CMSC 491N/691N

Introduction to Neural Networks

Review 1 (Chapters. 1, 2, 6, 3)

1. Basics

- Comparison between human brain and von Neumann architecture
- Processing units
- Activation/output functions (threshold, linear-threshold, sigmoid)
- Network architecture (hidden nodes, feed-forward/recurrent nets, layered)
- Connection and weights
- Types of learning (supervised/unsupervised), Hebbian rule
- 2. Single Layer networks (Perceptron, Adaline, and the delta rule)
 - Architecture
 - Decision boundary and the problem of linear separability $(b + \sum_{i=1}^{n} x_i w_i = 0)$
 - Hebbian nets ($\Delta w_i = x_i \cdot t$)
 - Perceptron learning rule (only when $t \neq y : \Delta w_i = \mathbf{a} \cdot \mathbf{x}_i \cdot \mathbf{t}$)
 - Perceptron convergence theorem
 - Delta learning rule in Adaline (driven by error: $\Delta w_i = \mathbf{a} \cdot \mathbf{x}_i \cdot (t y_i n)$)
 - Gradient descent approach in deriving delta learning rule

squared error:
$$E = (t - y_i)^2$$
 or $E = \sum_{p=1}^{P} (t(p) - y_i(p))^2$

 $\Delta w_i \propto -\partial E / \partial w_i$

3. Backpropagation (BP) Networks

- Multi-layer feed-forward architecture with hidden nodes of non-linear and differentiable activation functions
- Motivation to have hidden nodes (representational power). Why non-linear?
- Feed forward computing
- BP learning
 - Training samples
 - Obtain errors at output layer (feed-forward phase): $\mathbf{d}_k = (t_k y_k) f'(y_i n_k)$
 - Obtain errors at hidden layer (error backpropagation phase): $\mathbf{d}_j = \mathbf{d}_i \mathbf{n}_j \cdot f'(\mathbf{y}_i \mathbf{n}_j)$

and
$$\boldsymbol{d}_{in_{j}} = \sum_{k=1}^{m} \boldsymbol{d}_{k} w_{jk}$$

- Learning procedure (batch and sequential modes)
- In what sense BP learning generalizes delta rule of Adaline
- Why BP learning works (gradient descent to minimize error): $\Delta w_{ij} = -\mathbf{a} \cdot \partial E / \partial w_{ij}$
- Issues of practical concerns
 - Bias, error bound, training data, initial weights, number and size of hidden layers;
 - Learning rate (momentum, adaptive rate)
- Advantages and problems with BP learning
 - Powerful (general function approximator); easy to use; wide applicability; good generalization
 - Local minima; overfitting; parameters may be hard to determine; network paralysis; long learning time, hard to accommodate new samples (non-incremental learning)

4. Pattern Association and Associative memory (AM)

- Simple AM
 - Associative memory (AM) (content-addressable/associative recall; pattern correction/completion) Network architecture: single layer or two layers of non-linear units
- Hebbian rule: $w_{ij} = \sum_{p=1}^{P} s_i(p) t_j(p)$
 - Correlation matrix: $W = \sum_{p=1}^{P} s^{T}(p) t(p)$ (assuming both *s* and *t* are row vectors).
 - Principal and cross-talk term: $s(k)W = ||s(k)|| + \sum_{p \neq k} s(k)s^T(p) t(p)$
- Delta rule: $\Delta w_{ij} = \mathbf{a} \cdot (t_j y_j) \cdot x_i$ or $\Delta w_{ij} = \mathbf{a} \cdot (t_j y_j) \cdot x_i \cdot f'(y_in_j)$ derived following gradient descent $(\Delta w_{ij} = -\mathbf{a} \cdot \partial E / \partial w_{ij})$
- Auto-associative memory: t(p) = s(p), p = 1, 2, ... P.
 Storage capacity: up to n-1 mutually orthogonal patterns of dimension n
- Iterative autoassociative memory
 - Motives (comparing with non-iterative recall)
 - Using the output of the current iteration as input of the next iteration (stop when a state repeats)
 - Dynamic system (stable states, attractors, genuine and spurious memories)
- Hopfield model for autoassociative memory
 - Network architecture (single-layer, fully connected, recurrent)
 - Weight matrix for Hopfield model (symmetric with zero diagonal elements)

$$w_{ij} = \begin{cases} \sum_{p=1}^{P} s_i(p) \cdot s_j(p) & \text{if } i \neq j \\ 0 & \text{otherwise} \end{cases}$$

- Recall procedure (iterative until stabilized)
- Stability of dynamic systems
 - Ideas of Lyapunov function/energy function (monotonically non-increasing and bounded from below)
 - o Convergence of Hopfield AM: its an energy function

$$\circ \qquad E = -0.5 \sum_{i \neq j} \sum_{j} y_i y_j w_{ij} - \sum_{i} x_i y_i + \sum_{i} \mathbf{q}_i y_i$$

- Storage capacity of Hopfield AM ($P \approx n/(2\log_2 n)$).

- Bidirectional AM (BAM)
 - Architecture: two layers of non-linear units

- Weight matrix:
$$W_{n \times m} = \sum_{p=1}^{P} s^{T}(p) t(p)$$

- Recall: bi-directional (from x to y and y to x); recurrent
- Analysis

• Energy function:
$$L = -XWY^T = -\sum_{j=1}^m \sum_{i=1}^n x_i w_{ij} y_j$$

• Storage capacity: $P = O(\max(n, m))$