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Abstract—Accurate energy demand prediction is very impor-
tant for smart grids to conduct demand response and stabilize
the grids. In previous work, many prediction algorithms are
proposed to improve the energy consumption prediction accu-
racy based on the aggregated energy consumption in the whole
grid. Recently, with the increasing installations of smart meters
in individual homes, high granularity (e.g., per minute) energy
consumption data in individual homes becomes available and
provides us a great opportunity for better energy consumption
prediction. In this paper, we propose M-Pred to utilize the high
granularity energy consumption data collected by smart meters
in individual homes for better energy consumption prediction
in smart grids. In M-Pred, we propose a learning algorithm to
learn energy consumption patterns of individual homes from
the high granularity energy consumption data. The consump-
tion patterns we learn from homes are then applied for energy
consumption prediction in smart grids. Furthermore, since not
every home in a smart grid is equipped with a smart meter,
we propose a matching and prediction algorithm to leverage
the multi-granularity energy data for accurate consumption
prediction. We conducted extensive system evaluations with 726
homes’ minute-level power consumption data for more than
12 months. The simulation results show that our design can
provide accurate energy consumption prediction for the next
hour with negligible errors (e.g., Mean Absolute Percentage
Error is 2.12%).

I. INTRODUCTION

Compared to traditional power grid, smart grids i) are
expected to be robust against grid disturbance or outage; ii)
can use more environmental friendly renewable resources;
and iii) can utilize the rich information from homes for
better energy management. However, to better utilize energy
generation in smart grids, one main challenge is how to
accurately predict the energy demand (i.e., consumption).
This is because generators in smart grids need to generate
enough power for energy usage to avoid power outage. To
improve the accuracy of energy demand prediction, some
prediction algorithms [5, 9] have been proposed based on the
aggregated energy consumption in the whole grid. One major
limitation of these approaches is that they are predicting
energy consumption for the next day or a even longer time
period. To achieve faster demand response in smart grids,
energy demand prediction for the immediate near future
(e.g., the next hour) is more desirable. Another limitation of
the existing approaches is that they only predict the hourly
average energy consumption. However, energy consumption

over an hour can change dynamically. If generators only
generate the energy based on the average energy consump-
tion, it is highly possible that the peak power demand will
be higher than the power generated in smart grids. Thus, it
is very important to predict not only average hourly energy
consumption but also the peak demand within an hour. To
address these limitations, we propose to utilize both the
energy consumption in individual homes and aggregated
energy consumption in smart grids for more accurate energy
consumption prediction. With the increasing installations of
smart meters in individual homes nowadays, high granularity
(e.g., per minute) energy consumption data in individual
homes becomes available [20, 14]. Because high granularity
energy consumption in individual homes provide more in-
formation of consumption patterns, high granularity energy
consumption data from some of the individual homes with
smart meters provides us a great opportunity for better
energy consumption prediction.

To utilize the high granularity energy consumption data
from some of individual homes, there are three big data
related challenges: i) the huge amount of high granularity
energy consumption data collected from homes introduces
the severe data storage issue; ii) the energy consumption
prediction operation should have low computation overhead
for faster demand response; and iii) not every home in the
power grid has a smart meter for monitoring high granularity
energy consumption data, thus we need to predict energy
consumption and peak demands based on different granu-
larities of energy consumption data from different homes.
To address these three challenges, we propose M-Pred for
accurate energy consumption and peak demand prediction in
smart grids. In M-Pred, to reduce the large amount of data
storage, we propose to store the energy consumption patterns
instead of the whole energy consumption data. Thus, a
learning algorithm is proposed to learn energy consumption
patterns of individual homes from their energy consumption
data. To reduce the computation complexity and communica-
tion overhead for energy consumption prediction, we design
a distributed energy consumption prediction algorithm to
utilize the consumption patterns of homes. Furthermore,
considering not every home in power grids has a smart meter,
we propose a matching algorithm to cope with different
granularity of the collected energy consumption patterns



from individual homes and aggregated energy consumption
in the grids. Then the matching results can be applied
to utilize the energy consumption patterns collected from
homes that have smart meters. The main contributions of
this paper are as follows:
• To the best of our knowledge, this is the first work to
utilize the spatial and temporal features of the detailed power
consumption in individual homes for more accurate power
consumption prediction in smart grids.
•With the analysis of massive minute-level power consump-
tion data, we propose M-Pred to learn energy consumption
patterns of individual homes from their energy consumption
data and then utilize these patterns to predict the power
consumption in smart grids. Considering that not every home
in smart grids has a smart meter, we also propose a matching
and prediction algorithm for accurate energy consumption
prediction in such smart grids.
• To validate our design, we evaluate our work extensively
with more than 12 months’ empirical minute-level power
consumption data from 726 homes’. The evaluation results
show that our design can provide accurate energy con-
sumption prediction for the next hour with Mean Absolute
Percentage Error (MAPE) of 2.12%.

The rest of the paper is organized as follows: the mo-
tivation of this project is introduced in §II; the problem
formulation and our detailed design are described in §III
and §IV, respectively; implementations and simulations are
provided in §V; related work is discussed in §VI; finally, we
conclude our paper in §VII.

II. MOTIVATION

In this section, we first explain that why peak demand
forecast is needed compared to hourly average power con-
sumption in smart grids. Then we give an example from our
empirical data to demonstrate that the power consumption
patterns of high time granularity data at individual homes
can be beneficial for better prediction. Finally, we summa-
rize the opportunities and challenges of utilizing high time
granularity energy consumption data in individual homes.
A. The Need for Peak Demand Forecast

Peak demand is crucial in real-time demand response
applications in smart grids. In this section, we investigate
the relationship between hourly average power consumption
and peak demand during the hour. We collect the minute-
level power consumption data from 726 homes within a
city. For hourly average power consumption, it is defined
as the average minute-level power consumption within one
hour and peak demand is defined as the maximum power
consumption in each hour. The relationship between hourly
average power consumption and peak demand of 726 homes
is shown in Figure 1. For the same hourly power consump-
tion in these homes, the peak demand during the hour can
be quite diverse. For example, when hourly average power
consumption is around 672kW , the difference between peak
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Figure 1: Average VS peak hourly energy consumption
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Figure 2: Hourly power consumption over two weeks (the
top figure shows the aggregated power consumption in
the smart grid, and the bottom figure shows the power
consumption data from a single home)

demand and hourly average power consumption varies from
1.16MW to 1.85MW , which is almost 700kW . Further-
more, with the higher hourly average power consumption,
the diversity of the peak demand is more significant. This
indicates hourly power consumption misses a lot of vital
information on how homes consume energy. The missing
information can be crucial for energy generation control and
scheduling in smart grids. For example, if we only predict
the hourly power consumption in future, the generators may
generate either too much energy or not enough energy to
cause power outage. Therefore, it is important to not only
predict the hourly average power consumption but also peak
demand within an hour.

B. The Need for Power Consumption in Individual Homes
One main limitation of existing prediction approaches is

that they only utilize the aggregated power consumption
in smart grids to predict hourly power consumption in
short-term. Unfortunately, because not every home in smart
grids has the same consumption pattern, the aggregated
power consumption in smart grids does not show strong
correlation over time. The aggregated hourly average power
consumption in a smart grid over two weeks is shown in top
figure of Figure 2. We can find that the power consumption
patterns in each day are quite different. Besides, the power
consumption pattern in two consecutive weeks are also
different. Therefore, if we utilize previous day’s power
consumption to forecast current day’s power consumption
with aggregated data, the forecast accuracy would be low.
In the meanwhile, from the bottom figure of Figure 2, we
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Figure 3: Power consumption pattern in a single home
find that power consumption patterns of a single home in
consecutive two weeks are quite similar. The reason is that
for a single home, the weekly activities of homeowner are
normally fixed with minor varieties. While in a smart grid,
the minor varieties of different homes aggregate together,
which causes that the aggregated power consumption pat-
terns of different periods are different. Therefore, if we can
utilize the power consumption patterns in individual homes,
power consumption in smart grids can be better predicted.
C. The Need for High Time Granularity Data

In previous sections, we show hourly energy consumption
in smart grids has weak correlation over time. Thus the
energy consumption prediction based on aggregated energy
consumption is not accurate. In this section, we investigate
the correlation of high granularity energy consumption data
in a single home. Hourly energy consumption and minute-
level energy consumption data of a single home are shown in
Figure 3. The top figure is the minute-level energy consump-
tion in a single home for 12 hours. We can find the energy
consumption pattern of two days are quite similar except
there are several minutes delay between two days. This is
because homeowner in a single home has relatively stable
behavior pattern, which consumes similar amount of energy.
However, the hourly energy consumption does not show the
same phenomenon in the bottom figure. This is because
even though homeowner has similar energy consumption
pattern, the small delay of energy consumption makes the
energy consumption pattern disappear in hourly energy
consumption. Thus, to realize real-time energy consumption
prediction, it is important to utilize the minute-level energy
consumption data in individual homes.
D. Challenges of Utilizing Energy Consumption Patterns

From the empirical results of previous sections, we find
out energy consumption patterns of homeowner can be
explored with high granularity energy consumption data in
individual homes. Then the explored energy consumption
pattern in individual homes can be beneficial for energy
consumption prediction in smart grids. However, there are
many challenges for utilizing energy consumption pattern
in individual homes. First of all, high granularity energy
consumption data that reveals energy consumption pattern
are large amount of data especially for large amount of
homes in smart grids. Thus, we need an efficient algorithm
to first learn energy consumption patterns in individual
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Figure 4: System Overview of M-Pred
homes and then use the learned consumption patterns for
energy consumption prediction. Secondly, in reality, not
every home in the smart grids is deployed with a smart
meter for monitoring high granularity energy consumption
data. Thus, it is important to investigate how to utilize partial
of the high granularity energy data from homes in smart
grids to realize real-time energy consumption prediction.
To address these challenges, we propose M-Pred, which
utilizes different granularity of energy consumption data
from individual homes for energy consumption prediction
in smart grids.

III. PROBLEM FORMULATION

In this section, we provide an overview of M-Pred,
describe how energy consumption in individual homes can
be utilized and present our design goal.

A. Overview of M-Pred
To realize real-time energy consumption prediction in

smart grids, we propose M-Pred, which utilizes the high
granularity energy consumption data from individual homes
to predict energy consumption in smart grids. The system
overview of our design is shown in Figure 4. In smart
grids, some homes are deployed with smart meters for
monitoring high granularity energy consumption data. The
energy consumption data is then processed locally for pattern
recognition (detailed in § IV-A). The patterns recognized
can be first utilized for energy consumption prediction in a
single home. Then, to reduce the computation complexity
and communication overhead for energy consumption fore-
cast, a distributed energy consumption prediction algorithm
is proposed to utilize the consumption patterns learned
from homes. The learned energy consumption patterns from
different homes will be clustered and then applied for
energy consumption prediction in smart grids (detailed in
§ IV-B). Considering that not every home in smart grids is
deployed with a smart meter, an energy matching algorithm
is proposed for smart grids in which only partial homes are
deployed with smart meters (detailed in § IV-C). Finally,
the energy consumption prediction can be latter used for
generation scheduling and control to avoid power outage
and improve the energy efficiency in smart grids.



Notations Definitions
N Number of home in a smart grid
pi(t) Original power consumption of home i at t
di(t) Predicted power consumption of home i at t
ei(t) Prediction error of home i at t
hi(t) Predicted peak demand of home i at t
S Power consumption pattern set S
sdist(X1, X2) Distance between two vectors X1 and X2

cij Consumption correlation between home i and j

Table I: Definitions of notations

B. Design Goal
To predict power consumption with high time granularity

in short term, we propose a middleware M-Pred, which is
designed to be run at both local smart meters and central
servers. Due to the large amount of high granularity en-
ergy consumption data, the computation and implementation
complexity of M-Pred should be low. Let {pi(1), · · · , pi(t)}
be the original minute-level power consumption series
for home i, {p(1), · · · , p(t)} be the aggregated energy
consumption in smart grids, and {d̂(1), · · · , d̂(m)} and
{ĥ(1), · · · , ĥ(m)} be the peak demand and hourly average
power consumption in smart grids, respectively. Then we
have

h(i) =

j=N∑
j=1

k=i∗60∑
k=i∗60−59

pj(k) (1)

d(i) =
k=i∗60
max

k=i∗60−59

j=N∑
j=1

pj(k) (2)

Our design goal is to minimize the prediction error of

both hourly average power consumption
i=m∑
i=1

{h(i) − h(i)}

and peak demand
i=m∑
i=1

{d(i)−d(i)}, where h(i) and d(i) are

predicted hourly average and peak demand. Note that our
proposed design M-Pred is used to provide accurate power
consumption (hourly average and peak demand) prediction
in both a single home and smart grids. Also, due to different
applications, the energy power prediction should also be able
to conducted for different prediction window size (e.g., next
1 hour, 4 hours or 1 day).

IV. SYSTEM DESIGN

In this section, we introduce the main design of M-Pred.
Our design consists of three parts: i) power consumption
patterns recognition in a single home; ii) power consumption
prediction in smart grids; iii) power consumption prediction
with limited data from individual homes. In the end, we
analyze the performance and complexity of M-Pred.

A. Consumption Pattern Recognition
Different from previous prediction model based on his-

torical data, we need to predict the power consumption in
the immediate future (e.g., next minute) for real-time control

Algorithm 1 Pattern Recognition Algorithm
1: S = ∅;
2: while t < T do
3: ρmax = 0, index = −1;
4: for detected consumption pattern Si do
5: Calculate ρi(t) based on Equation (3);
6: if ρi(t) > ρmax then
7: ρmax = ρi(t), index = i,
8: end if
9: end for

10: if ρmax > ρmin then
11: Detect a new consumption pattern Snew and add

to S;
12: t = t+ length(Si);
13: else
14: t = t+ 1;
15: end if
16: end while

because of the limited energy storage units in smart grids.
Thus the power consumption data of yesterday or last month
can be much less useful. And because there are different
power consumption signatures for different loads, we can
predict the data based on the detected power consumption
signatures. To evaluate our idea, we use trace data of one
year for one home to investigate the correlation between
power consumption of different time gaps.

We first run a power consumption pattern detection algo-
rithm on the data set to recognize the power consumption
patterns. In this paper, we use a Euclidean distance-based
function to quantify the similarity between two vectors. The
distance between two vectors can be calculated as:

ρi,j =
1

l(Si)

l(Si)∑
t=1

(Si(t)− Sj(t))
2 (3)

If the distance of two vectors calculated through Equation
(3) is small, then the similarity of two vectors is high.
Then we go through the whole data set to find the possible
consumption patterns. To simplify the algorithm, we use
fixed length of energy consumption patterns. The algorithm
we use is shown in Algorithm 1. At the beginning, the
consumption pattern set S is empty. For t < T , we calculate
similarity between power consumption data and recognized
consumption patterns based on Equation (3). If we find the
similarity between current power consumption and existing
power consumption pattern is higher than current maxi-
mum similarity, we reassign maximum similarity and mark
index = i. Then we compare the maximum similarity
we find to the threshold of minimum similarity ρmin. If
ρmax > ρmin, we then detect a new consumption pattern
Snew and add it to consumption pattern set S. Then, we
update t = t + l(Snew) for further recognition. Otherwise,
we update t = t+ 1 to continue the recognition process.

To evaluate the performance of our consumption pattern
recognition algorithm, we show some of the recognized
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Figure 5: Some examples of signatures
consumption patterns from one home in Figure 5. For
example, the left top figure is the periodical activity of
refrigerators while other three consumption patterns are the
combinations of several appliances activities.

1) Consumption Pattern Fitting: With the recognized
consumption patterns in individual homes, future power
consumption can be predicted. However, to enable power
consumption prediction, the length of energy consumption
pattern have to be long enough (e.g., 120 minutes in Figure
5). To save the storage in smart meter and communication
overhead for future energy consumption prediction in central
server, we introduce polynomial curve fitting to sketch
the power consumption patterns. To fit power consumption
patterns, we first consider the general form for a polynomial
of degree n:

p(t) = a0+a1x(t)+a2x(t)
2+a3x(t)

3+ · · ·+anx(t)n (4)

The curve that gives minimum error between real power
consumption pattern and the fitted curve is best. In our case,
we use least squares error to find the best fitted curve of
power consumption patterns. The general expression for any
error using the least squares approach is:

err =

Tp∑
t=1

(d(t)− p(t))2 (5)

We then find the A to minimize err where A is
[a0, a1, · · · , an]T . To minimize Equation (5), take the
derivative with respect to each coefficient set to zero:

∂err

∂aj
= −2

Tp∑
t=1

(d(t)− p(t))x(t)j (6)

Then we have to solve n + 1 equations to find A to
minimize err:

XA = B (7)

where

X =


1

∑
x(t)

∑
x(t)2 . . .

∑
x(t)n∑

x(t)
∑
x(t)2

∑
x(t)3 . . .

∑
x(t)n+1∑

x(t)2
∑
x(t)3

∑
x(t)4 . . .

∑
x(t)n+2

...
...

...
. . .

...∑
x(t)n

∑
x(t)n+1

∑
x(t)n+2 . . .

∑
x(t)n+n


(8)

B =


∑
d(t)∑

x(t)d(t)∑
x(t)2d(t)
· · ·∑

x(t)nd(t)

 (9)

Then we can get A from X−1B. With A, we use Equation
(4) to calculate fitted curve. After fitting, we only need
to store A instead of {p(1), · · · , p(t)} for future power
consumption prediction.

2) Power Consumption Prediction in A Single Home:
With the fitted power consumption pattern A, we can eas-
ily recover the power consumption pattern with Equation
7. With the recognized power consumption patterns and
historical data, we can predict the energy consumption in
future. The process is similar to pattern recognition. For each
recognized power consumption pattern Si, we calculate the
similarity between power consumption pattern and historical
data P = {p(1), · · · , p(t)} based on Equation 3. Then based
on the distance between historical data and consumption
pattern, we predict the future power consumption as

d(t+ k) = si(t+ k) + sdist(Si, P ) (10)

sdist(Si, P ) is the Euclidean distance between two vec-
tors Si and P , which can be calculated with Equation 3.

B. Power Consumption Prediction in Smart Grids

In previous section, we investigate the power consumption
patterns in individual homes. In this section, we describe
how we can utilize the recognized consumption patterns to
predict future aggregated power consumption in smart grids
for real-time demand response.

1) Individual Homes Clustering: A simple solution to
utilize recognized consumption pattern for aggregated power
consumption prediction is to conduct predictions in each
home and then send the prediction results from each smart
meters to the central server. However, with large number
of homes in smart grids, it is not scalable because this
solution would introduce high storage need and communi-
cation overhead between smart meters and central server.
Because homes in the same area may have the similar power
consumption patterns, in this section, we describe how to
use the spatial correlation among power consumption of
homes for power consumption prediction. However, different
homes will not have different correlations at different time.
Thus, we need to keep updating the correlations among
homes for prediction. To evaluate our idea, we use trace data
of 726 homes for one month to investigate the correlation
among power consumption of different homes. The spatial
correlation between 726 homes and one single home i
is shown in Figure 6. X-axis is the standard correlation
between two vectors. The correlation between two homes
can be calculated as:

cij(t) =
1

l

t∑
k=t−l

(pi(k)− pj(k)−
1

l

t∑
k=t−l

(pi(k)− pj(k)))2

(11)
Y-axis is the CDF of given correlation. In Figure 6, most

of the homes have similar consumption patterns with home i
and 20% of the homes have correlation less 0.1 with home i.
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Figure 6: Spatial correlation of different homes over time

Algorithm 2 Consumption Pattern Updating Algorithm
Input: Fitting errors e(t) between real secondly power

consumption and polynomial fitting curve p(t)− d(t).
Output: Consumption pattern set S.

1: for t = 1 to T do
2: if |e(t)| > dh then
3: power = e(t), start = t, i = t;
4: while i < T & |e(i)| > dh do
5: i++;
6: end while
7: end = i, Add {power, start, end} to P ;
8: else
9: for j = 1 to tp do

10: if |e(t)− e(t+ j)| ≤ θ then
11: per = j;
12: for k = 1 to tk do
13: if |e(t+ k)− e(t+ k + j)| ≥ θ then
14: time = k;
15: end if
16: end for
17: Add {power, start, end, per, time} to S;
18: end if
19: end for
20: end if
21: end for

Thus, it is possible to infer power consumption of multiple
homes based on the prediction results of a single homes.

2) Updating Power Consumption Patterns: Based on
analysis of § IV-A, we show how to generate consumption
pattern from real power consumption and polynomial fitting
results. The key idea is to discover valuable power con-
sumption data by comparing differences between real power
consumption and polynomial fitting results. The detail of
the algorithm is described in Algorithm 2. For each second
t from 1 to T , it checks if the fitting error is larger than
threshold of high power consumption dh (Lines 1-2). Note
that dh needs to be selected carefully. If dh is too small, it
has better performance but cost too much storage; if dh is too
large, the error of polynomial fitting will be too high. Then if
|e(t)| > dh, it finds the endtime of high power consumption
and add {power, start, end} to P (Lines 3-7). If the fitting
error is less than the threshold, then the algorithm checks
if there is periodical power consumption (Line 8-10). If
yes, it finds the period and last time of periodical power
consumption (Lines 11-16), then adds {power, start, end}
to P (Lines 17-21).

Algorithm 3 Correlation of Power Consumption
Input: Fitting errors e1(t) and e2(t) of two days.
Output: Decision of correlation of two days.

1: count = 0;
2: for t = 1 to T do
3: if |e1(t)− e2(t)| < dc then
4: count++;
5: end if
6: end for
7: if count ≥ T/2 then
8: Correlation can be used to update pattern;
9: else

10: Correlation can not be used to update pattern;
11: end if

3) Utilization of Consumption Correlation: Based on
the analysis of § IV-B1, power consumption of different
days may have similar patterns and thus only one day’s
consumption needs to be stored for reducing storage space.
For example, instead of storing new power consumption data
at Day 3, we only need to store the power consumption
differences between Day 1 and Day 3. However, we need
to carefully determine whether we can reduce storage space
based on the correlation between two days. The format for
storing correlation information is as follows: {bc, t1, e1,
· · · , tm, em}. bc is the bit used to store whether or not
we utilize the correlation of power consumption in storing
the data. ti (i ∈{1, · · · ,m}) is used to store the time slot
that power consumption of two days are different and ei
(i ∈{1, · · · ,m}) is used to store the power consumption
differences. As long as m < T/2, the data used to store
time and power consumption differences (2∗m data points)
would be less than directly storing fitting errors (T data
points). Algorithm 3 gives a detailed description on how to
make the decision. For each second of t from 1 to T , it
checks if the difference of power consumption for two days
is less than threshold dc and counts the number of time slot
(Lines 1-6). Note that dc needs to be selected carefully. If dc
is too small, it has better performance but cost more storage
to store high power consumption; if dc is too large, the error
of polynomial fitting wil be too high. Then algorithm checks
if correlation between two days can be used to save space
(Lines 7-11). In server, when power consumption data of a
new day is received from a smart meter, it runs Algorithm 3
using the power consumption of past several days to find a
day to be used to save space. If it does not find, it stores
the power consumption data of that day from smart meter
to database.

4) Power Consumption Prediction with Low Computa-
tion: Based on the correlation, we can predict p(t) based
on readings from other homes:

p(t) =

N∑
i=1

pi(t) =

N∑
i=1

Nh∑
j=1

pj(t) ∗ cij(t)∑N
j=1 cij(t)

(12)



If cij(t) does not exist, then we replace cij(t) as cij(tk)
where tk is the latest time for updating correlation between
home i and j. Nh is the number of homes selected for con-
ducting power consumption prediction based on correlation
among homes. The prediction accuracy is highly dependent
on the selection of homes for power consumption prediction.
Here we give a detailed description on how to make the
selection. We first add home 1 as one of the selected homes.
For each home i from 2 to N , it checks if the correlation of
power consumption between home i and any selected homes
is smaller than threshold dc. If the correlation between home
i and one of the selected homes is smaller than dc, we
skip the home i. If the correlation between home i and any
selected homes is larger than dc, then we add home i as
one of the selected homes. We continue this process until
all homes are either skipped or selected one of the homes.
C. Energy Consumption Forecast with Limited Data

In previous design, we consider that every home in smart
grids are deployed with smart meters. However, it may not
be true in reality. Thus, we also propose an algorithm to
improve energy consumption forecast in smart grids when
only partial of homes in smart grids are deployed with smart
meters. The key idea is to first conduct the energy matching
with existing individual homes’ energy consumption data
we collect in the central server. Then based on the matching
results, we know the information of how many homes of dif-
ferent power consumption patterns exist in smart grid. Based
on the energy consumption prediction in individual homes
with smart meters and aggregated energy consumption in
smart grids, we utilize the matching results to predict the
energy consumption of smart grids in future.

The high-level idea of our algorithm is that it searches for
a shapelet which can separate and remove a subset of time
series from the rest of the dataset, then iteratively repeats
this search among the remaining data until no data remains
to be separated.

As discussed before, an ideal shapelet has the ability to
divide a dataset D into two groups of time series, DA and
DB . DA consists of the time series that have subsequences
similar to while DB contains the rest of the time series in D.
Simply stated, we expect the mean value of sdist(S,DA) to
be much smaller than the mean value of sdist(S,DB). Since
we ultimately use a distance map that contains distance vec-
tors to cluster the dataset, the larger the gap between these
two means of these distances vectors, the better. We use
the algorithm to extract shapelets. In essence, this algorithm
can be seen as a greedy search algorithm which attempts
to maximize the separation gap between two subsets of D.
This separation measure is formally encoded in the following
equation:

gap = µB − σB − (µA + σA) (13)
In Equation 13, µA and µB represent

mean(sdist(S,DA)) and mean(sdist(S,DB))
respectively, while σA and σB represent std(sdist(S,DA))

Algorithm 4 Energy Consumption Prediction with Limited
Data

1: for t = 1 to Tp do
2: Calculate gap based on Equation 7 and 13;
3: end for
4: for t = starttime1 to endtime1 do
5: d(t) = d(t) + power1;
6: end for
7: for t = starttime2 to endtime2 do
8: if t%(time+ period) = 0 then
9: for i = 1 to time do

10: d(t) = d(t) + power2;
11: end for
12: end if
13: end for
14: if bc = 1 then
15: for i = 1 to m do
16: d(t) = d(t) + e(t);
17: end for
18: end if

and std(sdist(S,DB)), respectively. In our algorithm, we
consider all subsequences of the time series as candidate
shapelets and compute their distance vectors. We can
represent a distance vector as a schematic line. Then we
search these lines for the location that maximizes the gap
function introduced in Equation 13. We refer to this point
as dt. Points to the left of dt represent sdist(S,DA), while
points to the right correspond to sdist(S,DB)

Once we know the gap scores for all the subsequences of
a time series, we add the subsequence with maximum gap
score in the set of shapelets. Given that we have selected
a u-shapelet, we do not want subsequences similar to it to
be selected as shapelets in subsequent iterations. Thus we
remove the time series that have subsequences similar to the
shapelet from the dataset and use only the remaining dataset
to search for the next shapelet.

The detailed design of energy consumption prediction
is shown in Algorithm 4. For polynomial fitting, we can
calculate gap with {Tp, a0, · · · , an} based on Equation 7
and 13. For energy consumption pattern abstraction, we
can calculate high energy consumption patterns in a short
time and periodical energy consumption over a long time
with {power2, starttime2, endtime2, period, time}. For
utilization of consumption correlation, we can use bc to
detect whether we utilize correlation of energy consumption.
For the limited data, we apply energy matching algorithm
for energy consumption pattern from given individual homes
and aggregated energy consumption data. Finally, with the
data from four components, we calculate the predicted
energy consumption in smart grids.

D. Time Complexity Analysis

In this section, we analyze the complexity of M-Pred at
local smart meters in the following three stages.
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Figure 7: Aggregated power consumption over 12 months
i) Learning Energy Consumption Patterns. Basic power
consumption curve is sketched in time domain. In learning
algorithm, Algorithm 1 is applied to generate sampled power
consumption changes and time complexity of Algorithm 1
is O(N).
ii) Energy Consumption Prediction. Sampled data of power
consumption changes are transferred into energy consump-
tion pattern data. In energy consumption prediction, we need
to conduct d̃(t) and run Algorithm 2. The time complexity is
O(NlogN) and time complexity for Algorithm 2 is O(N).
iii) Energy Prediction for Smart Grids with Limited Data.
The limited data from individual homes is used for energy
matching and energy consumption prediction in smart grids.
Because the number of homes available is limited, thus
the communication overhead between homes and central
server is low. Time complexity of matching and energy
consumption prediction is O(NlogN).

In total, the time complexity of our design is still
O(NlogN), which means our design is simple for smart
meters.

V. IMPLEMENTATION AND EVALUATION

In this section, we evaluate the performance of our pro-
posed design. We deploy eGauge power meters at individual
homes to collect the energy consumption data every minute.
In our simulation, we use the power consumption traces that
we collected from 726 homes for more than one year. To
make the figure easy to follow, we only show the aggregated
power consumption for 12 months in Figure 7. It can be
found that the power consumption for different days varies
significantly and is higher in summer while lower in winter.

A. Evaluation Baseline and Metrics

Baselines. To verify the prediction accuracy of our approach,
we compare our design with three existing approaches: i)
NYISO: New York ISO [3], which is the standard of energy
consumption prediction in New York State; ii) CASCE:
Southern California Edison ISO [2], which is the standard of
energy consumption prediction in South California; and iii)
CAISO: California ISO [1], which is the standard of energy
consumption prediction in California.

For our design, to verify the prediction accuracy of
pattern recognition and home clustering, we also compare
to i) our design with only pattern recognition (PR), which
only utilizes aggregated power consumption in smart grids
for prediction; ii) our design with perfect home clustering
(PR+All), which assumes each home is a cluster. The
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Figure 8: Prediction accuracy of hourly average power and
peak demand in a typical home
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Figure 9: CDF of MAPE for different homes with different
methods
prediction accuracy of PR+All should be better than our
design, however, it is not scalable when the number of homes
are huge. In our simulations, we consider PR+All as optimal
algorithm for prediction accuracy.
Metrics. Because we predict both peak demand and hourly
average power consumption in smart grids. Thus, we use
two metrics to evaluate the performance of our approach: i)
MAPE of peak demand and ii) MAPE of hourly average
power.
B. Energy Consumption Prediction in A Single Home

To enable real-time demand response in individual homes,
energy consumption prediction in a single home must be
very accurate. In our simulations, we run the pattern recog-
nition algorithm with six months data and conduct the
prediction with another six months. The prediction window
size in these series of simulations are set as 24 hours.

1) Hourly Average Power Consumption and Peak De-
mand Prediction: To make the results easy to follow, we
only show the prediction results of one typical home for one
week in Figure 8. The prediction of hourly average power
consumption matches very well with the ground truth. The
prediction of peak demand is also very accurate for the most
of time. However, the prediction of peak demand is less
accurate compared to hourly average power consumption.
This is because hourly average power consumption in a
single is typical more stable; in the meantime, peak demand
is highly dependent on the accurate time of energy consump-
tion events. Thus, it is much more difficult to predict peak
demand accurately.

2) Prediction Results for Different Homes: The predic-
tion results of different homes compared to existing ap-
proaches are shown in Figure 9. Because existing approaches
can only predict hourly average power consumption, we
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peak demand prediction in smart grids
only show the prediction results of peak demand with our
design. For CASCE, CAISO and NYISO, the prediction
accuracy is similar and varies from different homes, which
is consistent with the results from [7]. The prediction results
of hourly average power with our design is much better than
existing approaches, 95% of the homes can be predicted with
MAPE less than 0.2 and average MAPE for all the homes is
0.08. For the prediction of peak demand in different homes,
the accuracy is also very good. 83% of the homes can be
predicted with MAPE less than 0.2 and average MAPE for
all the homes is 0.11.
C. Energy Consumption Prediction in Smart Grids

Because smart grids need accurate aggregated power con-
sumption prediction, thus we provide the prediction results
of aggregated peak demand and hourly power consumption
in this section.

1) Prediction with Different Methods: To verify the de-
tailed performance of our design, we compare prediction
results with PR and PR+All. For PR, we applied our pattern
recognition algorithm with aggregated power consumption
in smart grids. No minute-level energy data from individual
homes are used for PR. For PR+All, we assume all the
minute-level energy data from individual homes are available
in the central server. In reality, it is not practical because
large amount of energy data needs to be transmitted from
smart meters to central server especially when the number
of homes in a smart grid is huge. In this section, we consider
PR+All as the optimal prediction accuracy we can achieve
by utilizing minute-level energy data from individual homes.
The MAPE of different methods is shown in Figure 10. We
can find that for all three methods, the prediction accuracy
of hourly average power is always better than prediction of
peak demand, which is similar to prediction accuracy in a
single home. Compared to PR, the prediction accuracy of
hourly average power consumption and peak demand with
M-Pred is both around 40% better and very close to optimal
results of PR+All. Therefore, our design is well balanced
between prediction accuracy and communication overhead.

2) Prediction with Limited Available Homes: Considering
not every home in smart grids is deployed with smart meters,
we evaluate the performance of our design with minute-level
energy data from different number of homes. The results are
shown in Figure 11. The X-axis is the percentage of homes
that are deployed with smart meters in a smart grid; and
Y-axis is the MAPE value of prediction results. We can find
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Figure 11: MAPE of aggregated hourly average power and
peak demand prediction with different percentages of homes
with minute-level energy data
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that the prediction accuracy of both hourly average power
consumption and peak demand increase with minute-level
energy data from more homes. For prediction of hourly
average power consumption, the accuracy increases more
slowly with percentage of available homes. This is because
in residential homes, energy consumption is mostly high in
the morning, low in the day time and high in the evening.
Therefore, the curve of hourly average power consumption
over time is similar for different homes. At the mean
time, prediction accuracy of peak demand only increases
significantly when the percentage of available homes reaches
40%. This is because peak demand in different homes are
usually more dependent on homeowners’ behavior patterns,
thus, only with enough energy data from individual homes,
the prediction accuracy of peak demand will be improved.

D. Impact of Window Size
In this section, we investigate the impact of window

size on the prediction accuracy of hourly average power
consumption and peak demand. We apply our design with
window size of 1 hour, 4 hours, 8 hours, 12 hours and
24 hours. The results are shown in Figure 12. With larger
window size, the consumption events of homeowners’ are
more unpredictable. Thus, the prediction accuracy of both
hourly average power consumption and peak demand de-
creases with larger window size. For 1 hour window size,
the prediction accuracy of our design is extremely high with
MAPE around 0.02. Therefore, our design can provide very
accurate power consumption prediction for real-time demand
response in smart grids. Similar to results in previous
sections, prediction accuracy of peak demand decrease faster
with large window size because the peak demand is more
unpredictable.



VI. RELATED WORK

Our work is related to two areas of previous work: demand
forecast and peak demand:
Demand Forecast. Research on electricity demand forecast
includes long-term and medium-term prediction for utility
planning and maintenance purposes, and short-term forecast
for economic scheduling [4, 13]. In this paper, we focus on
the short-term demand forecast. Related work on demand
forecast includes three types of methods: simple averaging
models [1, 2, 3]; statistical models (e.g., regression [15] and
time series [6, 10]); and machine learning techniques(e.g.,
Artificial Neural Networks (ANNs) [11, 17] and pattern
matching [16, 18]). However, existing forecast techniques
only conduct forecast with aggregated power consumption
in samrt grids. In this paper, we show that with detailed
power consumption in individual homes collected from
smart meters, power consumption patterns in each home can
significantly help the demand forecast in smart grids.
Peak Demand. There are many works on modifying the
elastic load components of common household appliances to
reduce peak demand [12]. In [19], a novel demand response
mechanism is proposed to exploits appliance elasticity to
decrease peak loads. A real-time distributed deferrable load
control algorithm is proposed to reduce the peak load by
shifting the power consumption of deferrable loads to peri-
ods with high renewable generation [8]. To support different
approaches on flattening peak demand in smart grids, we
present peak demand forecast in this paper for the first time.
The simulation results show that our design can significantly
improve prediction accuracy of peak demand in smart grids.

VII. CONCLUSION

To the best of our knowledge, this is the first work
to utilize the detailed power consumption in individual
homes to help power consumption prediction in smart grids.
We show that the detailed power consumption patterns in
each home can significantly improve prediction accuracy
of power consumption in smart grids. In this paper, we
propose M-Pred to learn energy consumption pattern of
individual homes from their energy consumption data and
then utilize these patterns to predict the power consump-
tion in smart grids. Our design consists of three parts: i)
energy consumption patterns recognition in a single home;
ii) energy consumption prediction in smart grids; iii) energy
consumption prediction with limited data from individual
homes. Finally, we analyze the performance and complexity
of M-Pred. We conducted extensive system evaluations with
726 homes’ minute-level power consumption data for more
than 1 year. The results show that our design can provide
accurate real-time energy consumption with negligible errors
(e.g., Mean Absolute Percentage Error is 2.12%).
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