
E-Sketch: Gathering Large-scale Energy
Consumption Data Based on Consumption Patterns

Zhichuan Huang⇤, Hongyao Luo†, David Skoda†, Ting Zhu⇤ and Yu Gu‡
⇤University of Maryland, Baltimore County

†Binghamton University, State University of New York
‡IBM Research-Austin

Abstract—To reduce peak demand, many utility companies are
transitioning from fixed rate pricing plans to real-time pricing
plans. To apply real-time pricing plans, it is crucial to collect
accurate real-time power consumption readings from individual
homes. Thus, utility companies are increasing the installation
of smart meters in individual homes. Smart meters can record
energy related data (e.g., power consumption) every second. How-
ever, power consumption data with high time granularity needs
huge data storage space and generates significant communication
overhead for utility companies to gather all the data for the
pricing plans. In this paper, we present E-Sketch, a middleware
for utility companies to gather data from smart meters with
much less storage and communication overhead. E-Sketch utilizes
adaptive sampling to compress power consumption changes in
time domain. Then frequency compression is applied to further
compress the sampled data. We conducted extensive system
evaluations with 30 homes’ second-level power consumption data
for more than 2 months. Results indicate i) our design can reduce
data storage space significantly by 90% with more than 99%
accuracy of second-level power consumption on average for a
single home, and ii) our design can achieve even more than
99.8% accuracy on average for aggregated power consumption
of 30 homes.

Keywords-data compression; energy consumption; smart meter

I. INTRODUCTION

Peak demand of power grids is the main concern for
utility companies because it determines how much power
utility companies need to generate. Based on the government
research report [4], most of the generation and distribution
infrastructures are constructed to handle some extremely rare
peak demands. In 2010, Energex, a distribution network in
Queensland, used 13% of its $8.8 billion infrastructures for
only 100 hours of the year [2]. To reduce peak demand, many
utility companies intend to introduce real-time pricing plans
to encourage homes to reduce high peak demand. Presently,
utility companies monitor aggregated peak demand with high
time granularity (e.g., every second) [5]. However, at the
individual home level, traditional meters at each home monitor
energy consumption every hour. Yet, in one hour, the power
grid may need notably more power than average hourly power
consumption for several minutes. Thus, utility companies are
transitioning from hourly pricing plans to real-time pricing
plans for better regulation of peak demand. To apply real-
time pricing plans, utility companies need to collect power
consumption of individual homes at high time granularity.

To collect accurate power consumption information at in-
dividual homes, smart meters have been rolled out in many
countries [18]. Smart meters deployed at homes usually record
power consumption and other energy data every second.
However, it requires huge data storage for utility companies to
gather power consumption readings every second from all the
homes. For example, in our experiments, 127.1TB is needed to
store all second-level raw data in one day for homes in New
York State (detailed discussed in §II-B). Thus, it is critical
to design an architecture to gather data from all the homes
with less storage and communication overhead. Besides, power
consumption data at different periods of the day is not equally
valuable. For example, most appliances run at stable states
with relative stable energy consumption when people are not at
home. Then the power consumption data at those periods is not
as valuable as power consumption when you frequently turn
on/off appliances at home. A possible solution for reduction
of data storage is to only record appliances’ usage to recover
power consumption every second. However, it requires servers
to know the consumption pattern of all appliances at each
home for recovery of power consumption data every second.
Moreover, appliances may not consume stable power all the
time, which makes it difficult to recover accurate power
consumption for pricing plans only with appliance usage data.

In this paper, we study the power consumption patterns
of homes to compress second-level power consumption data.
A middleware E-Sketch is proposed to work between smart
meters at individual homes and central servers in the utility
company to reduce data storage of power consumption data. In
order to reduce communication overhead, E-Sketch is executed
at each local smart meter. However, smart meters have limited
storage and computing power, therefore the design should
be simple and fast to reduce computation overhead at smart
meters. Our design consists of three parts: i) adaptive sampling
in time domain; ii) data compression in frequency domain;
iii) encoding and decoding. We also show how compressed
data can be used to recover power consumption in the central
server and analyze the performance of our design. The main
contributions of this paper are as follows:

• To our best knowledge, this is the first work to investigate
the power consumption at different time granularity. We
study the necessity to record power consumption with
high time granularity and investigate the relationship be-

tween high and low time granularity power consumption
data.

• With the analysis of second-level power consumption
data, we propose E-Sketch to compress the data in both
time domain and frequency domain to reduce data storage
and communication overhead. Our design can guarantee
that power consumption error is always under the given
error bound.

• To validate our design, we evaluate our work extensively
with empirical traces of 30 homes’ second-level power
consumption for more than 2 months. The results show
that our design reduces data storage significantly by 90%
with more than 99% accuracy of second-level power con-
sumption on average for a single home. For aggregated
power consumption of 30 homes, our design can achieve
even more than 99.8% accuracy on average by canceling
errors from different homes.

The rest of the paper is organized as follows: motivation
of paper is introduced in §II; the problem is formulated in
§III; the detailed design of E-Sketch for gathering consumption
data is described in §IV; implementations and simulations are
provided in §V; related work is discussed in §VI; finally, we
conclude our paper in §VII.

II. MOTIVATION

In this section, we firstly give an example from our em-
pirical data to show the importance of high time granularity
data at a single home and a small community; then we show
the problem of gathering and utilizing data with high time
granularity.

A. The Need for High Granularity Power Monitoring
In this section, we show that in a single hour there may

be several minutes where a home consumes much more
power than it does during the rest of given hour. That means
hourly power consumption misses a lot of vital information on
how homes consume energy. The missing information can be
utilized for applying real-time pricing plans. Also, different
substations have different capabilities, overlapping of peak
demand from individual homes may cause blackouts at some
substations within several seconds. Thus, it is important to
investigate the relationship of second-level and hourly average
power consumption. The second-level and hourly average
power consumption of two different homes and aggregated
power consumption of 30 homes are shown in Figure 1. For
hourly average power consumption, it is defined as the average
second-level power consumption within one hour.
• Observation 1: Different homes with similar hourly power
consumption may have significantly different second-level
power consumption. As shown in Figure 1, home 1 and home
2 have similar hourly power consumption for two hours. Dur-
ing some periods, second-level power consumption is much
larger than hourly average power consumption. However, the
detailed consumption for every second of different homes is
significantly different. In Figure 1, home 1 has peak demand
around 9kW for 20 minutes in the first hour and another peak

0 20 40 60 80 100 120
0

4

8

12

0 20 40 60 80 100 120
0

4

8

12

P
o
w

er
 (

k
W

)

0 20 40 60 80 100 120
40

70

100

130

Time (Minute)

30 Homes

Home 2

Home 1

Fig. 1: Second-level and hourly average power consumption of
home 1, 2 and aggregated data of 30 homes in two hours (blue
solid line is hourly average power consumption; red dashed
line is second-level power consumption)

−2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
P

ro
b
ab

il
it

y

−2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

Power differences (kW)
−20 0 20 40
0

0.2

0.4

0.6

0.8

1

Home 1 Home 2 30 Homes

Fig. 2: Distribution of power differences between second-level
and hourly consumption for a single home and 30 homes in
two hours

demand around 8kW for 10 minutes in the next hour. At the
mean time, home 2 only has peak demand around 6kW in
the first hour and almost keeps stable consumption of 3kW in
the next hour. The detailed distribution of power differences
between consumption per second and hour for two homes is
shown in Figure 2. For home 1, 10% period in an hour (6
minutes), second-level power consumption is 4.2kW larger
than hourly average power consumption; around 30 seconds
in an hour, second-level power consumption is 5kW larger
than hourly average consumption. For home 2, 10% period
in an hour (6 minutes), second-level power consumption is
0.2kW larger than hourly average consumption; around 30
seconds in an hour, second-level power consumption is 1.8kW
larger than hourly average consumption. From perspective of
utility company, home 2 consumes energy more reasonable
than home 1. Because even they have similar hourly power
consumption, home 2 has much lower second-level peak

demand and should be charged less than home 1.
• Observation 2: Multiple homes can generate very high peak
demand for minutes while hourly average power consumption
is low. We also show aggregated power consumption for
30 homes in Figures 1. Second-level power consumption
still shows peak demand compared hourly average power
consumption. In the first hour, from 30 to 35 minutes, it
consumes more than 90kW while hourly power consumption
is only 75kW . For distribution of power differences between
second-level and hourly average consumption for 30 homes
(shown in Figure 2), 10% period in an hour (6 minutes),
second-level power consumption is 12.4kW larger than hourly
average consumption; around 30 seconds of an hour, second-
level power consumption is 28.0kW larger than hourly average
consumption. Thus, compared to a single home, hourly power
consumption for a small community (e.g., substation) also
misses detailed second-level peak demand. Moreover, peak
demand of homes may overlap and create larger peak demand
of 28.0kW . Thus, it is very important to monitor second-level
power consumption at individual homes for utility company
designing real-time pricing plans.

B. Large Volume of Energy Data

In § II-A, we showed the necessity of recording second-level
power consumption at individual homes. However, second-
level data requires huge data storage and causes communi-
cation overhead. In our simulations, for one single home,
16.4MB is needed to store all second-level data related to
energy for one day. The data includes date, total power
consumption, power consumption of two phases, voltage of
two phases and frequency of two phases. Considering the
number of housing units in New York State (8,123,051 in 2012
[3]), 127.1TB is needed to store each day’s power consumption
data. The amount of historical data that stores for a long period
for backup or study of the power grid will increase with time,
which becomes a huge cost for utility companies. Furthermore,
to utilize the second-level power consumption data for real-
time pricing plans, transmission of such large amount of data
from smart meters to the respective substations also generates
huge communication overhead. Thus, it is important to design
a middleware for utility companies to gather data from all the
homes with less data storage and communication overhead.
Besides, the computing resources at the smart meter are
limited, thus the design for gathering data at individual homes
should be simple and efficient.

III. PROBLEM FORMULATION

In this section, we give an overview of E-Sketch, describe
how power consumption is collected and present our design
goal.

A. Overview of E-Sketch

The real-time data collected at the smart meters needs
to be sent to utility company for billing calculation. How-
ever, we already show in § II-B that the amount of real-
time data is huge, thus it is not possible for smart meters

…

Central Server

Database

Frequency
Decompression

Inverse
Sampling

Recovery of
E-Sketch

Recovered Data

…

Smart Meter 1

Raw
Data

Adaptive
Sampling

Freq.
Comp.

E-Sketch

Encode

Smart Meter m

Raw
Data

Adaptive
Sampling

Freq.
Comp.

E-Sketch

Encode

Decode

Fig. 3: Overview of system architecture

to send out the raw real-time data to the utility company.
Thus, in this paper, we propose a middleware E-Sketch to
work between the smart meters and the central server in the
utility company (shown in Figure 3). Each home collects raw
real-time power consumption data and then runs E-Sketch
middleware to reduce data storage for every window size N ,
then the central server in the utility company decompressed
the data from smart meters for billing calculation. E-Sketch
includes three components: i) adaptive sampling that only
samples power consumption change that is larger than certain
threshold (detailed in § IV-A); ii) frequency compression
that compresses adaptive sampled data in frequency domain
(detailed in § IV-B); and iii) encoding that encodes compressed
data (detailed in § IV-C). The compressed data is then sent to
central server for every window.

In the central server, when it receives compressed data from
smart meters, it first stores the data in the database directly
for persistent storage. Then for every time interval (e.g., day
or month), the utility company can recover the compressed
data in the database to calculate billing details for consumers.
The recovery of the compressed data is the inverse process
of E-Sketch. It first decodes the compressed data, utilizes the
frequency data to conduct frequency decompression and ob-
tains data in time domain. Then inverse sampling is processed
to get recovered data. The detailed algorithm for recovery of
E-Sketch is discussed in § IV-D.

B. Design Goal
To record power consumption with high time granularity

with less storage, we propose middleware E-Sketch to work
between smart meters and central server in the utility compa-
nies. Because E-Sketch needs to be run at local smart meters,
the computation and implementation complexity of E-Sketch
should be low due to limited computation and energy resource
in smart meters.To achieve these design goals, we formulate
the problem as follows:

Let P = {p(1), · · · , p(n)} be the original power consump-
tion series. Given the specific boundaries of e(t) (|e(t)|  ✓),
our design goal is to minimize the communication overhead
and data storage for storing power consumption data every sec-
ond in the central server. Assume Q = {q(1), · · · , q(m)} be

Notations Definitions
N Window size of E-Sketch
p(t) Original power consumption of home at t
p̃(t) Sampled power consumption of home at t
d(t) Power change from t to t+ 1
dc(t) Compressed high power change from t to t+ 1
d̃(t) Sampled power change from t to t+ 1
Ic Index of compressed high power change
Ĩ Index of sampled power change
f(k) Frequency value of d̃(t)
fq(k) Quantization results of f(k)
ed̃(t) Error caused by quantization in time domain
ef (k) Error caused by quantization in frequency domain
r(t) Recovered power consumption from E-Sketch
✓ Desired error bound
e(t) Power difference between p(t) and r(t)

TABLE I: Definitions of notations

the data stored in the central server and R = {r(1), · · · , r(n)}
be the recovered power consumption series in the central
server. We can formulate our problem as

min H(Q)

s.t. g1 : P ! Q (a)

g2 : Q ! R (b)

e(t) = |p(t)� r(t)|  ✓, t 2 [1, n] (c)

g1 is the function that maps from P to Q and g2 is the
function that maps from Q to R. H(Q) is the information
content of Q. Then our goal is to find the functions g1 and
g2 to minimize the information content of stored data Q. And
our proposed design E-Sketch can be considered as g1 and
recovery algorithm of Sketch can be considered as g2. Because
g1 is run in smart meters, thus the complexity of g1 should be
relative low. Note that m = n is not required, which means
the data points stored in the central server and data points of
original power consumption may not be equal.

IV. SYSTEM DESIGN

In this section, we introduce the main design of E-Sketch.
Our design consists of three parts: i) adaptive sampling in
time domain; ii) data compression in frequency domain; iii)
encoding and decoding. We also show how compressed data
can be recovered and analyze the performance of our design.

A. Adaptive Sampling
In this section, we introduce adaptive sampling to reduce

data storage while keeping the valuable data of power con-
sumption. To design adaptive sampling, we first analyze the
distribution of power consumption. The empirical Cumulative
Distribution Function (CDF) of power consumption p(t) and
power change d(t) in a window (window size N for the
experiment is 2 hours) is shown in Figure 4. And we have:

d(t) = p(t+ 1)� p(t) (1)

In Figure 4, though power consumption varies from 1kW to
10kW , power change is mostly very small. For example, 90%
of power change is less than 0.05kW , which provides great
opportunity to reduce storage space by only storing the power

0 1 2 3 4 5 6 7 8 9 10
0%

25%

50%

75%

100%

Power consumption (kW)

P
er

ce
n
ta

g
e

Empirical CDF

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0%

25%

50%

75%

100%

Power change (kW)

P
er

ce
n

ta
g
e

Empirical CDF

Fig. 4: Empirical CDF of power consumption and power
change

consumption change that is valuable. We divide d(t) into d̃(t)
and �(t). When power consumption change at t is valuable,
we have d̃(t) = d(t); when power consumption change at t is
not valuable, we have d̃(t) = 0 to save the storage. �(t) is 0
when d̃(t) = d(t), �(t) = d(t) when d̃(t) = 0. Then we have

D = D̃+⌥ (2)

D, D̃ and ⌥ are vectors of d(t), ˜d(t) and �(t). If the data
of D̃ is stored, then we calculate p̃(t) with p̃(t) = p̃(t� 1) +
d̃(t� 1). Then at t, the error of power consumption data can
be calculated as

p(t)� p̃(t) =
i=t�1X

i=1

d(i)�
i=t�1X

i=1

d̃(i) =
i=t�1X

i=1

�(i) (3)

Assume that �(t) is a random variable with mean of zero
and variance of �2. Then the error of power consumption data
at t will be a random variable with mean of zero and variance
of s�(t � 1) · �2. s�(t � 1) is the number of �(t) > 0 for
t 2 [1, t�1]. With the increase of time, the variance of power
consumption error increases, which means the error p(t)�p̃(t)
can be very high when t is high. To overcome this problem, we
present an adaptive sampling algorithm shown in Algorithm 1.

The basic idea of adaptive sampling is to keep track of
power consumption when we decide whether power consump-
tion change at t is valuable or not. Given the error bound ✓, we
iteratively check the power consumption error at t + 1 based
on d(t) and power consumption error at t if ignoring power
consumption change d(t) (Lines 1-3). If power consumption
error at t + 1 is less the error bound ✓, then we can ignore
the d(t) and keep track of power consumption error at t + 1
(Lines 4-5). Otherwise, we rewrite d̃(t) = err + d(t) and
power consumption error at t + 1 will be zero (Lines 6-11).
Let ti be the ith time that d̃(t) = err + d(t) is rewritten.
Because power consumption error is fixed by d̃(t), we always
have p(ti + 1) = (̃p)(ti + 1). Then the maximum error we

Algorithm 1 Adaptive Sampling Algorithm
Input: Power consumption data p(t) and desired error bound
✓
Output: Compressed power consumption data.

1: err = 0, count = 0;
2: for t = 1 to N do
3: d(t) = p(t+ 1)� p(t);
4: if |err + d(t)| < ✓ then
5: err = err + d(t);
6: else
7: count++;
8: dc(count) = d(t) + err, Ic(count) = t;
9: err = 0;

10: end if
11: end for

0 200 400 600 800 1000
−4

−2

0

2

4

6

8

Time (Second)

P
o

w
er

 c
o
n

su
m

p
ti

o
n

 c
h

an
g

es
 (

k
W

)

900 920 940 960 980 1000
−1

0

1

Fig. 5: Results of adaptive sampling

get is at t = t1, · · · , ti, · · · . The power consumption error of
p̃(ti) can be calculated as

p(ti)� p̃(ti) =
j=tiX

j=ti�1

�(j), i = 1, 2, · · · (4)

We know the power consumption error is always less than
bound ✓. We can calculate the mean of error is zero and the
variance of error is E[ti+1�ti]·�2. E[ti+1�ti] is the expected
mean of ti+1 � ti. Based on the probability theory, we have

E[ti+1 � ti] = P1 +
1X

j=2

j ⇤ Pj

k=j�1Y

k=1

(1� Pk) (5)

Pi is the probability that the sum of i �(t) is larger than
✓. With the probability distribution of �(t), we can calculate
Pi based on probability theory. We will not do the detailed
calculation since the result is too complicated. But it can
be proved that E[ti+1 � ti] < ↵

(1�↵)2 and ↵ is a constant
determined by probability distribution of �(t).

B. Data Compression in Frequency Domain

With adaptive sampling, we can remove most of ignor-
able power consumption changes. And an example of power
consumption changes after adaptive sampling is shown in

0 200 400 600 800 1000
10

−2

10
0

10
2

10
4

Frequency (s
−1

)

A
v
er

ag
e

E
n
er

g
y

 (
d
B

)

Fig. 6: Spectrum analysis of sampled data over 30 days

Figure 5. Most of the power consumption changes are still
quite small (less than 0.5kW) and few of the power con-
sumption changes are more than 4kW . The detailed power
consumption changes from time 900 to 1000 shown in zoom-
in figure is frequently fluctuated. This is because that power
consumption increase caused by turning on appliances will be
followed by power consumption decrease caused by turning
off appliances. The highly fluctuated signal is better analyzed
in the frequency domain but not time domain. We use Discrete
Fourier Transform (DFT) to transfer sampled data from time
domain to frequency domain. The discrete time signal d̃(t)
can be equivalently represented by its DFT:

f(k) =
NX

t=1

d̃(t) · e�i2⇡kt/N (6)

For example, Figure 6 shows the frequency spectrum
measured over 30 days of power consumption change after
adaptive sampling. It is clear that most of the “energy” in the
signal is stored in low frequency components. The mechanism
to keep the signals in the time domain is through filtering
and downsampling. To compress the data from frequency
domain, we use Discrete Cosine Transform (DCT) instead of
DFT, which outputs real number and is more suitable for data
compression. The formula of DCT is as follow:

f(k) =

r
1

N
d̃(1) +

r
2

N

NX

t=2

d̃(t) · cos


⇡

N
(t+

1

2
)k

�
(7)

To simplify the calculation, we revise the parameters of
standard DCT so that DCT matrix is real unitary transform.
The elements of the DCT matrix H = {H [k, t]} are

H[k, t] =

8
<

:

q
1
N , t = 1, k 2 [1, N]q
2
N cos

⇥
⇡
N (t+ 1

2)k
⇤
, t 2 [2, N], k 2 [1, N]

(8)

Let F be {f(1), · · · , f(N)}, then we have F = HD̃. Since
the DCT is a real unitary transform, H�1 = HT and the
inverse DCT (IDCT) is described by D̃ = HTF.

When compressing a signal, the DCT coefficients are typi-
cally quantized rather than the actual signal D̃. The quantized
DCT coefficients are denoted as Fq , with fq(k) = Q[f(k)],

where Q[·] is the quantization operator. Quantization is a non-
linear operation that results in a loss of information; only scalar
quantization is considered here, where each element of f(k)
is quantized individually. Scalar quantization is a many-to-one
mapping that transforms intervals of real numbers [qki , q

k
i+1)

to single real numbers. The superscript “k” accounts for
the possibility of different quantization intervals for different
frequency coefficients, and the subscript “i” indicates the ith
quantization level. Transform coefficients that are in these
intervals are typically mapped to the midpoint of the interval,
so that fq(k) = 1

2 (q
k
i + qki+1), for qki  f(k)  qki+1.

The recovered signal D̃q is obtained by performing the
IDCT on the quantized frequency values, D̃q = HTFq . Two
quantities of interest in this paper are the quantization errors
in both the spatial and the frequency domains. Spatial-domain
error is represented by ed̃ = D̃q � D̃, and frequency-domain
error by ef = Fq �F. Note that the quantization error in the
spatial domain can be expressed as

ed̃ = HT ef =
NX

k=1

hk(fq(k)� f(k)) (9)

To compress the signal, we need to carefully select qki
to maximize the compression ratio while fulfilling the error
bound ✓. Different from traditional DCT which applies in
image data compression, the high frequency component of
the signal we need to compress is not ignorable and the
error should be within the error bound ✓. Thus, we present
a frequency compression algorithm to decide quantization
results of frequency data f(k) that maximize the compression
ratio and fulfill the error bound. The basic idea is to decide
quantization results based on transferring quantization errors
in frequency domain to time domain. The detailed description
is in Algorithm 2. We first calculate f(k) based on our defined
DCT Equation (7) (Line 1). Then f(k) is sorted in ascending
order and initialize fq(k) and current error bound b(t) (Line 2).
For each f(k), we first check when f(k) is ignored whether
the error caused by f(k) still less than current error bound
b(t). If |ed̃(t)| < b(t), we can ignore f(k) and set fq(k) = 0
and update b(t) (Lines 4-8). Otherwise, we divide f(k) by �,
and check the error bound again until we find the maximum
fs(i) that fulfill the error bound (Lines 10-15). Then we can
update fq(k) and current error bound b(t) (Lines 16-19).

To analyze the performance of our frequency compression
algorithm, we calculate the variance of error after quantization.
Because the quantization process is symmetry, the DCT-
domain quantization errors are uncorrelated random variables.
The covariance matrix Kef = E(Fq � F)(Fq � F)T is then
diagonal, with its N non-zero elements equal to the quanti-
zation noise of the individual frequency-domain coefficients,
�2
ef [k]. With Kef , we can calculate the covariance of the error

in time domain as

Ked̃
= E(D̃q � D̃)(D̃q � D̃)T = HTKefH (10)

Equation 10 includes information about the correlation of
the time domain error sequence, but another quantity of

Algorithm 2 Frequency Compression Algorithm
Input: Power consumption changes after adaptive sampling
d̃(t) and desired error bound ✓
Output: Quantization results fq(k) of frequency data f(k)
for k 2 [1, N].

1: Calculate f(k) with d̃(t) based on Equation (7);
2: Sort f(k) in ascending order;
3: b(t) = ✓ for t 2 [1, N], fq(k) = �1 for k 2 [1, N];
4: for i = 1 to N do
5: ed̃(t) =

Pk=N
k=1 hk(t) ⇤ (�f(i));

6: if |ed̃(t)| < b(t) for t 2 [1, N] then
7: fq(i) = 0;
8: b(t) = b(t)� ed̃(t);
9: else

10: fs(i) = f(i);
11: ed̃(t) =

Pk=N
k=1 hk(t) ⇤ (fs(i)/�);

12: while |ed̃(t)| > b(t) for t 2 [1, N] do
13: fs(i) = fs(i)/�;
14: ed̃(t) =

Pk=N
k=1 hk(t) ⇤ (fs(i)/�);

15: end while
16: fq(k) = f(i)� fs(i);
17: b(t) = b(t)� ed̃(t);
18: end if
19: end for

interest is the variance of the individual time domain errors.
The variance of ed̃(t) is found as �2

ed̃
[t] = Ked̃

[t, t], or in
summation notation

�2
ed̃

=
NX

k=1

H2[k, n]Kef [k, k] =
NX

k=1

H2[k, n]�2
ef (11)

C. Encoding

After frequency compression, we can further reduce data
storage by encoding the compressed data. Because the range
of compressed data is much less than the range of original
power consumption, the storage space for compressed data
can be reduced.

The first step of encoding is to generate the probability
distribution of compressed data. Then we can encode com-
pressed data based on their probability to minimize the data
storage. The encoding works by creating a binary tree of
nodes. These nodes can be stored in a regular array, the size
of which depends on the number of symbols. A node can
be either a leaf node or an internal node. Initially, all nodes
are leaf nodes, which contain the symbol itself, the weight
(frequency of appearance) of the symbol and optionally, a link
to a parent node which makes it easy to read the code (in
reverse) starting from a leaf node. For example, with number
of n values [v1, · · · , vn], we can calculate their probability
to generate n nodes [(v1, pr1), · · · , (vn, prn)]. Internal nodes
contain symbol weight, links to two child nodes and the
optional link to a parent node. As a common convention, bit

Algorithm 3 Recovery of Power Consumption

Input: p(1), N , Ic, Dc ,̃Ic and Fq

Output: Recovered power consumption r(t)

1: r(1) = p(1);
2: indexs = 2, index e = 2;
3: for i = 1 to |Ic| do
4: index e = Ic(i);
5: for t = index s to index e do
6: r(t) = r(t� 1) + dc(i);
7: end for
8: end for
9: for t = 1 to N do

10: Calculate d̃(t) with fq(k) and N based on IDCT;
11: end for
12: indexs = 2, index e = 2;
13: for i = 1 to |̃Ic| do
14: index e = Ĩc(i);
15: for t = index s to index e do
16: r(t) = r(t� 1) + d̃(i);
17: end for
18: end for

‘0’ represents following the left child and bit ‘1’ represents
following the right child. The process essentially begins with
the leaf nodes containing the probabilities of the symbol they
represent, then a new node whose children are the two nodes
with smallest probability is created, such that the new node’s
probability is equal to the sum of the children’s probability
Assume (v1, pr1) and (v2, pr2) are merged to (v12, pr12), then
we have pr12 = pr1 + pr2. With the previous two nodes
merged into one node (thus not considering them anymore),
and with the new node being now considered, the procedure
is repeated until only one node remains. Finally, based on the
constructed tree, we can assign each value a code to be stored.

D. Recovery of Power Consumption
In previous sections, we present E-Sketch to compress power

consumption with high time granularity. In this section, we
show how the compressed data can be used to recover original
power consumption.

Since we encode compressed data, the first step of recovery
of original data is to decode by simply translating the stream
of prefix codes to individual byte values. Then we have initial
power consumption p(1), length of power consumption data
N , indexes and values of high power consumption changes
Ic and Dc, and indexes and frequency values of power
consumption changes Ĩc and Fq . Then we show how power
consumption can be recovered with above data in Algorithm 3.
First, we can recover the power consumption data with the
indexes and values of high power consumption changes (Lines
1-8). Because we store the power consumption changes but
not original power consumption, we need to calculate original
power consumption based on the compressed data. Then we
recover time domain data of power consumption change with

quantization results in frequency domain based on IDCT
(Lines 9-11). The recovered power consumption changes D̃q

can be obtained by performing IDCT on quantized frequency
values fq(k), D̃q = HTFq . With the indexes and time domain
values Ĩc and D̃, we can also recover the power consumption
data from 1 to N (Lines 12-18). Algorithm 3 can recover the
original power consumption from 1 to N . If we only need
power consumption of a specific time, we can also calculate
the original power consumption as follows:

p̃(t) = p(1) +

Ic(i)<tX

i=1

dc(i) +

Ĩ(i)<tX

i=1

j=NX

j=1

H[i, j]fq(j) (12)

Then we can reduce the computation overhead of central
server and obtain original power consumption of a specific
time faster.

E. Time Complexity and Storage Analysis

First, we analyze the complexity and data storage of E-
Sketch at local smart meters in the following three stages.
i) Adaptive sampling. Basic power consumption curve is
sketched in time domain. In adaptive sampling, Algorithm 1 is
applied to generate sampled power consumption changes and
time complexity of Algorithm 1 is O(N). For window size
N , we need to store the high power consumption changes and
indexes in this window. Thus the storage cost should be related
to the number of high power consumption changes Nh.
ii) Frequency compression. Sampled data of power con-
sumption changes are transferred into frequency domain and
quantize frequency data. In frequency compression, we need
to conduct DCT for d̃(t) and run Algorithm 2. The time
complexity for DCT is O(NlogN) with fast Fourier transform
(FFT) and time complexity for Algorithm 2 is O(N). For
output of frequency compression, we need to store fq(k) and
Ĩ , which is related to the number of sampled consumption
changes Ns.
iii) Encoding. The compressed data in adaptive sampling and
frequency compression is encoded to further reduce storage
space. Time complexity of encoding is O(NlogN) and en-
coding introduces no storage cost.

In total, the time complexity of our design is still
O(NlogN), which means our design is simple for smart
meters. And the total data storage cost will be related to Nh

and Ns.
Even after data compression, the amount of data in the

central server is still a huge number because the number of
homes is large. Thus, we also analyze the time complexity
of decompression in the central server. The decompression
algorithm includes IDCT calculation and two loops with
complexity of O(N). Thus the complexity of decompression
is also O(NlogN).

V. IMPLEMENTATION AND EVALUATION

In this section, we evaluate the performance of our proposed
design. We deploy eGauge power meters at individual homes
to collect the energy consumption related data (e.g., power,

Fig. 7: eGauge deployment in a home

0 1 2 3 4 5 6 7
0

4

8

12

16

Time (Day)

P
o

w
er

 c
o

n
su

m
p
ti

o
n
 (

k
W

)

Fig. 8: Power consumption of a home in seven days

voltage, frequency, etc.) every second [1]. One of the experi-
ment setup is shown in Figure 7. We add current transducers
(CTs) around each leg of the home’s split-phase power input
from the grid to monitor all the circuits inside the home every
second. In our simulation, we use the power consumption
traces that we collected from 30 homes in eGauge website for
two months. To make the figure easy to follow, we only show
the power consumption of a home for seven days in Figure 8.
In a day, the power consumption is mostly in the afternoon
and evening. And the power consumption for different days
varies significantly.

A. Evaluation Baseline and Metrics

Baseline. To verify the efficiency of our approach, we compare
our design with three approaches: i) Sparse Data, which
utilizes lower time granularity power consumption to estimate
high time granularity power consumption; ii) Polynomial
Fitting, which applies polynomial fitting to estimate the power
consumption; iii) Zip. We realize deflate algorithm, which is
most commonly used compression method for zip files [15].

Metrics. We use two metrics to evaluate the performance of
our approach: i) storage space: the amount of storage space
used to store data; ii) average error of power consumption:
average power differences between original and recovered
data.

B. Basic Evaluation Results

We evaluate the effectiveness of our proposed E-Sketch
compression algorithm, which includes the storage space, error
of power consumption for a single home and a community
of 30 homes. All results are simulated with the two months
empirical data of energy consumption. And the selection of
parameters are: i) error bound ✓ = 0.05; ii) window size

0 4 8 12 16 20 24
−5

0

5

0 4 8 12 16 20 24
−0.4
−0.2

0
0.2
0.4

E
rr

o
r

o
f

p
o

w
er

 c
o
n

su
m

p
ti

o
n

 (
k
W

)

0 4 8 12 16 20 24
−0.4
−0.2

0
0.2
0.4

Time (Hour)

Sparse Data

Polynomial Fitting

E−Sketch

Fig. 9: Error of power consumption of different approaches
compared to original power of a single home

1 5 10 15 20 25 30
0

0.2

0.4

0.6

M
ea

n
 o

f
p

o
w

er
 c

o
n
su

m
p

ti
o
n

 e
rr

o
r

1 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

Number of Homes

S
T

D
 o

f
p
o

w
er

co

n
su

m
p

ti
o

n
 e

rr
o

r

Sparse Data

Polynomial

E−Sketch

Sparse Data

Polynomial

E−Sketch

Fig. 10: Error of power consumption of different approaches
compared to original aggregated power of 30 homes

N = 3600s. The impacts of these parameters are investigated
in latter sections.
Error of power consumption for a single home. The errors
of two approaches over time are shown in Figure 9. Our pro-
posed E-Sketch can recover data with at most 0.05kW power
error. The average power error of E-Sketch is 0.02kW . As
shown in Figure 1, the home consumes more than 3kW power
at most time; thus E-Sketch recovers data with more than 99%
accuracy. We also show the power errors of sparse data and
polynomial fitting. We use average power consumption data
for every 5 seconds to recover power consumption for every
second. The average errors of power consumption for sparse
data and polynomial fitting is also 0.02kW . However, at some
time, the power errors of sparse data and original data is more
than 2kW . And for polynomial fitting, the maximum error
is around 0.1kW , which is much better than sparse data but
worse than E-Sketch. Because Zip is lossless compression,
there would be no error of power consumption.
Error of power consumption for 30 homes. The high time
granularity power consumption data of each home is sent to
the utility companies for calculating the price of electricity. To

0 5 10 15 20 25 30
0

3

6

9

12

Time (Day)

D
at

a
S

to
ra

g
e

(M
B

)

Original Data

Polynomial

Sparse Data

E−Sketch

Zip

Fig. 11: Storage space of different approaches

0.05 0.1 0.15 0.2
300

350

400

450

500

550

600

650

D
at

a
st

o
ra

g
e

(K
B

)

Error bound θ (kW)
0.05 0.1 0.15 0.2

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

A
v
er

ag
e

p
o
w

er
 d

if
fe

re
n
ce

 (
k

W
)

Fig. 12: Impact of error bound ✓

further verify the performance of E-Sketch, we apply E-Sketch
for power consumption data in 30 homes. The power errors
of aggregated power consumption for 30 homes are shown in
Figure 10. Compared to power errors for a single home, the
average power error for 30 homes increases from 0.02kW to
0.1kW . While for sparse data, average power error becomes
0.52kW . The average power error for polynomial fitting is
close to E-Sketch, however, the standard deviation (STD) of
polynomial is much higher than E-Sketch. And maximum
error for polynomial fitting can reach 2kW while maximum
error for E-Sketch is only 0.3kW . The reason that E-Sketch
performs better than sparse data is E-Sketch randomizes the
errors, then power errors of different homes can be cancelled.
Data storage. We show the storage space of energy con-
sumption data for 30 days in Figure 11. Original data needs
much more storage space than all the compression techniques.
Because Zip is a lossless compression technique for general
data, it is not optimized for power consumption data, thus it
still costs more than 3MB. The sparse data and polynomial
fitting takes advantage of power consumption pattern, thus it
costs around 2.2MB. E-Sketch is the best approach for data
storage, which only costs less than 1MB data storage.

C. Advanced Evaluation Results
In the basic evaluation results, we show E-Sketch works

well for a single home and 30 homes. In this section, we
investigate the impact of different parameters in E-Sketch to
verify the robustness of our design.
Impact of error bound ✓. The results of tradeoff of ✓
between storage and accuracy are shown in Figure 12. In this

0.5 1 1.5 2 2.5 3 3.5 4
350

450

550

650

D
at

a
st

o
ra

g
e

(K
B

)

Window size (Hour)
0.5 1 1.5 2 2.5 3 3.5 4

0.018

0.019

0.02

0.021

A
v

er
ag

e
p

o
w

er
 d

if
fe

re
n
ce

 (
k

W
)

Fig. 13: Impact of window size N

simulation, the setting of window size N is 1 hour. When
✓ increases, the storage space increases linearly and average
power error decreases slowly. With higher error bound ✓, adap-
tive sampling can sample less data and frequency compression
can take advantage of more aggressive quantization, thus the
data storage space decreases significantly.
Impact of window size N . We show the impact of window
size N in Figure 13. In this simulation, the setting of ✓
is 0.05kW . With shorter period of window size N , the
adaptive sampling samples less data for a window. However, it
makes frequency compression harder to compress the sampled
data, which introduces more data storage. Thus, data storage
decreases with larger window size. For the average power
error, the adaptive sampling and frequency compression still
works to keep errors under error bound, thus average power
error almost stay the same.

VI. RELATED WORK

Our work is related to three areas of previous work: peak
demand and pricing models and energy data management.
Peak Demand. There are many works on modifying the
elastic load components of common household appliances to
reduce peak demand [17]. In [16], a novel demand response
mechanism is proposed to exploits appliance elasticity to de-
crease peak loads, a fuzzy-logic based controller for appliances
and a signal generator for the utility are designed to reduce
the power consumed by appliances with elastic components.
A real-time distributed deferrable load control algorithm is
proposed to reduce the variance of aggregate load by shifting
the power consumption of deferrable loads to periods with
high renewable generation [9]. Batteries are deployed at homes
to supply energy when peak demand and store energy when
energy consumption is low [14]. Renewable energy is also
investigated to reduce the peak demand [13] [27]. In [28], a
secure energy routing mechanism for sharing renewable energy
in smart microgrid is developed to reduce the peak demand.
In [26], energy sharing is introduced to balance the mismatch
of renewable energy generation and power consumption in
buildings.
Pricing Models. In [6], Adepetu et al. analyze the hourly
aggregate load data to study whether the choice of TOU
parameters adequately reflects the aggregate load, and to study
whether TOU pricing has actually resulted in a decrease in the
mean peak-to-average ratio. In [8], Corradi et al. propose mod-
els for the dynamics of changed price response, and shows how

these dynamics can be used to control electricity consumption
using a one-way price signal. In [24], a decentralized optimal
load control mechanism is proposed to provide contingency
reserve in the presence of sudden demand-supply mismatch.
In [25], Zhong et al. develop energy sharing pricing model to
incentivize energy sharing in a microgrid. In [10], a general
microgrid energy sharing system architecture is designed to
reduce electricity cost of houses under different TOU pricing
models.
Energy Data Management. Energy data is widely used
to reduce and schedule energy generation and consumption
[21] [20]. In [7], Chen et al. explore energy consumption in
everyday home environments to study the relationship between
behavioral patterns and energy consumption and investigates
how this relationship can be helpful for people to act in a
more energy-efficient manner. In [19], Xiang et al. design
a novel data aggregation scheme that exploits compressed
sensing (CS) to achieve both recovery fidelity and energy
efficiency in WSNs with arbitrary topology. In [23], a system
framework of data reduction is proposed to minimize energy
consumption in wireless sensor network. There are also works
on energy data collection. In [22], a new and severe denial of
service attack is proposed for data collection in AMI network.
In [12], Time-Log Tree (TL-Tree), a novel indexing structure
is proposed to consider time-series as a primary characteristic
for optimizing both memory and energy constraints. In [11],
Zhang et al. study timely, cost-minimizing upload of massive,
dynamically-generated, geo-dispersed data into the cloud, for
processing using a MapReduce-like framework.

Different from previous work that focus on data collection
and aggregation, we propose to use data compression to
process collected energy data. By learning from pattern of
energy consumption data, we present the design to save storage
space while maintain accurate data.

VII. CONCLUSION

In this paper, we present E-Sketch to save the space
and keep high accuracy of energy data. In order to reduce
communication overhead, E-Sketch is executed at each local
smart meter. However, smart meters have limited storage and
computing power, therefore the design should be simple and
fast to reduce computation overhead at smart meter. Our design
consists of three parts: i) adaptive sampling in time domain;
ii) data compression in frequency domain; iii) encoding and
decoding. We also illustrate how compressed data can be used
to recover power consumption in the central server and analyze
the performance of our design.

We conducted extensive system evaluations with 30 homes’
second-level power consumption data for more than 2 months.
Results indicate i) our design can reduce data storage space
significantly by 90% with more than 99% accuracy of second-
level power consumption on average for a single home, and
ii) our design can achieve even more than 99.8% accuracy on
average for aggregated power consumption of 30 homes.

VIII. ACKNOWLEDGMENTS

This work was supported by NSF CNS-1217791.

REFERENCES

[1] Egauge. http://www.egauge.net.
[2] Energex. https://www.energex.com.au.
[3] United States Census Bureau. http://www.census.gov.
[4] Ontario’s Power Authority. Ontario’s long term energy plan. 2010.
[5] A Smart Grid Strategy for Assuring Reliability of the Western Grid .

U.S. Department of Energy. 2010.
[6] A. Adepetu, E. Rezaei, D. Lizotte, and S. Keshav. Critiquing time-of-

use pricing in ontario. In IEEE International Conference on Smart Grid
Communications, 2013.

[7] C. Chen, D. J. Cook, and A. S. Crandall. The user side of sustainability:
Modeling behavior and energy usage in the home. Pervasive and Mobile
Computing, 9(1):161 – 175, 2013.

[8] O. Corradi, H. Ochsenfeld, H. Madsen, and P. Pinson. Controlling
electricity consumption by forecasting its response to varying prices.
IEEE Transactions on Power Systems, 28(1):421–429, 2013.

[9] L. Gan, A. Wierman, U. Topcu, N. Chen, and S. H. Low. Real-
time deferrable load control: Handling the uncertainties of renewable
generation. In e-Energy, 2013.

[10] Z. Huang, T. Zhu, Y. Gu, D. Irwin, A. Mishra, and P. Shenoy. Mini-
mizing electricity costs by sharing energy in sustainable microgrids. In
Buildsys, 2014.

[11] C. W. L. Zhang, Z. Li and M. Chen. Online algorithms for uploading
deferrable big data to the cloud. In INFOCOM, 2014.

[12] H. Li, D. Liang, L. Xie, G. Zhang, and K. Ramamritham. Tl-tree: Flash-
optimized storage for time-series sensing data on sensor platforms. In
Proceedings of the 27th Annual ACM Symposium on Applied Computing,
2012.

[13] A. Mishra, D. Irwin, P. Shenoy, J. Kurose, and T. Zhu. Greencharge:
Managing renewable energy in smart buildings. IEEE Journal on
Selected Areas in Communications, 31(7):1281–1293, 2013.

[14] A. Mishra, D. Irwin, P. Shenoy, and T. Zhu. Scaling distributed energy
storage for grid peak reduction. In e-Energy, pages 3–14. ACM, 2013.

[15] D. Salomon, G. Motta, and D. Bryant. Data Compression: The Complete
Reference. Springer, 2007.

[16] P. Srikantha, S. Keshav, and C. Rosenberg. Distributed control for
reducing carbon footprint in the residential sector. In IEEE Third
International Conference on Smart Grid Communications, 2012.

[17] P. Srikantha, C. Rosenberg, and S. Keshav. An analysis of peak demand
reductions due to elasticity of domestic appliances. In e-Energy, 2012.

[18] M. Weiss, A. Helfenstein, F. Mattern, and T. Staake. Leveraging
smart meter data to recognize home appliances. In IEEE International
Conference on Pervasive Computing and Communications, 2012.

[19] L. Xiang, J. Luo, and C. Rosenberg. Compressed data aggregation:
Energy-efficient and high-fidelity data collection. IEEE/ACM Transac-
tions on Networking, 21(6):1722–1735, 2013.

[20] P. Yi, T. Zhu, B. Jiang, B. Wang, and D. Towsley. An energy
transmission and distribution network using electric vehicles. In ICC,
2012.

[21] P. Yi, T. Zhu, G. Lin, and Q. Zhang. Routing renewable energy using
electric vehicles in mobile electrical grid. In MASS, 2013.

[22] P. Yi, T. Zhu, Q. Zhang, Y. Wu, and J. Li. A denial of service attack
in advanced metering infrastructure network. In ICC, 2014.

[23] Q. Zhang, T. Zhu, Y. Ping, and Y. Gu. Cooperative data reduction in
wireless sensor network. In GLOBECOM, 2012.

[24] C. Zhao, U. Topcu, and S. Low. Optimal load control via frequency
measurement and neighborhood area communication. IEEE Transactions
on Power Systems, 28(4):3576–3587, 2013.

[25] W. Zhong, Z. Huang, T. Zhu, Y. Gu, Q. Zhang, P. Yi, D. Jiang, and
S. Xiao. ides: Incentive-driven distributed energy sharing in sustainable
microgrids. In IGCC, 2014.

[26] T. Zhu, Z. Huang, A. Sharma, J. Su, D. Irwin, A. Mishra, D. Menasche,
and P. Shenoy. Sharing renewable energy in smart microgrids. In ICCPS,
2013.

[27] T. Zhu, A. Mishra, D. Irwin, N. Sharma, P. Shenoy, and D. Towsley.
The case for efficient renewable energy management in smart homes.
In BuildSys, pages 67–72. ACM, 2011.

[28] T. Zhu, S. Xiao, Y. Ping, D. Towsley, and W. Gong. A secure energy
routing mechanism for sharing renewable energy in smart microgrid. In
SmartGridComm, pages 143–148. IEEE, 2011.

