. Thus, we can utilize the water heaters as ther-
mal “battery” to flatten the peak demand. Note our design
can also be applied to utilize other thermal appliances (e.g.,
HVAC) to flatten peak demand.

Unlike traditional batteries, we can only store energy in
water heaters. It is very di�cult to converse the thermal
energy back to the electrical energy to power other appli-
ances during the peak demand periods. Furthermore, we
need to ensure our design will not a↵ect the homeowners’
hot water usage activities. To address these challenges, we
deploy temperature sensors and water flow sensors to mon-
itor the water heater’s status (e.g., water temperature and
water usage) in real-time and predict future hot water usage
activities based on historical data. Based on the predicted
hot water usage activities, each home can locally schedule
the water heater’s heating events based on power consump-
tion in the community to avoid the community level high
aggregated power consumption. The main contributions of
this paper are as follows:
• To the best of our knowledge, this is the first distributed
approach that utilizes the power-voltage relationship in each
home to flatten peak demand in microgrids. By locally mon-
itoring voltage in every individual home, we can infer the
aggregated power consumption in a community and shift
workloads accordingly to flatten the peak demand.
• We i) build a comprehensive model to represent the energy
loss and energy consumption of the water heater; and ii) de-
sign a distributed water heater scheduling algorithm, which
locally schedules the heating time of water heater without
a↵ecting the home owners’ hot water usage and achieves
peak demand flattening in the whole community.
• We leverage the existing water heaters as thermal batteries
to flatten peak demand. Our approach does not need addi-
tional investment for batteries and avoid the potential pollu-

Figure 1: eGauge Deployment at two homes
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Figure 2: Power and Voltage at homes H1

tion associated with batteries. Our approach can also be ap-
plied to homes with other thermal appliances (e.g. HVAC).
• We extensively evaluate our design by conducting exper-
iments in two homes and simulations with 10 homes in a
community. The results indicate our design is e↵ective, prac-
tical, and outperforms other approaches in flattening peak
demand. Specifically, our design enables homes to e↵ectively
flatten peak demand by more than 29% without a↵ecting
homeowners’ hot water usage.

2. MOTIVATIONS
Previous work on reducing peak demand either focuses

on a single home [12] or proposes a centralized solution for
a whole community [11] [20]. Little research focuses on a
distributed design to flatten peak demand by allowing in-
dividual homes cooperatively control their workloads. The
main challenge is how to detect high power consumption
periods and share power consumption information among
homes in a distributed manner. To address this design chal-
lenge, we describe our empirical study on the relationship
between power consumption and voltage values in a com-
munity. Specifically, we observed the following phenomena,
which serves as the foundation of this work.
Observation: Since homes are connected in parallel to the

same distribution power line, if power consumption of one

home increases, the voltage at all homes will decrease.

Our observation shows that it is possible for each home
to infer aggregated power consumption in a community by
monitoring its local voltage value changes.

2.1 Experiment Setup
In our experiment, we deployed eGauge power meters [2]

at two individual homes (H1 and H2) to collect the energy
consumption related data (e.g., power, voltage, current, and
etc.) every second. The experiment setup is shown in Fig-
ure 1. These two homes are directly connected to the same
transformer. Note that there are also other homes connected
to the transformer. To reduce the impact of other homes,
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Figure 3: Power and Voltage at homes H2
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Figure 4: Equivalent Electrical Circuit Model for 2 Homes

we conducted our experiments at midnight. In the exper-
iment, we use the empirical data from these two homes to
investigate the relationship between the power and voltage.

2.2 Empirical Results
In the experiment, we intentionally maintain low power

consumption at H2 and find that voltage at homes H1 and
H2 is closely related to power consumption at home H1,
especially when H1’s power consumption changes dramati-
cally. We also get the similar experiment results by main-
taining low power consumption atH1 and changeH2’s power
consumption. Figures 2 and 3 show the changes of power
consumption and voltage values within the same one hour at
homesH1 andH2, respectively. Because power consumption
at H2 is relative low compared to H1, voltage change at H2

is also related to power consumption change of H1 for the
most time. During the time interval 2,000 second to 2,500
second, power consumption at H2 varies from 0.4 to 1kW .
Then voltage change at H2 is less related to H1’s power con-
sumption because the change of H2’s power consumption
cannot be ignored. To systematically analyze the relation-
ship between power consumption and voltage of homes, we
build the power-voltage relationship model based on electri-
cal circuit characteristics of the power grids.

2.3 Power-Voltage Relationship Model
In this subsection, we describe our power-voltage model

for two homes and evaluate the model by conducting exper-
iments. Then we extend our model to support N homes.

2.3.1 Power-Voltage Model for Two Homes
Figure 4 shows the equivalent electrical circuit model of

two homes (H1 and H2) connecting to a transformer in par-
allel. R1 and R2 represents the resistances of the power line
from the transformer to each home. V1, V2, I1, and I2 can

be measured at each home; while V is the output voltage of
the transformer and I is the total current coming out of the
transformer. Based on this circuit model, we have

V = V1 + I1R1 = V2 + I2R2 (1)

According to the Electric Power Distribution Handbook
[16], a transformer can be considered as a constant kVA de-
vice for a voltage from 100% to 105%. If the power consump-
tion of one home increases, the total current I increases and
voltage V drops. Since the values of R1 and R2 are fixed, V1

and V2 also drop accordingly. And if the power consumption
increase is caused by home H1, which means I1 is also in-
creased, then the drop of V1 is more significant than the drop
of V2. This is reflected in Figures 2 and 3, at time equals
2,068 seconds, power consumption of H1 is increased from
3.286kW to 7.384kW . In the mean time, voltage V1 drops
from 243.44V to 241.716V and V2 drops from 244.374V to
243.758V . The voltage change at H1 is (1.724V ), which is
larger than H2’s voltage change (i.e., 0.616V ).

2.3.2 Empirical Verification of the Model
To further verify the accuracy of our model, we conducted

extensive experiments by manually controlling power con-
sumption at H1 or H2. When we generated power consump-
tion at one home, we kept power consumption at the other
home stable. Note that in the local neighborhood, there
are around 6 homes under the same transformer. Since we
can only control two homes, there exists interference of volt-
age change that caused by other homes’ power consumption
change. To reduce this type of interference, the experiments
were conducted at midnight. Then we use the relationship
between current change (I1 or I2) and voltage di↵erences
(V1 � V2) to verify the power-voltage relationship in our
model. Based on Equation 1, we have

V1 � V2 = I2R2 � I1R1 (2)

Since R1 and R2 are fixed values, the voltage di↵erences
between V1 and V2 should be theoretically in linear relation-
ship with the current I1 and I2. The results of our exper-
iment are shown in Figure 5. Generally, the relationship
between voltage di↵erences and current is linear. Specif-
ically, when the current is low, voltage di↵erence is highly
impacted by not only power consumption of these two homes
but also other homes. Thus, the variance of voltage di↵er-
ence is relative high. When the current is high, current of
two homes dominates the total current of the community,
then variance of voltage di↵erence is relative low. Overall,
the experimental result shows that our model can accurately
capture the power-voltage relationship for homes under the
same transformer very well.

2.3.3 Power-Voltage Model for N Homes
In Section 2.3.1, our circuit model assumes only two homes

are under the same transformer. However, in reality, there
exist more than two homes under the same transformer.
The circuit model for N homes is more complicated because
power consumption of each home may a↵ect voltage values
at other homes di↵erently. In general, homes are connected
to a transformer as shown in Figure 6. Without loss of gen-
erality, we assume that the transformer stays in the middle
of the street and homes are connected to the transformer
from two directions. We find that home H2i�1’s voltage
value depends on i) the transformer’s output voltage (V );



0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

Current (I)

V
o
lt

ag
e 

D
if

fe
re

n
ce

s 
(V

)

Figure 5: Voltage Di↵erences v.s. Current
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Figure 6: Circuit Model for N Homes

ii) the current from the transformer to H2i�1; and iii) re-
sistances of the power line from the transformer to H2i�1.
For example, H1’s voltage value only depends on the trans-
former’s output voltage (V ), the current (I1) through H1,
and the resistance (i.e., R1). Based on the above analysis,
the voltage values at homes H2i�1 and H2i can be calculated
by using Equations (3) and (4), respectively.

V2i�1 = V �
iX

j=1

NX

k=j

I2k�1R2j�1 i = 1, 2, ..., N (3)

V2i = V �
iX

j=1

NX

k=j

I2kR2j i = 1, 2, ..., N (4)

Based on the Equation (3) and (4), because R2j�1 and
R2j are fixed value, the voltage drop from transformer to
each home is in linear relationship of currents through the
power line.

2.4 Opportunity and Challenges on Peak De-
mand Flattening

While power-voltage relationship can be used in many
areas, this paper focuses on distributed peak demand flat-
tening of a community such as microgrids. Existing ap-
proaches of peak demand flattening are either centralized
solutions or conducted in a single building and do not con-
sider the global impact to the whole community. To enable
distributed peak demand flattening in a community, each
home needs to know the aggregated power consumption in
the community. Based on the power-voltage relationship, if
one home monitors voltage and power consumption of its
own, then it can infer the aggregated power consumption in
the whole community. Thus, the power-voltage relationship
provides a great opportunity for homes in a community to
cooperate with each other for peak demand flattening.

However, the challenge is that each home may not have the
equal information of aggregated power consumption. Based

Real-time 
Sensing

Processing

…

H1

Power Line

HN

Power Supply Sensing & Control

Real-time 
Sensing

Processing

Water Heater

Figure 7: System Architecture

on Equation (3), V2i�1 is determined by I1, I3, · · · , and
I2N�1, which means when power consumption of one home
increases, each home may have di↵erent voltage drops. Fur-
thermore, if more than one home increase or decrease power
consumption, the voltage change at di↵erent home may be
very di↵erent. Another challenge is that even every home
is aware of aggregated power consumption, they need to de-
cide how to schedule workload to avoid simultaneous low (or
high) power consumption in the community. This problem
is similar to the packet collision caused by the simultaneous
transmissions in wireless networks. To address these design
challenges, we introduce the distributed peak demand flat-
tening (DPDF) system (detailed in Section 3).

3. SYSTEM OVERVIEW
In summary, our system works as follows: Each home

locally monitors its own i) power consumption, ii) voltage
value, and iii) water heater related data in real-time. Based
on the water heater model, the amount of heating time is
calculated so that the water heater can satisfy the future
hot water usage without a↵ecting the homeowners’ com-
fort. In the meantime, each home infers aggregated power
consumption in the community based on the power-voltage
relationship model. According to the community’s aggre-
gated power consumption and energy consumption demand
for heating, each home can turn on the water heater when
the community’s aggregated power consumption is low and
postpone water heater’s heating tasks when the community’s
aggregated power consumption is high. By doing this, we
can achieve distributed peak demand flattening in real-time.

Figure 7 shows the distributed peak demand flattening
(DPDF) system architecture, which contains two main com-
ponents at each home: real-time sensing and a processing
unit. The real-time sensing component gathers real-time
data from di↵erent types of sensors: temperature sensors,
water flow meters, and eGauge power meters. Based on
these sensor readings, the processing unit decides when to
turn on the water heater and how long the water heater
should be turned on. The decisions of processing unit are
applied to turn on/o↵ the water heater.

The detailed interactions of real-time sensing and process-
ing is shown in Figure 8. In order to estimate the energy
consumption of the water heater, the processing unit uti-
lizes three types of sensing data in the left top of figure: i)
water temperature data is used as an input to the standby
loss model for calculating energy loss of the water heater
(discussed in Section 4.1.1); ii) readings from the water flow
meter are used to calculate hot water usage in real-time;
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Notations Definitions

V Voltage at transformer
I Current at transformer
V
i

Voltage at home H
i

I
i

Current at home H
i

R
i

Resistance from H
i

to others or transformer
✏ Standby heat loss co-e�ciency
T
h

(t) Temperature of hot water outlet pipe at time t
T
c

(t) Temperature of cold water inlet pipe at time t
T
e

(t) Temperature of environment at time t
t
standby

Standby time
t
heat

Heating time
P
heat

Power of water heater
E

loss

Energy loss for standby
E

use

Energy loss for hot water usage
f(t) Hot water usage at time t
S(t) Water tank status at time t

Table 1: Definitions of notations

and iii) historical hot water usage is used to predict future
hot water usage (discussed in Section 4.1.2). Based on the
standby loss, real-time hot water usage and predicted fu-
ture hot water usage, the energy consumption demand for
heating is calculated based on the heating model to satisfy
the homeowners’ future hot water usage (discussed in Sec-
tion 4.1.3).

On the other hand, readings from the power line (power
and voltage in the bottom of the figure) is applied to es-
timate the real-time aggregated power consumption in the
community. Based on the power-voltage relationship model
we developed in Section 2.3.3, each home can infer power
consumption in the community with locally monitored power
consumption and voltage data. Based on the energy con-
sumption demand for heating and real-time power consump-
tion in the community, each home calculates its own heating
schedule (when and how long to turn on the water heater)
to flatten peak demand (discussed in Section 4.2).

4. DESIGN
In this section, we present the details of water heater mod-

els (i.e., standby loss model and hot water usage prediction
model) and describe how to calculate heating duration based
on the models. Then combined with power-voltage relation-
ship model, we propose a distributed design for each home
to cooperatively flatten peak demand in real-time.

4.1 Water Heater Modeling

(a) Water tank (b) Flow meter (c) Temp. sensor

Figure 9: Flow meter and temperature sensors deployment
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Figure 10: Standby time VS. Heating time

The water heater deployed in homes is usually running
in the normal control mode. In the normal control mode,
the water heater keeps the temperature of hot water within
a certain range. When the temperature of hot water drops
below the low threshold, the water heater starts heating until
the temperature reaches the high threshold. And the water
heater works with a constant pressure water tank to store
the water, which means the outlet hot water is the same as
the inlet cold water. The energy loss of the water heater is
caused by two parts: standby loss and hot water usage. The
notations used in this paper is described in Table 1.

4.1.1 Standby Loss Model
The standby loss is related to following factors: the tem-

peratures of hot water and environment (T
h

(t) and T
e

(t)),
the standby time duration (t

standby

) and the co-e�ciency
(✏).

T
h

(t) and T
e

(t) can be measured directly by deployed tem-
perature sensors. ✏ can be found from the water heater
supplier or industrial standards. But this is a theoretical
parameter of the material which may have significant dif-
ference from the ground truth value. With our real-time
sensing data, we use the empirical data to test the ✏ of our
tank by running some experiments. Then we can calculate
energy loss for standby E

loss

as:

E
loss

= ✏ ⇤
X

tstandby

(T
h

(t)� T
e

(t)) (5)

Specifically, if there is no hot water usage, the energy loss
comes from the standby loss. Hence, we have the equation
E

loss

= E
heat

and E
heat

is the amount of energy hot water
gets from water heater. Given the water heater working
power P

heat

, heating e�ciency ⌘ and heating time t
heat

, we
can have E

loss

= P
heat

⇤ t
heat

⇤ ⌘.
To verify our model of water heater standby loss, we set

up experiments for the water heater and experiment setup
is shown in Figure 9. In our experiment, we turn o↵ the



water heater from 2 to 5 hours and then turn on the water
heater to find how long the water heater needs to be turned
on for heating. During the experiment, there is no hot water
usage, so the energy loss is all from standby loss. The result
is shown in Figure 10. With the standby time increases, the
time for the water heater to be turned on increases linearly.
However, there are some variances in the data. This is be-
cause the temperature sensor in the water tank is fixed in
the middle of the water tank. And the water heater turns
o↵ when the water temperature readings from the sensors
reaches the low temperature threshold. However, at that
time, the temperature of water in the top of water tank may
be di↵erent. Thus it may take di↵erent time for the wa-
ter heater to be turned on. Overall, our model is accurate
enough to predict standby loss in the water tank.

4.1.2 Hot Water Usage Prediction Model
For energy loss caused by hot water usage, the hot water

usage data from the flow meter is the key factor. Given the
real-time hot water usage f(t) at time t, the temperatures of
hot and cold water (T

h

(t) and T
c

(t)) and the time duration
of hot water usage, we can calculate energy loss of hot water
usage from time t to t+ w E

use

(t, w) as:

E
use

(t, w) = c ⇤
x=t+wX

x=t

(T
h

(x)� T
c

(x)) ⇤ f(x) (6)

The water heat capacity c, is a constant value as 4.2J/(mol·
K). Then based on working power of the water heater, we
can calculate heating time duration for hot water usage.

To flatten peak demand in the community, each home
needs to predict future hot water usage based on historical
hot water usage. Generally, our design can apply any hot
water usage prediction algorithm. For the purpose of this
study, we employ a simple model based on Exponentially
Weighted Moving Average (EWMA). The EWMA exploits
the diurnal nature of hot water usage activities. On a typical
day, it expects the hot water usage to be similar to the
hot water usage of previous days with slight deviations in
weather and daily activities. More sophisticated models that
consider changing weather conditions, or other information
can also be applied to our design. Note that thermal storage
capabilities of the water in the tank allow leniency. As long
as temperature of hot water is kept between the low and
high thresholds, water heater function will not be a↵ected
as far as the users are concerned.

Our prediction algorithm works with a prediction window
size w. Given window size w, prediction algorithm predicts
hot water usage from current time t to t+w. Note that our
prediction uses a sliding window, which means it predicts
hot water usage every second instead of every w for hot
water usage for the next window. The detailed prediction
algorithm is as follow: i) it calculates the average hot water
usage in past seven days; ii) it predicts today’s hot water
usage from t to t+ w based on historical average hot water
usage and prediction errors in previous prediction. With a
smaller window size, the prediction accuracy is better but it
limits the time for the water heater to shift heating schedule
for flattening peak demand. With a larger window size, it
allows longer time for water heater to shift heating schedule
but is more likely to have lower prediction accuracy.

4.1.3 Heating Duration Model
Based on the standby loss and predicted future hot water

usage, we can then calculate heating duration. In our design,
we need to calculate heating duration with the hot water
usage after the last water heater event, future hot water
usage, and standby loss. To update heating duration in
real-time, we need to maintain water tank’s status S(t) in
real-time. S(t) is used to describe the current status of water
tank at time t. For example, S(t) < 0 means the status of
water tank is less than the targeted status and the water
heater needs to be turned on for the hot water usage after
last water heater event and standby loss; S(t) > 0 means
water heater has extra energy for future hot water usage.
S(t) can be updated every second as follow:

S(t+1) = S(t)�✏(T
h

(t)�T
e

(t))�c(T
h

(t)�T
c

(t))f(t)+⌘P
heat

(7)
P
heat

is the power consumption of water heater and ⌘
is power e�ciency of water heater. With real-time status of
water tank, we can calculate heating demand with predicted
future hot water usage. Given the prediction window size w,
we calculate energy loss for standby and hot water usage in
the next window, then we have heating duration as follow:

t
heat

= (✏(T
h

(t)�T
e

(t))+c(T
h

(t)�T
c

(t))
t+wX

t

f(t))/(P
heat

⇤⌘)

(8)

4.2 Water Heater Scheduler
With the water heater model and predicted future hot

water usage, we introduce how to schedule the water heater
here. The key idea is to turn on the water heater when power
consumption is low and turn o↵ the water heater when power
consumption is high. However, if every home decides to turn
o↵ water heater simultaneously to flatten peak demand, the
power consumption in the community will decrease signif-
icantly. Thus in turn will trigger homes to turn on water
heater again. Finally, it causes an endless loop for each
home to turn on/o↵ water heater at the same time, which
is not helpful to flatten peak demand in the community.

In our design, we take an adaptive feedback control to
enable homes to flatten peak demand cooperatively. When
each home detects it can flatten peak demand by turning
on/o↵ water heater, it does not turn on/o↵ water heater
immediately but with some backo↵ time. The detailed state
diagram of water heater scheduler is shown in Figure 11. At
every time t, each home calculates the heating demand t

heat

based on Equation (8) and estimate power consumption in
the community. When the power consumption is stable,
each home keeps water heater with previous state. When
it detects either high or low demand, each home calculates
backo↵ time B. If B = 0, home immediately turns on the
water heater when demand is low and turn o↵ the water
heater when demand is high. Otherwise, it either set up a
new timer B or update an existing timer until timer expires.

4.2.1 Power Consumption in the Community
Based on Section 2.3.3, voltage at H

i

depends on power
consumption of all the homes under the same transformer.
For power consumption change P

heat

at H
i

, if power con-
sumption of other homes under the same transformer is the
same, voltage change at H

i

would be:

4V
i

= 4I
i

⇤
j=iX

j=1

R
j

⇡ � ⇤ P
heat

⇤ d
i

(9)

Because the voltage change 4V
i

is relatively small com-
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Figure 11: State diagram of water heater scheduling

pared to V
i

, thus we can assume P
heat

is linear to 4I
i

. The
resistances of power line depends on the distance of power
line, thus

P
i

j=1 Rj

is also linear to d
i

. Then we can have
�, which is a constant value and d

i

is the distance between
H

i

and the transformer. With larger d
i

, power transmission
lines from transformer to H

i

will be longer and introduce
more voltage drop. Because voltage and power change is in
linear relationship at each home, each home can flatten peak
demand by flattening detected voltage. Thus, for every sec-
ond, it compares the current voltage and average voltage V

i

.
V
i

is the average voltage of the past day in our design. If cur-
rent voltage is too high or low compared to V

i

, it can flatten
peak demand by turning on/o↵ the water heater; otherwise,
it keeps the water heater with previous status.

4.2.2 Backoff Time Design
In this section, we discuss how each home utilizes its own

power consumption and voltage to decide backo↵ time B,
which is generated to let the proper number of homes react
to power consumption change. The backo↵ time depends on
two parts: i) distance d

i

between H
i

and the transformer.
If d

i

is small, based on Equation (9), its power consumption
change has less impact to the voltage, thus B is shorter. ii)
voltage di↵erence between current voltage value and average
voltage value. If voltage di↵erence is high, it means aggre-
gated power consumption is either too low or too high. Thus
more homes should be involved to flatten the peak demand,
then B is shorter. Finally we calculate B as:

B =
d
i

|V
i

� V
i

|/4V
i

(10)

For example, if |V
i

� V
i

|/4V
i

=2, it means two homes are
needed to turn on/o↵ water heater to flatten peak demand
and backo↵ for homes will be 0.5, 1, 1.5, · · · . Then two homes
will react to turn on/o↵ water heater in the next second. For
the next second, each home can detect that peak demand is
flattened and does not turn o↵ the water heater anymore.
Thus our design enables homes to flatten the peak demand
cooperatively with real-time feedback.

4.2.3 The Detailed Algorithm
Combining all the design components, water heater deci-

sion algorithm can be specified by the pseudo code shown in
Algorithm 1. The algorithm runs in every home and decides
whether to turn on/o↵ water heater for the next second.
Each home first calculates 4V

i

, B based on Equation (9)
and (10) (Line 1). Then if t

heat

>= w, which means to
fulfill future hot water usage, the water heater needs to be

Algorithm 1 Water Heater Scheduler Algorithm

Input: t
heat

, d
i

, V
i

, V
i

, P
i

Output: Water heater decision H.

1: Calculate 4V
i

, B based on Equation (9) and (10)
2: if t

heat

>= w then

3: H = ON ;
4: else

5: if V
i

< V
i

& H = ON & 0 < 4V
i

< 2(V
i

� V
i

) then

6: if B = 0 then

7: H = OFF ;
8: end if

9: if T imer == 0 then

10: T imer = B;
11: else

12: T imer ��;
13: end if

14: else if V
i

> V
i

& H = OFF & 0 < 4V
i

< 2(V
i

� V
i

)
then

15: if B == 0 then

16: H = ON ;
17: end if

18: if T imer == 0 then

19: T imer = B;
20: else

21: T imer ��;
22: end if

23: else

24: T imer = 0;
25: end if

26: end if

turned on for the whole next window (Lines 2-3). Other-
wise we can decide whether to turn on/o↵ the water heater
to flatten peak demand. Then we check two scenarios: i)
power consumption is high and the water heater is turned
on (Lines 4-13); and ii) power consumption is low and the
water heater is turned o↵ (Lines 14-23). If turning on/o↵
the water heater can flatten the peak demand, we set up a
backo↵ timer to turn on/o↵ the water heater. If it does not
satisfy any scenarios, we reset backo↵ timer (Lines 24-28).

5. SYSTEM EVALUATIONS
In this section, we evaluate the performance of our system.

We collect empirical data of (i) hot water usage, (ii) power
consumption from 10 homes. To verify the performance of
our design, we collect both total power consumption and
power consumption of water heaters in homes. The hot wa-
ter usage and power consumption is measured by tempera-
ture sensors and eGauge sensors respectively for every sec-
ond. The details of power consumption data collection can
be found in [10]. The experiment setup is shown in Figures 1
and 9. The water flow and the residue power consumption
(the total power consumption minus the power consumption
of the water heater) at one home for one week are shown in
Figures 12 and 13. During our experiment, the maximum
value of water flow we measured is 13 Liters/Min. The max-
imum power consumption in Figure 13 is around 12kW .
Since this work is the first one to investigate distributed
peak demand flattening in the community, the state-of-the-
art research is complementary, but provides no appropriate
baseline for comparison. Therefore, we compare our design
with current water heater working mode as the baseline.
In current water heater working mode, the water heater is
turned on when the temperature of the water heater drops
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Figure 12: Water flow at one home for one week
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Figure 13: Residue power consumption (power consumption
of water heater is removed) at one home for one week

under the low threshold and turned o↵ when temperature
reaches the high threshold.

5.1 Basic Evaluation Results
In this section, we evaluate the e↵ectiveness of our system,

which includes power consumption and standby loss of water
heater in the community. All results are simulated with the
seven days’ empirical data of hot water usage and power
consumption. Because our design needs to maintain past
average voltage, in simulation of DPDF, we also use baseline
in the first day. Thus we mainly compare the performance
of DPDF and baseline for next six days.

5.1.1 Peak demand
To clearly illustrate the di↵erence between baseline and

DPDF, we only show the power consumption of baseline
and DPDF for one day in Figure 14. For power consump-
tion without water heater, the peak demand is mainly from
8am to 12am and 6pm to 8pm. In the mean time, hot water
usage is also at the similar time. For baseline, when it de-
tects hot water usage, it turns on water heater immediately.
Furthermore, because di↵erent homes are highly possible to
use hot water in similar time of evening, the peak demand
rises from 53.46kW to 90.50kW (at around 7pm and 11pm).
The power of the water heater in our simulation is 5.29kW ,
thus at least 8 homes turn on water heaters at the same time,
which introduces extremely high peak demand. For DPDF,
because it predicts hot water usage in future, it can turn on
water heater earlier or later to flatten peak demand. The
results show that DPDF’s peak demand is only 64.04kW ,
which is 29% lower compared to baseline.

5.1.2 Water Heater Scheduling
To better understand how homes schedule water heater

event, we show detailed water heater energy consumption
events of 10 homes. Due to limited space, we only show
water heater energy consumption events over two days in
Figure 15. The upper figure is the water heater energy con-
sumption events of the baseline. The X-axis is the time in
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Figure 14: Power consumption in community for one day

Figure 15: Water heater events over two days (Upper figure
is baseline and lower figure is DPDF)

second, and water heater energy consumption events of 10
homes is shown in 10 di↵erent colors. White color means
water heater is turned o↵. For the baseline, most of the
water heater energy consumption events last for longer pe-
riods. This is because the water heaters are turned on right
after hot water usage. After people take a show or bath for
ten minutes, the water heater will be turned on for around
1 hour to reach the high temperature threshold. Di↵erent
homes are highly possible to turn on water heaters at the
same time because most people take a show or bath in the
evening. For DPDF, the water heater energy consumption
events last much shorter. This is because each home can
detect voltage at the power line to infer power consumption
in the community. If power consumption in the community
is high, it can shift water heater energy consumption events
to flatten peak demand. Thus the water heater energy con-
sumption events of di↵erent homes will not collide.

5.1.3 Standby Loss
Because DPDF allows homes to turn on water heater ear-

lier or later. The temperature of the water heater may not
stay in a small range compared to baseline. And if homes
turn on the water heater too early, it will introduce high
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Figure 17: Distribution of temperature di↵erence

standby loss in water heater. To investigate the impact by
shifting water heater event, we show the real-time standby
loss over six days in Figure 16. Based on our standby loss
model, the standby loss is determined by hot water and en-
vironment temperature. We conduct our experiments for a
week. The temperature sensor deployed in basement (where
water heater locates) shows that the environmental tempera-
ture is almost the same through the week. Thus the standby
loss is mainly determined by the hot water temperature in
the water tank. For the baseline, it keeps the hot water tem-
perature between the low threshold and high threshold, thus
the standby loss is also kept in a small range. For DPDF,
it allows the water heater to turn on earlier or later to flat-
ten peak demand, thus the standby loss varies more than
the baseline. However, the average standby loss of DPDF
(2.77kJ/s) is almost the same compared baseline (2.39kJ/s).

5.1.4 Hot Water Usage
Though DPDF allows homes to turn on water heater ear-

lier or later, DPDF can also fulfill hot water usage correctly.
In Figure 17, we show the distribution of di↵erence between
the targeted temperature and the hot water temperature
when there exists hot water usage events. The targeted tem-
perature of hot water in our experiment is set as 50�C. For
the baseline, it turns on water heater immediately after hot
water usage, then the temperature of hot water is always a
little lower than the targeted hot water usage (mainly 2�C
to 3�C lower than the targeted temperature in Figure 17).
For DPDF, when a home predicts future hot water usage,
it can turn on water heater earlier to better fulfill the hot
water usage, thus the hot water temperature can be higher
than the targeted temperature for some time. And to flatten
peak demand, homes may also turn on water heater later.
In Figure 17, for most of time, the hot water temperature in
the water tank is only 2�C to 4�C lower than the targeted
temperature. Thus the impact on people’s hot water usage
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Figure 18: Impact of temperature threshold

behaviors is very low.

5.2 Advanced Evaluation Results
Because our system is designed for di↵erent environments,

such as di↵erent window sizes and water tank sizes at di↵er-
ent homes, it is crucial to investigate the system’s behavior
and sensitivity under diverse settings.

5.2.1 Impact of Temperature Threshold
In our design, homes turn on/o↵ the water heaters based

on local voltage to flatten peak demand in the community.
To ensure the temperature of hot water is always acceptable
for people’s usage, we set a temperature threshold of hot
water. If the temperature of hot water is lower than the
threshold, the water heaters will be forced to be turned on
to fulfill hot water usage.

The peak demand, STD (standard deviation) and standby
loss of di↵erent temperature thresholds are shown in Fig-
ure 18. The X-axis is the temperature di↵erences between
temperature threshold and user’s targeted hot water tem-
perature. For peak demand, it decreases when di↵erence
between the temperature threshold and the targeted tem-
perature increases from 4�C to 10�C. This is because with
a higher temperature di↵erence, homes can flatten peak de-
mand by turning on/o↵ water heaters for longer periods,
which reduces peak demand. However, peak demand with a
temperature di↵erence from 10�C to 16�C stays almost the
same. A possible explanation is with a higher temperature
di↵erence between the threshold and the targeted tempera-
ture, homes may turn on water heaters longer to fulfill future
hot water usage. However, hot water usage prediction accu-
racy also drops for longer periods, which increases the risk
of flattening peak demand for future periods. For STD, it
decreases with a larger di↵erence because even peak demand
is not flattened, power consumption is flatten by shifting the
water heater events. For standby loss, because homes turn
on the water heaters longer to fulfill the future hot water us-
age with a higher temperature di↵erence, hot water of high
temperature stays in the water tank longer, which causes a
higher standby loss.

5.2.2 Impact of Water Tank Size
The water tank size also has direct impact on the peak

demand. The peak demand, STD (standard deviation) and
standby loss of di↵erent water tank sizes are shown in Fig-
ure 19. For peak demand, it decreases when the tank size
increases. This is because with a larger tank size, homes can
shift more water heater events earlier to flatten the peak de-
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Figure 19: Impact of tank size

mand in future when current power consumption in the com-
munity is low. And homes can also turn o↵ water heaters
longer to avoid detected high power consumption and turn
on water heaters later. STD also decreases when the tank
size increases. Thus, increasing the tank size can flatten
the peak demand much better. Standby loss increases from
384kWh to 406kWh when tank size increases from 40 gal-
lons to 100 gallons. Considering the standby loss is for 10
homes in six days, for a single home, standby loss increases
only 0.36kWh per day. Thus, our design can flatten the peak
demand much better with a relatively low standby overhead
when the tank size is larger.

6. RELATED WORK
Our work is related to the following areas of previous work.
Peak Load Flattening: There have been various works

in the research community to flatten the peak demand [13].
In [8], a real-time distributed load control algorithm is pro-
posed to reduce the variance of aggregated load by shifting
the power consumption of deferrable loads to periods with
high renewable generation. Distributing load at a shared
electric vehicle charging lot is investigated to reduce peak
consumption [9]. In [14], large energy systems (including
HVAC) are scheduled to reduce peak demand. In our work,
we propose to flatten peak demand of the community in a
distributed way by leveraging water heaters.

Workload Scheduling: Several techniques have also
been proposed for improving building energy e�ciency by
monitoring the occupancy [4]. In [5], authors focus on schedul-
ing the actuation of the HVAC system by leveraging the ex-
isting WIFI infrastructure along with the mobile phones of
the occupants for fine grained occupancy information. In
[15] authors try to e�ciently heat the houses based on oc-
cupancy prediction. In [19], incentive-driven energy sharing
is proposed in microgrid for workload scheduling. to In [18],
a decentralized optimal load control mechanism is proposed
to provide contingency reserve in the presence of sudden
demand-supply mismatch. In our work, we schedule water
heater events to flatten peak demand in the community and
our evaluation results show our scheduling algorithm does
not a↵ect users’ hot water usage.

7. CONCLUSION
In this paper, we leverage the existing appliances (i.e.,

water heaters) in regular homes and introduce a distributed
real-time system that allows homes in a community to co-
operatively flatten the peak demand without a↵ecting the
homeowners’ behavior. Specifically, we i) investigated the

relationship between power consumption and voltage changes;
ii) developed an accurate power-voltage relationship model;
iii) designed a hot water usage prediction algorithm and a
distributed water heater scheduling algorithm. To evaluate
the performance of our system, we conducted real-world ex-
periments and large scale simulations with empirical data.
Evaluation results indicate that our design can e↵ectively
flatten the peak demand by more than 29% without a↵ect-
ing homeowners’ hot water usages.
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