Review 1 (Chapters. 1, 2, 6, 3)

1. Basics

- Comparison between human brain and von Neumann architecture
- Processing units
- Activation/output functions (threshold, linear-threshold, sigmoid)
- Network architecture (hidden nodes, feed-forward/recurrent nets, layered)
- Connection and weights
- Types of learning (supervised/unsupervised), Hebbian rule

2. Single Layer networks (Perceptron, Adaline, and the delta rule)

- Architecture
- Decision boundary and the problem of linear separability $\left(\boldsymbol{b}+\sum_{i=1}^{n} \boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{w}_{\boldsymbol{i}}=0\right)$
- Hebbian nets ($\left.\Delta \boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{t}\right)$
- Perceptron learning rule (only when $\boldsymbol{t} \neq \boldsymbol{y}: \Delta \boldsymbol{w}_{i}=\boldsymbol{\alpha} \cdot \boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{t}$)
- Perceptron convergence theorem
- Delta learning rule in Adaline (driven by error: $\Delta \boldsymbol{w}_{\boldsymbol{i}}=\boldsymbol{\alpha} \cdot \boldsymbol{x}_{\boldsymbol{i}} \cdot\left(\boldsymbol{t}-\boldsymbol{y}_{-} \boldsymbol{i n}\right)$)
- Gradient descent approach in deriving delta learning rule
squared error: $\boldsymbol{E}=\left(\boldsymbol{t}-\boldsymbol{y}_{-} \boldsymbol{i n}\right)^{2}$ or $\boldsymbol{E}=\sum_{p=1}^{P}\left(\boldsymbol{t}(\boldsymbol{p})-\boldsymbol{y}_{-} \boldsymbol{i n}(\boldsymbol{p})\right)^{2}$
$\Delta w_{i} \propto-\partial E / \partial w_{i}$

3. Backpropagation (BP) Networks

- Multi-layer feed-forward architecture with hidden nodes of non-linear and differentiable activation functions
- Motivation to have hidden nodes (representational power). Why non-linear?
- Feed forward computing
- BP learning
- Training samples
- Obtain errors at output layer (feed-forward phase): $\boldsymbol{\delta}_{\boldsymbol{k}}=\left(\boldsymbol{t}_{\boldsymbol{k}}-\boldsymbol{y}_{\boldsymbol{k}}\right) \boldsymbol{f}^{\prime}\left(\boldsymbol{y}_{-} \boldsymbol{i \boldsymbol { i n } _ { \boldsymbol { k } }}\right)$
- Obtain errors at hidden layer (error backpropagation phase): $\boldsymbol{\delta}_{\boldsymbol{j}}=\boldsymbol{\delta}_{-} \boldsymbol{i} \boldsymbol{n}_{\boldsymbol{j}} \cdot \boldsymbol{f}^{\prime}\left(\boldsymbol{y}_{-} \boldsymbol{i \boldsymbol { i n } _ { \boldsymbol { j } }}\right)$

$$
\text { and } \boldsymbol{\delta}_{-} \boldsymbol{i} \boldsymbol{n}_{\boldsymbol{j}}=\sum_{k=1}^{m} \boldsymbol{\delta}_{\boldsymbol{k}} \boldsymbol{w}_{\boldsymbol{j} k}
$$

- Learning procedure (batch and sequential modes)
- In what sense BP learning generalizes delta rule of Adaline
- Why BP learning works (gradient descent to minimize error): $\Delta \boldsymbol{w}_{i j}=-\alpha \cdot \partial \boldsymbol{E} / \partial \boldsymbol{w}_{i j}$
- Issues of practical concerns
- Bias, error bound, training data, initial weights, number and size of hidden layers;
- Learning rate (momentum, adaptive rate)
- Advantages and problems with BP learning
- Powerful (general function approximator); easy to use; wide applicability; good generalization
- Local minima; overfitting; parameters may be hard to determine; network paralysis; long learning time, hard to accommodate new samples (non-incremental learning)

4. Pattern Association and Associative memory (AM)

- Simple AM

Associative memory (AM) (content-addressable/associative recall; pattern correction/completion)
Network architecture: single layer or two layers of non-linear units

- Hebbian rule: $\boldsymbol{w}_{i j}=\sum_{p=1}^{P} s_{i}(\boldsymbol{p}) \boldsymbol{t}_{j}(\boldsymbol{p})$
- Correlation matrix: $\boldsymbol{W}=\sum_{p=1}^{P} \boldsymbol{s}^{T}(\boldsymbol{p}) \boldsymbol{t}(\boldsymbol{p})$ (assuming both \boldsymbol{s} and \boldsymbol{t} are row vectors).
- Principal and cross-talk term: $\boldsymbol{s}(\boldsymbol{k}) \boldsymbol{W}=\|\boldsymbol{s}(\boldsymbol{k})\|+\sum_{p \neq k} \boldsymbol{s}(\boldsymbol{k}) \boldsymbol{s}^{T}(\boldsymbol{p}) \cdot \boldsymbol{t}(\boldsymbol{p})$
- Delta rule: $\Delta \boldsymbol{w}_{i j}=\alpha \cdot\left(\boldsymbol{t}_{\boldsymbol{j}}-\boldsymbol{y}_{j}\right) \cdot \boldsymbol{x}_{\boldsymbol{i}}$ or , $\Delta \boldsymbol{w}_{i j}=\boldsymbol{\alpha} \cdot\left(\boldsymbol{t}_{\boldsymbol{j}}-\boldsymbol{y}_{j}\right) \cdot \boldsymbol{x}_{\boldsymbol{i}} \cdot \boldsymbol{f}^{\prime}\left(\boldsymbol{y}_{-} \boldsymbol{i \boldsymbol { n } _ { j }}\right)$ derived following gradient descent $\left(\Delta w_{i j}=-\alpha \cdot \partial \boldsymbol{E} / \partial w_{i j}\right)$
- Auto-associative memory: $\boldsymbol{t}(\boldsymbol{p})=\boldsymbol{s}(\boldsymbol{p}), \boldsymbol{p}=1,2, \ldots P$.

Storage capacity: up to $\boldsymbol{n} \boldsymbol{- 1}$ mutually orthogonal patterns of dimension \boldsymbol{n}

- Iterative autoassociative memory
- Motives (comparing with non-iterative recall)
- Using the output of the current iteration as input of the next iteration (stop when a state repeats)
- Dynamic system (stable states, attractors, genuine and spurious memories)
- Hopfield model for autoassociative memory
- Network architecture (single-layer, fully connected, recurrent)
- Weight matrix for Hopfield model (symmetric with zero diagonal elements)

$$
w_{i j}=\left\{\begin{array}{lr}
\sum_{p=1}^{P} s_{i}(p) \cdot s_{j}(p) & \text { if } i \neq \boldsymbol{j} \\
0 & \text { otherwise }
\end{array}\right.
$$

- Recall procedure (iterative until stabilized)
- Stability of dynamic systems
- Ideas of Lyapunov function/energy function (monotonically non-increasing and bounded from below)
- Convergence of Hopfield AM: its an energy function
- $\quad E=-0.5 \sum_{i \neq j} \sum_{j} y_{i} y_{j} w_{i j}-\sum_{i} x_{i} y_{i}+\sum_{i} \theta_{i} y_{i}$
- Storage capacity of Hopfield AM ($\boldsymbol{P} \approx \boldsymbol{n} /\left(2 \log _{2} \boldsymbol{n}\right)$).
- Bidirectional AM (BAM)
- Architecture: two layers of non-linear units
- Weight matrix: $W_{n \times m}=\sum_{p=1}^{P} s^{T}(p) \cdot t(p)$
- Recall: bi-directional (from \boldsymbol{x} to \boldsymbol{y} and \boldsymbol{y} to \boldsymbol{x}); recurrent
- Analysis
- Energy function: $\boldsymbol{L}=-\boldsymbol{X} \boldsymbol{W} \boldsymbol{Y}^{\boldsymbol{T}}=-\sum_{j=1}^{m} \sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{w}_{i j} \boldsymbol{y}_{j}$
- Storage capacity: $\boldsymbol{P}=\boldsymbol{O}(\max (\boldsymbol{n}, \boldsymbol{m}))$

