
CMSC 491N/691N Introduction to Neural Networks Spring 2001

Review 2 (Chapters. 4, 5, 7)

1. Competitive Learning Networks (CLN)
• Purpose: self-organizing to form pattern clusters/classes based on similarities.
• Architecture: competitive output nodes (WTA, Mexican hat, Maxnet)

− external judge
− lateral inhibition (explicit and implicit)

• Learning (unsupervised and incremental)
− both training examples (samples) and weight vectors are normalized.
− two phase process (competition phase and reward phase)
− learning rules (moving winner's weight vector toward input training vector)

)(jj wxw −=∆ αα or xw j ⋅=∆ αα where x is the current input vector

− learning algorithm
− jw is trained to represent class of patterns (close to the centroid of that class).

• Advantages and problems
− unsupervised
− simple (less time consuming)
− number of output nodes and the initial values of weights affects the learning results (and thus the

classification quality)
− stuck vectors and unsticking

2. Kohonen Self-Organizing Map (SOM)

• Motivation: from random map to topographic map
− what is topographic map
− biological motivations

• SOM data processing
− network architecture: two layers
− output nodes have neighborhood relations
− lateral interaction among neighbors

• SOM learning
− weight update rule (differs from competitive learning when R > 0)
− learning algorithm (winner and its neighbors move their weight vectors toward training input)
− illustrating SOM on a two dimensional plane

• plot output nodes (weights as the coordinates)
• links connecting neighboring nodes

• Applications
− TSP (how and why)

3. Counter Propagation Networks (CPN)

• Purpose: fast and coarse approximation of vector mapping)(xy φφ=

• Architecture (forward only CPN):
− three layers (input, hidden, and output)
− hidden layer is competitive (WTA) for classification/clustering

• CPN learning (two phases). For the winning hidden node jz

− phase 1: jv (weights from input to hidden) is trained by competitive learning to become the

representative vector of a cluster of input vectors.
− phase 2: ju (weights from hidden to output) is trained by delta rule to become an average

output of)(xy φφ= for all input x in cluster j

− learning algorithm
• Works like table lookup (but for multi-dimensional input space)

• Full CPN (bi-directional) (only if an inverse mapping)(1 yx −= φφ exists)

4. Adaptive Resonance Theory (ART)

• Motivation: stability-elasticity dilemma in neural network models
− how to determine when a new class needs to be created
− how to add a new class without damaging/destroying existing classes

• ART1 model (for binary vectors)
− architecture: F1(a), F1(b), F2, G1, G2, R,

bottom up weights ijb and topdown weights jit between F1(b) and F2

− operation: cycle of two phases
• recognition (recall) phase:

competitively determine the winner J (at F2) with Jt as its class representative.

• comparison (verification) phase:
determine if the input resonates with (sufficiently similar to) class J

• vigilance ρρ

− classification as search
• ART1 learning/adaptation

− weight update rules:

iji

i
ij xt

xL

xL
newb =

+−
⋅

= ,
||1

)(

− learning when search is successful: only winning node J updates its Jb. and .Jt .

− when search fails: treat x as an outlier (discard it) or create a new class (add a node on F2) for x
− learning algorithm

• Properties of ART1 and comparison to competitive learning networks

5. Continuous Hopfield model

• Architecture:
− fully connected (thus recurrent) with jiij ww = and 0=iiw

− input to node i: ∑ +⋅=
j ijiji vwin θθ

internal activation iu : ii indtdu =/ (approximated as iii inoldunewu += δδ)()()

output:)(ii ugv = where g(.) is a sigmoid function

• Convergence

− energy function ∑∑ +−=
i iiij jiji vvwvE θθ5.0

− 0≤E& (why) so E is a Lyapunov function
− during computation, all iv 's change along the gradient descent of E.

• Hopfield model for optimization (TSP)
− energy function (penalty for constraint violation)

− weights (derived from the energy function)
− local optima
− general approach for constraint satisfaction optimization problems

6. Simulated Annealing (SA)
• Why need SA (overcome local minima for gradient descent methods)
• Basic ideas of SA

− gradual cooling from a high T to a very low T
− adding noise
− system reaches thermal equilibrium at each T

• Boltzmann-Gibbs distribution in statistical mechanics
− States and its associated energy

• Change state in SA (stochastically)
− probability of changing from ααS to ββS (Metropolis method):

− probability of setting ix to 1 (another criterion commonly used in NN):

• Cooling schedule
−)1log(/)0()(kTkT += (Cauchy machine, with longer tail)

− kTkT /)0()(= , or ββ⋅=+)()1(kTkT

− annealing schedule (cooling schedule plus number of iteration at each temperature)
• SA algorithm
• Advantages and problems

− escape from local minimum
− very general
− slow

7. Boltzmann Machine (BM) = discrete HM + Hidden nodes + SA

• BM architecture
− visible and hidden units
− energy function (similar to HM)

• BM computing algorithm (SA)
• BM learning

− what is to be learned (probability distribution of visible vectors in the training set)
− free run and clamped run
− learning to maximize the similarity between two distributions)(VaP + and)(VaP −

− learning take gradient descent approach to minimize

1 sofactor ion normalizat theis where,
1

=== ∑∑ −−

r

EE Peze
z

P αα
αα

ββββ
αα

αααα

TETEETETE eeeePP //)(// // ∆−−−−− === ββααββαα
ββαα

 <−

=→ −− otherwise

0)(if 1
)(/)(TEEe

EE
ssP

ααββ

ααββ
ββαα

.
1

1

/)(//

/

TEETETE

TE

i abba

a

eee

e
P −−−−

−

+
=

+
=

− the learning rule)(−+ −−=∆ ijijij ppw µµ (meaning of +
ijp and −

ijp)

− learning algorithm
• Advantages and problems

− higher representational power
− learning probability distribution
− extremely slow

8. Basic Ideas of Some Other Neural Network Models

• Reinforcement learning (RL)
− general ideas of RL (reward and penalty)
− ARP (associative reward-and-penalty) algorithm for NN

• stochastic units (for random search)
• desired output induced by reward signal

• Recurrent BP (RBP)
− generalization of BP to recurrent networks
− Hopfield units
− gradient descent to minimize error E (how to obtain E: 2)(5.0 ∑ ∞−=

k kk ytE , where ∞
ky is

computed by relaxing the original network to equilibrium)
− transposed network, driven by error, computes weight updates by relaxing it to equilibrium.
− weight update process for RBP

• Networks of Radial Basis Functions (RBF)
− A better function approximator
− unit of RBF (e.g., normalized Gaussian unit), receptive field of a unit
− architecture and computation (compare to CPN: hidden nodes are not WTA)
− learning (competitive for hidden units; LMS for output units)
− compare with BP and CPN

• Probabilistic Neural Networks (PNN)
− purpose: NN realization of Bayesian decision rule for classification
− network structure: layers of pattern units and summation/class units
− learning is not to minimize the error but to obtain probability density function

∑ −

+
+=

a a

a
a VP

VP
VPG

)(

)(
ln)(

