CMSC 491N/691N

Introduction to Neural Networks

Spring 2001

Review 2 (Chapters. 4, 5, 7)

1. Competitive Learning Networks (CLN)

- Purpose: self-organizing to form pattern clusters/classes based on similarities.
- Architecture: competitive output nodes (WTA, Mexican hat, Maxnet)
 - external judge
 - lateral inhibition (explicit and implicit)
- Learning (unsupervised and incremental)
 - both training examples (samples) and weight vectors are normalized.
 - two phase process (competition phase and reward phase)
 - learning rules (moving **winner's** weight vector toward input training vector)

 $\Delta w_i = \mathbf{a}(\mathbf{x} - \mathbf{w}_i)$ or $\Delta w_i = \mathbf{a} \cdot \mathbf{x}$ where \mathbf{x} is the current input vector

- learning algorithm
- w_i is trained to represent class of patterns (close to the centroid of that class).
- Advantages and problems
 - unsupervised
 - simple (less time consuming)
 - number of output nodes and the initial values of weights affects the learning results (and thus the classification quality)
 - stuck vectors and unsticking

2. Kohonen Self-Organizing Map (SOM)

- Motivation: from random map to topographic map
 - what is topographic map
 - biological motivations
- SOM data processing
 - network architecture: two layers
 - output nodes have neighborhood relations
 - lateral interaction among neighbors
- SOM learning
 - weight update rule (differs from competitive learning when R > 0)
 - learning algorithm (winner and its neighbors move their weight vectors toward training input)
 - illustrating SOM on a two dimensional plane
 - plot output nodes (weights as the coordinates)
 - links connecting neighboring nodes
- Applications
 - TSP (how and why)

3. Counter Propagation Networks (CPN)

- Purpose: fast and coarse approximation of vector mapping y = f(x)
- Architecture (forward only CPN):
 - three layers (input, hidden, and output)
 - hidden layer is competitive (WTA) for classification/clustering
- CPN learning (two phases). For the winning hidden node z_i

- phase 1: v_j (weights from input to hidden) is trained by competitive learning to become the representative vector of a cluster of input vectors.
- phase 2: u_i (weights from hidden to output) is trained by delta rule to become an average
- output of y = f(x) for all input x in cluster j
- learning algorithm
- Works like table lookup (but for multi-dimensional input space)
- Full CPN (bi-directional) (only if an inverse mapping $x = f^{-1}(y)$ exists)

4. Adaptive Resonance Theory (ART)

- Motivation: stability-elasticity dilemma in neural network models
 - how to determine when a new class needs to be created
 - how to add a new class without damaging/destroying existing classes
- ART1 model (for binary vectors)
 - architecture: F1(a), F1(b), F2, G1, G2, R,

bottom up weights b_{ii} and topdown weights t_{ii} between F1(b) and F2

- operation: cycle of two phases
 - recognition (recall) phase:
 competitively determine the winner J (at F2) with t₁ as its class representative.
 - *comparison (verification) phase*: determine if the input resonates with (sufficiently similar to) class *J*
 - vigilance **r**
- classification as search
- ART1 learning/adaptation
 - weight update rules:

$$\boldsymbol{b}_{ij}(\boldsymbol{new}) = \frac{\boldsymbol{L} \cdot \boldsymbol{x}_i}{\boldsymbol{L} - 1 + |\boldsymbol{x}|}, \quad \boldsymbol{t}_{ji} = \boldsymbol{x}_j$$

- learning when search is successful: only winning node J updates its b_J and t_J .
- when search fails: treat x as an outlier (discard it) or create a new class (add a node on F2) for x
 learning algorithm
- Properties of ART1 and comparison to competitive learning networks

5. Continuous Hopfield model

- Architecture:
 - fully connected (thus recurrent) with $w_{ij} = w_{ji}$ and $w_{ii} = 0$
 - input to node *i*: $in_i = \sum_j w_{ij} \cdot v_j + q_i$ internal activation u_i : $du_i / dt = in_i$ (approximated as $u_i(new) = u_i(old) + d_i in_i$)
 - output: $v_i = g(u_i)$ where g(.) is a sigmoid function
- Convergence
 - energy function $E = -0.5 \sum_{ij} v_i w_{ij} v_j + \sum_i q_i v_i$
 - $\dot{E} \leq 0$ (why) so *E* is a Lyapunov function
 - during computation, all v_i 's change along the gradient descent of E.
- Hopfield model for optimization (TSP)
 - energy function (penalty for constraint violation)

- weights (derived from the energy function)
- local optima
- general approach for constraint satisfaction optimization problems

6. Simulated Annealing (SA)

- Why need SA (overcome local minima for gradient descent methods)
- Basic ideas of SA
 - gradual cooling from a high T to a very low T
 - adding noise

•

- system reaches thermal equilibrium at each T
- Boltzmann-Gibbs distribution in statistical mechanics
 - States and its associated energy

$$P_{\mathbf{a}} = \frac{1}{z} e^{-\mathbf{b} E_{\mathbf{a}}}$$
, where $z = \sum_{\mathbf{a}} e^{-\mathbf{b} E_{\mathbf{a}}}$ is the normalization factor so $\sum_{r} P_{\mathbf{a}} = 1$
 $P_{\mathbf{a}} / P_{\mathbf{b}} = e^{-E_{\mathbf{a}}/T} / e^{-E_{\mathbf{b}}/T} = e^{-(E_{\mathbf{a}} - E_{\mathbf{b}})/T} = e^{-\Delta E/T}$

- Change state in SA (stochastically)
 - probability of changing from S_a to S_b (Metropolis method):

$$P(s_{a} \rightarrow s_{b}) = \begin{cases} 1 & \text{if } (E_{b} - E_{a}) < 0 \\ e^{-(E_{b} - E_{a})/T} & \text{otherwise} \end{cases}$$

- probability of setting x_i to 1 (another criterion commonly used in NN):

$$\boldsymbol{P}_{i} = \frac{\boldsymbol{e}^{-E_{a}/T}}{\boldsymbol{e}^{-E_{a}/T} + \boldsymbol{e}^{-E_{b}/T}} = \frac{1}{1 + \boldsymbol{e}^{-(E_{b}-E_{a})/T}}.$$

- Cooling schedule
 - $T(k) = T(0) / \log(1+k)$ (Cauchy machine, with longer tail)
 - T(k) = T(0)/k, or $T(k+1) = T(k) \cdot \mathbf{b}$
 - annealing schedule (cooling schedule plus number of iteration at each temperature)
- SA algorithm
- Advantages and problems
 - escape from local minimum
 - very general
 - slow

7. Boltzmann Machine (BM) = discrete HM + Hidden nodes + SA

- BM architecture
 - visible and hidden units
 - energy function (similar to HM)
 - BM computing algorithm (SA)
- BM learning

٠

- what is to be learned (probability distribution of visible vectors in the training set)
- free run and clamped run
- learning to maximize the similarity between two distributions $P^+(Va)$ and $P^-(Va)$
- learning take gradient descent approach to minimize

$$G = \sum_{a} P^{+}(V_{a}) \ln \frac{P^{+}(V_{a})}{P^{-}(V_{a})}$$

- the learning rule $\Delta w_{ij} = -\mathbf{m}(\mathbf{p}_{ij}^+ - \mathbf{p}_{ij}^-)$ (meaning of \mathbf{p}_{ij}^+ and \mathbf{p}_{ij}^-)

- learning algorithm
- Advantages and problems
 - higher representational power
 - learning probability distribution
 - extremely slow

8. Basic Ideas of Some Other Neural Network Models

- Reinforcement learning (RL)
 - general ideas of RL (reward and penalty)
 - ARP (associative reward-and-penalty) algorithm for NN
 - stochastic units (for random search)
 - desired output induced by reward signal
- Recurrent BP (RBP)
 - generalization of BP to recurrent networks
 - Hopfield units
 - gradient descent to minimize error E (how to obtain E: $E = 0.5 \sum_{k} (t_k y_k^{\infty})^2$, where y_k^{∞} is
 - computed by relaxing the original network to equilibrium)
 - transposed network, driven by error, computes weight updates by relaxing it to equilibrium.
 - weight update process for RBP
- Networks of Radial Basis Functions (RBF)
 - A better function approximator
 - unit of RBF (e.g., normalized Gaussian unit), receptive field of a unit
 - architecture and computation (compare to CPN: hidden nodes are not WTA)
 - learning (competitive for hidden units; LMS for output units)
 - compare with BP and CPN
- Probabilistic Neural Networks (PNN)
 - purpose: NN realization of Bayesian decision rule for classification
 - network structure: layers of pattern units and summation/class units
 - learning is not to minimize the error but to obtain probability density function