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Abstract— As sensors spread across almost every industry,
the Internet of Things (IoT) is going to trigger an era of big
data. However, the abundance of available sensing data causes
new challenges when building IoT applications. One main
challenge is how to select proper data from large amount of
sensing data for learning useful information efficiently. Existing
approaches require developers to manage data for each specific
application, which is very time consuming since the developers
may not have enough knowledge about the dynamic changing
data quality of different sensors. In this paper, we propose a
data management middleware to learn the correlations between
time series sensor data without prior knowledge. The learned
correlation is then applied to select the useful sensor and recon-
struct the incorrect data. To generalize the correlation models
for each application, we utilize the dynamic feedback from the
application to update the data selection and reconstruction. We
evaluate our data management middleware in smart grids. The
evaluation results show that our middleware can achieve better
application performance with the help of dynamic feedback,
data reconstruction and data selection.

I. INTRODUCTION

More and more sensors are being deployed in the environ-
ment to provide sensing data to support various Internet of
Things (IoT) applications. With these millions of IoT devices
deployed in the environment and connected to Internet, the
enormous volumes of sensor data will be generated, and
trigger an era of big data for IoT [3]. Many IoT applications
are built using a data-driven approach: try to deploy as many
sensors as possible and utilize as much available data as
they can. However, the challenges of more sensing data
sometimes overweighs the benefits, especially when there
is no clear indication on the usefulness of a type of sensor
data for a specific application. More sensor and sensor data
normally increases the budgetary cost of the application
and complexity of data processing in the application. More
troublingly, we have found that the enormous volumes of
data from a large amount of sensors may lead to less correct
or even incorrect information due to overfitting problem of
learning models [13]. Therefore, in such an IoT big data era,
it is increasingly critical and challenging to find the relevant
and reliable sensing data that fits specific applications, which
is also a core problem faced by most IoT applications.

To cope with the massive and unreliable sensor data in
the IoT, we propose an application driven data management
middleware between sensor data and applications. The mid-
dleware will dynamically learn the most relevant data for
the application from the large amount of raw sensor data
and reconstruct missing or incorrect data to be used in the
application. The middleware can be used to not only build

better applications by dynamically finding right types of
sensor data, but also help application developers to decide
which sensors are actually useful for their applications.

This paper focus on two challenges of building such a data
management middleware. One challenge is how to have a
generic approach that is able to identify the usefulness and
correctness of each sensor data for different applications.
To address this challenge, we use temporal and spatial
correlations among different sensor data, which are learned
without prior knowledge to select the useful sensor data and
reconstruct missing or unreliable data. Another challenge
is that the data requirements of an application at different
time are varying due to the nature of time series sensor
data. To address this challenge, we apply feedback based
data management, which will learn from the performance
evaluation of the application to obtain feedback. Then the
feedback can be further applied to update the correlations
among different sensor data. Specifically, we summarize our
contributions as follows:
• We propose a data management middleware to find useful
sensor data and reconstruct unreliable data for application.
The temporal and spatial correlations are learned from sensor
data without prior knowledge. The learned correlations are
then applied to find the useful sensor data and reconstruct
the data with low quality.
• To generalize our data management middleware for data
reconstruction and selection, we utilize the dynamic feed-
back of different applications based on the performance
of application. The dynamic feedback is then applied to
update the data reconstruction and selection based on data
correlation models.
• We evaluate our data management middleware using a
case study in smart grids. The evaluation results show that
our middleware can achieve better application performance
with the help of dynamic feedback, data reconstruction and
data selection.

The rest of the paper is organized as follows. The system
overview is introduced in §2; detailed system design, and
evaluation are provided in §3, §4, respectively; related work
is discussed in §5; finally, we conclude our paper in §6.

II. DESIGN OVERVIEW

To provide a generic sensing data management middle-
ware for IoT applications, we propose the system design
as shown in Figure 1, which includes three main com-
ponents: sensing data reconstructor, sensor data selector,
correlation mining and feedback controller. In summary,
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Figure 1: Design Overview
our system works as follows: (i) the data reconstructor
identify unreliable data and reconstruct their values; (ii)
the data selector find the relevant data for application and
provide sensor recommendation for application layer; (iii)
the correlation mining then takes the relevant data to learn
the correlations among the data and provide the correlation
levels for the executor; (iv) the executor takes in the relevant
data, correlations and the application specific goal from
different applications to obtain the results for application;
(v) the results of the executor are then evaluated by feedback
controller to identify the correlation between sensor data
and application performance and generate feedback for data
reconstructor to correct data and for data selector to update
the relevant data over time.
• Correlation Mining. To reconstruct and select the sensing
data, we investigate the correlation models among data.
Specifically, we investigate i) temporal correlation; ii) cor-
relation between different types of the sensors; and iii)
correlation between the same type of sensors deployed in
different places.
• Data Reconstructor. To deal with unreliable data problem,
the data reconstructor uses the feedback from performance
evaluation to identify the unreliable data in real time and
reconstruct their values based on mined correlations.
• Data Selector. To deal with data selection problem, the
data selector is introduced to find the subset of the data
that is relevant to the specific application. The key idea is to
utilize the feedback from performance evaluation to learn the
relevance between the data and the performance evaluation
of the application.
• Executor. The executor runs application specific tasks
based on reconstructed and selected data and mined cor-
relations. Each IoT application has its own specific goals
and tasks, such as which values to predict and which events
to classify. These tasks will be able to run within our
executor without any modification. We believe our executor
can have better or similar performance by reconstructing
unreliable data and only selecting relevant sensing data.
Executor results will be sent to both feedback controller and
application itself.
• Feedback Controller. The feedback controller interpret
the relationship between the selected data and the application
performance using the selected data. For deterministic ap-

plications, we investigate the correlation between data errors
and performance of the application to provide feedback for
the data selector to find the relevant data for the application.

III. DATA MANAGEMENT COMPONENTS

In this section, we will introduce the detailed design of
our data management middleware. First, we present how
the temporal and spatial correlations among time series
sensor data can be learned without prior knowledge and how
to evaluate the Pearson correlation coefficient among time
series data. Then, we explain how our data reconstructor
and data selector can be used to correct misreading data,
find the relevant data and recommend sensors for application
layer based on the learned correlations. Finally, we elaborate
how the feedback controller can utilize the performance
evaluation to provide dynamic feedback.

A. Data Correlation Mining

In this paper, we use correlation (or, similarity) to discover
groups of objects with similar behaviors and discover poten-
tial signatures of time series sensor data by correlations.

For correlation notation, we use lowercase bold letters for
column vectors (x,y, · · · ) and uppercase bold for matrices
(X,Y, · · · ). The Euclidean norm of x is ||x|| and the
size of x is |x|. We denote a time series sensor data x
as an indexed collection of random variables X , x =
{X(1), X(2), · · · , X(t), · · · }. In this paper, we use x(i, j)
to represent the sequence {X(i), · · · , X(i+ j − 1)}, which
starts with X(i) with length of j. The covariance of two
random variables X , Y is defined as Cov[X,Y ] = E[(X −
E[X])(Y − E[Y ])]. If {X1, X2, · · · , Xm} is a group of m
random variables, their covariance matrix C ∈ Rm×m is the
symmetric matrix defined by cij = Cov[Xi, Xj ], 1 ≤ i, j ≤
m. To quantify the correlation between two sequences of
data, we use Pearson correlation in this paper. The Pearson
correlation between two sequences of data xi and xj can be
calculated as:

ρij =
|Cov[xi,xj ]|

Var[xi]Var[xj ]
(1)

Cov[xi,xj ] is the correlation between sequences xi and
xj . Var[xi] and Var[xi] are the variances of the two se-
quences. The Pearson correlation of two vectors calculated
through Equation (1) is ranging from 0 to 1, and higher value
means that the correlation between two vectors is stronger.
In the following sections, we will introduce how to identify
the temporal and spatial correlations in time series sensor
data and how these correlations can be learned without prior
knowledge.

1) Temporal Correlation: Since a type of time series sen-
sor data is usually collected by monitoring a certain event, if
there is no temporal correlation within a time series sensor
data, it is unlikely that the sensor data will be useful for
IoT applications. If more than two partial sequences of data
have strong correlations among them, we then denote these



sequences as one signature of the data. These signatures are
the unique information of the time series sensor data and can
be very useful for IoT applications. Therefore, we design a
temporal signature detection algorithm on the data set.

2) Spatial Correlation: Spatial correlation is another type
of correlations that widely exist in time series sensor data
since the same type of sensors may be deployed in different
locations to monitor the same event. For example, weather
conditions within certain geographical areas are usually very
similar. In this case, one sensor data can be potentially
applied to reconstruct the other sensor data.

To accurately capture the correlation between two time se-
ries sensor data, we need a time-evolving correlation model
that should be able to capture time-evolving correlations
between two time series sensor data. An intuitive solution
is to calculate the Pearson correlation of two sequences.
However, this correlation model of time series is too simple
and has two problems: (i) it cannot capture more complex
relationships, and (ii) it is too sensitive to transient changes,
often leading to very dynamically changing correlation val-
ues, which is not useful for applications. To address these
two problems, for two sequences data with window size w,
we not only calculate the correlation between these two
sequences but also the correlation of sequences that are
near t. In detail, we will consider exponential window:
we use all the windows before t, specifically xi(τ, w) for
t−k+ 1 ≤ τ ≤ t, and we weigh those sequences that close
to t more, by multiplying each window by a factor of β.

Given a time series xi, the local correlation estimator
ρeij(t, w) of two time series data xi and xj at time t using
a exponential window is defined as:

ρeij(t, w) =

t∑
τ=1

ρij(τ, w)βt−τ (2)

B. Data Reconstruction and Selection

With the more and more collected sensor data, the
complexity of data processing will increase exponentially.
Meanwhile, more data may bring more errors and cause
overfitting problem. In this section, we first introduce how to
utilize the correlation mining results to reconstruct missing
readings. Then, we learn the relevance of the data for data
selection.

1) Data Reconstruction: Based on our experiences and
other work, the sensor data collection may suffer from
missed readings and unreliable readings. In Sections III-A1
and III-A2, we show that how temporal and spatial cor-
relation among different sensor data can be learned. In
this section, we present how utilize these correlations to
reconstruct the sensor data. To utilize these correlations, we
first propose to define the temporal correlation score Pi(t, w)
for a sequence data xi(t, w) as:

Pi(t, w) =

w∑
τ=t

pi(τ)/w (3)

pi(τ) is the Pearson correlation between the data and
signatures. xi(t, w) has strong temporal correlation when
Pi(t, w) is close to 1 and weak temporal correlation when
Pi(t, w) is close to 0. For spatial correlation score, it can
be directly obtained by calculating their Pearson correlation
with exponential window based on Equation 2. With the
temporal and spatial correlation models, we can reconstruct
the missing data as follows:

x̄i(t, w) = P̂i(t, w)si +

m∑
k=1

xk(t, w)ρ̂eik(t, w) (4)

P̂i(t, w) is the estimated temporal correlation score be-
tween the signature and missing data and ρ̂eik(t, w) is the
estimated Pearson correlation with exponential window. Due
to the missing data, we are not able to get Pi(t, w). However,
we can estimate P̂i(t, w) based on known sensor data
sequence xi(t − w,w). The estimated temporal correlation
score can be calculated as:

P̂i(t, w) = max
τ∈[1,w]

Pi(t− τ, w) (5)

Also, we can estimate ρ̂eik(t, w) based on known sensor
data sequences xj(t − w,w), j 6= i. The estimated spatial
correlation can be calculated as:

ρ̂eik(t, w) =

w∑
τ=1

ρeik(t− τ, τ)/w (6)

Finally, the reconstructed data x̄i(t, w) can be calculated
based on estimated P̂i(t, w) and ρ̂eik(t, w).

2) Data Selection: With the correlation between sensing
data and performance, we then need to translate these
correlation into sensor/data selection. If a time series sensor
data show strong temporal correlation and have specific
patterns, then the time series sensor data should have higher
probability to be selected in later data selector and has
higher impact in the executor. In the meanwhile, if two
time series sensor data have strong spatial correlation, it
means that there are containing similar information that is
redundant, thus we can only select one of them in data
selector. Therefore, in this paper, we use the temporal and
spatial correlation to decide which time series sensor data is
more important to the application. A naive solution is select
a group of the sensor data with highest temporal correlation.
However, each sensor data are also spatially correlated, if
multiple sensor data has strong spatial correlation, then it is
highly possible that they all have high temporal correlations.
Thus, in this case, the sensor data in the selected group
will be very similar and may not be able to show all the
information contained in these sensor data. To avoid this
scenario, we propose a data selection algorithm based on
temporal and spatial correlation among sensor data and the
detailed process is shown in Algorithm 1.



Algorithm 1 Data Selection Algorithm
Input: x1(t, w), · · · ,xm(t, w)
Output: C2

1: C1 = {x1(t, w), · · · ,xm(t, w)}, C2 = ∅;
2: while C1 6= ∅ ∨ Pi(t, w) > ci do
3: Fetch the data with highest Pi(t, w);
4: for every data sequences in C2 do
5: if ρij(t, w) < ρth then
6: Update x̂i(t, w);
7: Remove xi(t, w) from C1 and add x̂i(t, w) to C2;
8: end if
9: end for
10: end while

C. Feedback Controller

The feedback controller in our data management middle-
ware will learn from the performance of the application to
generate feedback for data reconstructor and selector. With
the correlation between data errors and performance, the
feedback will be transformed into data requirements for data
selection process. In this paper, we need to decide what prob-
ability of different correlations is related to the application
performance change. For deterministic applications, since
the performance of application is best when the sensor data
is 100% correct. Thus, we can investigate the correlation
between data errors and performance difference to under-
stand the data requirement of the application. In details, the
deterministic feedback can be dynamically updated with the
following steps:

Step 1: The application layer provides feedback error,
e(t), from the application layer, the the system calculates
the (∆e(t)) and store it into a FIFO queue Q(t) of size K.

Step 2: After the feedback, the program will calculate
the changes of errors, α(t), using the following function:

α(t) =

K−1∑
i=0

∆e(t− i)−
K∑
i=1

∆e(t− i) (7)

Step 3: Based on the error α(t), input them into a
function to find a parameter β(t), which is used to increase
the correlation threshold that filters out unrelated features if
their correlation is less than the threshold.

β(t) = 1− 0.01 ∗ tanh(α(t)) (8)

where tanh() is the hyperbolic tangent function, which is
the hyperbolic analogue of the Tan circular function used
throughout trigonometry.

Step 4: If α(t) > 0 (positive errors) which means the
error is increasing. Then we will apply β(t) to the correla-
tion threshold ci(t) of those data not currently selected to
increase their chance of being selected.

Step 5: If α(t) < 0 (negative errors), which means
the error is decreasing. Then we will apply β(t) to the
correlation threshold ci(t) of those data selected to decrease
their chance of being selected.

Step 6: In order to remove the zigzagging effect of
threshold, when α(t) < 0, the correlation threshold ci(t)
will be increased more slowly. which means, ci(t) = ci(t−
1) ∗ (β(t) + d)/(d+ 1), where d ≥ 1 and is constant.

Step 7: The correlation threshold ci(t) is then applied to
each data to select data of high correlation and send them
to the application.

With the above steps, the correlation threshold ci(t) used
for data selection will be updated based on the application
performance. Note that the data with higher correlation is
not always selected since we need to consider the data
redundancy, which is evaluated by spatial correlation.

IV. EXPERIMENTAL EVALUATIONS

To evaluate our proposed data management middleware,
we conduct extensive experiments with one case study in
smart grids. In this case study, we consider a smart grid,
illustrated in Figure 2, consists of generation technology
(e.g., local electricity generators). To ensure compatibility
with the traditional power grid, we adopt the architecture,
which is similar to the one used in a traditional power
grid. Within the smart grid, sensors are deployed in each
home to collect energy related data (e.g., power, voltage
and frequency) and send to controller. The controller then
decides the generations to balance the power demand and
supply in real-time based on energy consumption in next few
hours. However, based on four years’ experiences of energy
monitoring, the sensor reading can be missed and unreliable,
thus, the data management middleware proposed in our
paper will be applied to the collected raw data and provide
reconstructed and selected data for demand prediction.

We deploy eGauge power meters at individual homes
to collect the energy consumption data every minute. In
our simulation, we use the power consumption traces that
we collected from 726 homes (located either in Texas,
Massachusetts or California) for more than one year. An
example of deployment is shown in Figure 3(a). To make
the figure easy to follow, we only show the aggregated
power consumption for 12 months in Figure 3(b). It can be
found that the power consumption for different days varies
significantly and is higher in summer while lower in winter.
Baselines. We compare two baselines in the evaluations:
i) Data management without data selection (WoDS), in
which we use all the sensor data to perform application
specific tasks; and ii) Data management with data selection
(WDS) but no dynamic feedback, which is used to show the
performance gain by data selection. In all the experiments,
our propose data management middleware is referred as data
selection with dynamic feedback (WDS + FB).
Metrics. Because we predict the aggregated power con-
sumption in smart grid. Thus, we use two metrics to evaluate
the performance of our approach: i) MAPE (Mean Absolute
Percentage Error) and ii) RSME (Root Square Mean
Error). MAPE and RMSE both measure the differences
between outputs compared with ground truths. The lower
the measure, the closer the methods outputs to the ground
truths, and the better it performs. RMSE emphasizes on
larger errors compared with MAPE.
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Figure 3: Sensor Deployment and Data Collection
1) Evaluation Results: Overall Performance. The

MAPE and RMSE of demand prediction are shown in
Figure 4(a) and 4(b) respectively. For aggregated demand
prediction, we utilize both temporal and spatial correlation
among energy consumption of all individual homes. In our
experiment, WoDS utilizes the spatial correlations of all 726
homes, WDS utilize their correlation to select the homes
that have strong correlation with the aggregated demand. For
WDS + FB, the prediction error is then used for adjust the
weight for the homes that are used for demand prediction.
From Figure 4(a), WDS and WDS+FB have much lower
(38.9% and 47.2% ) MAPE . Because MAPE is calculated
with the average error percentage, the difference of MAPE
between WDS and WDS+FB are relative small. However,
in Figure 4(b), we can find the performance of WDS+FB is
much better (24.9% lower RMSE) than WDS.

Dynamic Feedback. To find out why dynamic feedback
can provide better demand prediction accuracy, we show
a 24 hour prediction results of ground truth, WDS and
WDS+FB in Figure 5. From hour 2 to hour 3, the aggregated
demand increases significantly from 508kW to 1368kW .
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Figure 6: Impact of Missing Data
For WDS, since it does not have the dynamic feedback for
real-time prediction accuracy, it can not follow the sudden
increase of the demand. While for WDS+FB, though the
prediction accuracy is only 76% due to the sudden increase
at hour 3, the prediction accuracy is 94.5% for hour 4
with dynamic feedback. The rest part of the figure show
the similar phenomenon. To predict sudden high increase
or decrease, WDS+FB can achieve much better prediction
accuracy than WDS.

Missing Data. In these sets of simulations, we simulated
the accurate data to generate missing data with different
missing rate from 4% to 20%. The results of reconstruction
accuracy are shown in Figure 6(a). With the increase of data
missing rate, reconstruction accuracy decreases slowly. Even
with 20% data missing rate, the average of reconstruction
accuracy is above 80%. Thus, our design is robust to high
data missing rate. With the reconstructed data, we evaluate
the performance of our design with different data missing
rate. The results are shown in Figure 6(b). The X-axis is the
percentage of missing data; and Y-axis is the MAPE value of
prediction results. We can find that the prediction accuracy
decreases with higher missing data rate.

Impact on Generation Control. With different demand
prediction accuracy, we also evaluate how different predic-
tion accuracy will impact on the performance of generation
control. Because in our simulation, the local generator will
be the sole energy source for the smart grid, if the generation
is higher than demand, then the extra energy will be wasted,
which introduce high operation cost. If the generation is
lower than demand, then some of the homes will be out of
power for that period. In this simulation, we apply simple
generation control algorithm to generate the same amount
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Figure 7: Impact on Generation Control
of the energy that are predicted to be consumed in next
hour. The operation cost and failure time per day are shown
in Figure 7(a) and 7(b). For operation cost, because WoDS
has lowest prediction accuracy, thus the operation cost will
be highest while WDS+FB with highest prediction accuracy
has the lowest operation cost. For average failure time,
since ground truth will always fulfill the energy demand,
there would be no failure time. Because WDS+FB can
predict demand more accurately, the failure time can be
reduce by 47% compared to WoDS. Therefore, with our
data management middleware, the generation scheduler can
minimize the operation cost and failure time.

V. RELATED WORK

Our work is related to the areas of sensor data collection
and management:

Sensor Data Collection. With the growing deployed
sensor networks, more and more data needs to be collected
from the sensors [1, 6, 11]. Many works have focused on
developing new technologies for data collection in sensors
[7, 10]. In the meantime, since there are normally limited
energy storage in sensors, many works are aim to reduce
the power consumption of individual sensors by utilizing
proper data management techniques and minimizing the
transmission time of wireless communication [12, 15]. Our
research seeks to expand upon the existing works and we
are able to detect and reconstruct unreliable sensor data at
software level in real-time based on data correlation mining.

Sensor Data Management. With the rapid increasing
collected sensor data, it is important to select proper sensor
data for the specific application [4, 5, 9]. Algorithms are
proposed to find the best balance for a particular application
between data latency, sensor energy use, and data accuracy
[2, 14]. Many frameworks for managing the growing number
of IoT devices are proposed to make the collected data more
accessible for everyday use [8]. Different from existing data
management in different applications, our middleware are
generic and can work with different types of applications.

VI. CONCLUSION

Different from many approaches that are data-driven and
try to use as much available data as possible, in this paper,
we try to employ an application-driven approach that select

data only if it is relevant to the application. To achieve this
goal, we propose a data management middleware to learn
the correlations between time series data from sensors with-
out prior knowledge. To generalize the correlation models
for different applications, we utilize the adaptive feedback
from each application to reconstruct unreliable incoming
sensor data in real-time. Then, the learned correlations and
reconstructed data are used to select sensor data that are
relevant to the application. The evaluation results show that
our middleware can achieve better application performance
with data reconstruction, selection and dynamic feedback.
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