
Chapter 7
Other Important NN Models

• Continuous Hopfield mode (in detail)

– For combinatorial optimization

• Simulated annealing (in detail)

– Escape from local minimum

• Baltzmann machine (brief)

• Other models (brief)

– Reinforcement learning (between supervised and 
unsupervised learning)

– Probabilistic neural networks

– Recurrent BP networks

– Networks of radial basis functions



Continuous Hopfield Model
• Architecture:

– Fully connected with symmetric weights

– Activation

– Output (state) where g is a sigmoid function 
to ensure binary/bipolar output

– Compute          by first-order Taylor expansion

• Computation: all units change their output (states) at the 
same time, based on states of all others.
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• Convergence:  
– define an energy function, 
– show that if the state update rule is followed, the system’s 

energy always decreasing.
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– asymptotically approaches zero when          
approaches 1 or 0 for all i.

– The system reaches a local minimum energy state

– Gradient descent:

– Instead of jumping from corner to corner in a 
hypercube as the discrete HM does, the system  of 
continuous HM moves in the interior of the hypercube 
along the gradient descent trajectory of the energy 
function to a local minimum energy state.

•

E )(' iug

i

i

v
E

dt
du

∂
∂

−=



H model for optimization (TSP)

• Constraint satisfaction combinational optimization.

A solution must satisfy a set of given constraints (strong) 
and be optimal w.r.t. a cost or utility function (weak)

• TSP: ( geometric vs geographic)
– n points(cities) on a plane form a fully connected graph (can 

go from any city to any other ), 

– direct travel distance between 2 cities = length of the edge 
between them = Euclidean distance between them.

– Objective: find a optional tour which, starting from a city, 
visits every city exactly once, then returns to the start city.

– Those (legal) tours are Hamiltonian circuits of the graph.

– The optimality is measured by the length of the circuit = sum 
of lengths of all legs on the circuit.



• Constraints:
1. Each city can be visited no more than once
2. Every city must be visited
3. TS can only visit cities one at a time (implicit)
4. Tour (circuit) should be the shortest

• NP-hard problem (harder than its NP-complete version)
– A legal tour (satisfying constraints 1 – 3) can be represented by 

a permutation of all n cities (because the graph is fully 
connected). Total # of permutations: n!

– Each circuit corresponds to n different permutations (with n 
different starting city), total # of undirected circuits: n!/n

– Each circuit has two directions, total # of distinct circuits: n!/2n
need to find the shortest among the n!/2n circuits.

– Grows faster than exponential.
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• Solving TSP by continuous Hopfield  model:
1. Design the network structure
2. Define an energy function

– punish violation of (strong) constraint with large amount of 
energy

– lower energy associates to shorter circuits (weak constraint)

3. Find weight matrix from the energy function such that energy 
always decreases whenever the network moves (according to 
H model and W)

• Design the network structure:
Different possible ways to represent TSP by NN:

node - city: hard to represent the order of cities in forming      
a circuit (SOM solution)

node - edge: n out of n(n-1)/2 nodes must become 
activated and they must form a circuit.



• Hopfield’s solution:
– n by n network, each node is 

connected to every other node.
• Node output approach 0 or 1
• row: city
• column: position in the tour:

Tour: B-A-E-C-D-B

– Output (state) of each node is denoted:
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Energy function

– A, B, C, D are constants, to be determined by trial-and-error.

–

a Hamiltonian circuit, then
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the fourth term represents the circuit length here i+1, i-1 are 
modulo n. With the 5 city example B-A-E-C-D-B.

• Obtaining weight matrix:

Method 1: Rewrite E in the form of 

where are in terms of parameters A, B, C, D.

no systematic procedure for such conversion
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Method 2: Determine local function of motion       from E
• it should cause E to always decrease
• since by continuous HM, 

it might be easier to find from
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(1) determining             from E so that with 

(gradient descent approach again)
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(2) Since ,  weights thus should 

include the following

– A: between nodes in the same row

– B: between nodes in the same column

– C: between any two nodes

– D: dxy between nodes in different row but adjacent 
column

– each node also has a positive bias Cnxi=θθ
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1. Since                                                         , W can also be 

used for discrete model. 

2. Initialization: randomly assign      between 0 and 1 

such that

3. No need to store explicit weight matrix.

4. Hopfield’s own experiments

A = B = D = 500, C = 200, n = 15

20 trials (with different distance matrices): all trials converged: 

16 to legal tours, 8 to shortest tours, 2 to second shortest tours.
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5.General methodology of using Hopfield model for 
combinatorial optimization.
– represent the problem: solution space to state space
– sum-up problem constraints and cost functions and other 

considerations into an energy function E:
• E is defined over the state space
• lower energy states correspond to better solutions
• penalty for constraint violation

– determine the local function of motion (gradient descent)

– work out weight matrix from 
– The hard part is to establish that

• Any solution (to the given problem) corresponds to a (local) 
minimum energy state of the system

• Optimal solution corresponds to a globally minimum energy 
state of the system.
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6. Problems of continuous HM for optimization

– Only guarantees local minimum state (E always 
decreasing)

– No general guiding principles for determining 
parameters (e.g., A, B, C, D in TSP)

– Energy functions are hard to come up and they may 
result in different solution qualities
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Simulated Annealing
• A general purpose global optimization technique

• Motivation

BP/HM:

– Gradient descent to minimal error/energy function E.

– Iterative improvement: each step improves the solution. 

– As optimization: stops when no improvement is possible 
without making it worse first.

– Problem: trapped to local minimal .

key:

– possible solution to escaping from local minimal: 

allow E to increase occasionally (by adding random noise).
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• To improve quality of metal works.
• Energy of a state (a config. of atoms in a metal piece) 

– depends on the relative locations between atoms.
– minimum energy state: crystal lattice, durable, less 

fragile/crisp
– many atoms are dislocated from crystal lattice, causing higher 

(internal) energy.
• Each atom is able to randomly move 

– If and how far an atom moves depends on the temperature (T)
• Dislocation and other disruptions can be eliminated by the 

atom’s random moves: thermal agitation. 
– takes too long if done at room temperature

• Annealing: (to shorten the agitation time)
– starting at a very high T, gradually reduce T

• SA: apply the idea of annealing to NN optimization

Annealing process in metallurgy



• System of multi-particles, 
– Each particle can change its state 
– Hard to know the system’s exact state/config. , and its energy.
– Statistical approach: probability of the system is at a given state.

assume all possible states obey Boltzmann-Gibbs distribution:      

: the energy when the system is at state 

: the probability the system is at state

Statistical Mechanics
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Let 

(1)

(2) differ little with high T, more opportunity to 
change state in the beginning of annealing.

differ a lot with low T, help to keep the system 
at low E state at the end of annealing.

when Tà0,                      (system is infinitely more 
likely to be in the global minimum energy state than in 
any other state).

(3) Based on B-G distribution
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• Metropolis algorithm for optimization(1953)

: current state

a new state      differs from     by a small random 
displacement, then accept      will be accepted with the 
probability
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Simulated Annealing in NN
• Algorithm (very close to Metropolis algorithm)

1. set the network to an initial state S
set the initial temperature T>>1

2. do the following steps many times until thermal
equilibrium is reached at the current T
2.1. randomly select a state displacement

2.2. compute 
2.3.

3. reduce T according to the coding schedule
4. if  T > T-lower-bound, then go to 2 else stop
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• Comments

– thermal equilibrium (step 2) is hard to test, usually with 
a pre-set iteration number/time

– displacement       may be randomly generated
• choose one component of S to change or 

• changes to all components of the entire state vector

• should be small

– cooling schedule
• Initial T: 1/T ~ 0 (so any state change can be accepted) 

• Simple example:

• Another example: 
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SA for discrete Hopfield Model
• In step 2, each time only one node say xi is selected for 

possible update, all other nodes are fixed.

alg. Metropolis from difference iscriterion  acceptance This
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• Localize the computation

• It can be shown that both acceptance criterion guarantees 
the B-G distribution if a thermal equilibrium is reached.

• When applying to TSP, using the energy function designed 
for continuous HM
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Variations of SA
• Gauss machine: a more general framework
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• Cauchy machine

obeys Cauchy distribution 

acceptance criteria:  

• Need special random number generator for a particular   

distribution

Gauss: density function
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Boltzmann Machine (BM)
• Hopfield model + hidden units + simulated annealing
• BM Architecture

– a set of visible units: nodes can be accessed from outside

– a set of hidden units: (may be empty)

• adding hidden nodes to increase the computing power

– connection between nodes

• Fully connected between any two nodes (not layered)

• Symmetric connection: 

– nodes are the same as in discrete HM 

– energy function: 
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• BM computing ( SA), with a given set of weights

1. Apply an input pattern to the visible units.
– some components may be missing---pattern completion; 

– some components may be permanently clamped to the input 
values (as recall key or problem input parameters).

2. Assign randomly 0/1 to all unknown units

( including all hidden units and visible units with

missing input values).

3. Perform SA process according to a given cooling

schedule. Specifically, at any given temperature T.

an random picked non-clamped unit i is assigned

value of 1 with probability , 

and 0 with probability
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• BM learning ( obtaining weights from examplers)
– what is to be learned?

• probability distribution of visible vectors in the environment. 
• examplers: randomly drawn from the entire population of 

possible visible vectors.
• construct a model of the environment that has the same prob. 

distri. of visible nodes as the one in the exampler set.
– There may be many models satisfying this condition 

• because the model involves hidden units.

• let the model have equal probability of theses states (max. entropy);
• let these states obey B-G distribution (prob. proportional to energy). 
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– BM Learning rule:

: the set of examlers ( visible vectors)

: the set of vectors appearing on the hidden units

two phases:

• clamping phase: each exampler      is clamped to 
visible units.

• free-run phase: none of the visible unit is clamped 

: probability that exampler    is applied in

clamping phase (determined by the training set)

: probability that the system is stabilized with  

at visible units in free-run (determined by the 

model)
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• learning is to construct the weight matrix such that 

is as close to             as possible.

• A measure of the closeness of two probability distributions 
(called maximum livelihood, asymmetric divergence or 
information gain):

• It can be shown

• BM learning takes the gradient descent approach to 
minimal G
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BM Learning algorithm
1. compute

1.1. clamp one training vector to the visible units of the 
network

1.2. anneal the network according to the annealing 
schedule until equilibrium is  reached at the desired
minimum temperature.

1.3. continue to run the network for several more cycles. 
After each cycle, determine which pairs of connected 
unit are “on” simultaneously.

1.4. average the co-occurrence results from 1.3
1.5. repeat steps 1.1 to 1.4 for all training vectors and 

average the co-occurrence results to estimate            
for each pair of connected units. 
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2. Compute

the same steps as 1.1 to 1.5 except no visible unit is 
clamped.

3. Calculate and apply weight change

4. Repeat steps 1 to 3 until               is sufficiently small.   
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• Comments on BM learning

1. BM is a stochastic machine not a deterministic one.
2. It has higher representative/computation power than HM+SA 

(due to the existence of hidden nodes).
3. Since learning takes gradient descent approach, only local 

optimal result is guaranteed (computation still guarantees 
global optimal if temperature decreases infinitely slow during 
SA).

4. Learning can be extremely slow, due to repeated SA involved
5. Speed up: 

– Hardware implementation
– Mean field theory: turning BM to deterministic.
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