Chapter 7
Other Important NN Models

« Continuous Hopfield mode (in detail)
— For combinatorial optimization

e Simulated annealing (in detail)
— Escape from local minimum

« Baltzmann machine (brief)

e Other models (brief)

— Renforcement learning (between supervised and
unsupervised learning)

— Probabilistic neural networks
— Recurrent BP networks
— Networks of radial basis functions



Continuous Hopfield M odel

e Architecture:

— Fully connected with symmetric weightsw;; =w;;, w; =0

— Activation u : with% =a W,V +q; =in,
j=1
— Output (state) v. = g(u.) where gisasigmoid function
to ensure binary/bipolar output

— Compute u, (t) by first-order Taylor expansion

0, (t+d ) = gn, (t)dt » u, (t) + d“(;t“) o +... = U (1) +in, xd
e Computation: all units change their output (states) at the

same time, based on states of all others.




e Convergence:
— define an energy function,

— show that if the state update rule is followed, the system’s
energy always decreasing.
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_ E asymptotically approaches zero when g'(u;)
approaches 1 or O for all i.

— The system reaches alocal minimum energy state

— Gradient descent; 4 - TE
dt v
— Instead of jumping from corner to corner in a
hypercube as the discrete HM does, the system of
continuous HM moves in the interior of the hypercube
along the gradient descent trajectory of the energy

function to alocal minimum energy state.



H model for optimization (T SP)

e Constraint satisfaction combinational optimization.

A solution must satisfy a set of given constraints (strong)
and be optimal w.r.t. acost or utility function (weak)
o TSP: ( geometric vs geographic)
— n points(cities) on a plane form a fully connected graph (can
go from any city to any other ),

— direct travel distance between 2 cities = length of the edge
between them = Euclidean distance between them.

— Objective: find a optional tour which, starting from acity,
visits every city exactly once, then returns to the start city.

— Those (legal) tours are Hamiltonian circuits of the graph.

— The optimality is measured by the length of the circuit = sum
of lengths of all legs on the circuit.



e Congtraints:
1. Each city can be visited no more than once
2. Every city must be visited
3. TScanonly visit cities one at atime (implicit)
4. Tour (circuit) should be the shortest
o NP-hard problem (harder than its NP-complete version)

— A legal tour (satisfying constraints 1 — 3) can be represented by
a permutation of all n cities (because the graph is fully
connected). Total # of permutations: n!

— Each circuit corresponds to n different permutations (with n
different starting city), total # of undirected circuits: nl/n

— Each circuit has two directions, total # of distinct circuits: n!/2n
need to find the shortest among the n!/2n circuits.

— Grows faster than exponential.
(n +1)!/ n' _(n+D)!_ 2n 2"

= n but =2
2(n+1) 2n n 2(n+1) 2"




 Solving TSP by continuous Hopfield model:
1. Design the network structure

2. Define an energy function

— punish violation of (strong) constraint with large amount of
energy

— lower energy associates to shorter circuits (weak constraint)

3. Find weight matrix from the energy function such that energy
always decreases whenever the network moves (according to
H model and W)

» Design the network structure:
Different possible ways to represent TSP by NN:

node - city: hard to represent the order of citiesin forming
acircuit (SOM solution)

node - edge: n out of n(n-1)/2 nodes must become
activated and they must form acircuit.



Hopfield’ s solution:

— n by n network, each node is
connected to every other node.

 Node output approach O or 1
* rOw: City
 column: position in the tour:
Tour: B-A-E-C-D-B
— Output (state) of each node is denoted:
V., Wwhere x: city index
| . position index
v, =1:city x isvisited asthei™ city in a tour
v, =0:city x isnot visited asthei™ city in a tour
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Energy function

n n n
E = A aa av, Vy (penalty for the row constraint; no city
2 w21 i=1 j=1jti shall be visited more than once)
+ E én én én ViV (pengl_ty for the C(_)I umn constral nt:
2 121 xely=Lyix cities can be visited one at atime)
+9(én én V,, - n)2 (penalty for the tour legs. it must have
2 -ia exactly n cities)
DJéd o
+—a a a d,, Vi (Vyia TV,,;.1) (pendty for the tour length)
2 x=1ly=ly'x i=1

— A, B, C, D are constants, to be determined by trial-and-error.
— If dl v, approach either Oor 1, andif thosewith v, » 1represent
a Hamiltonian circuit, then
1d,, If city yiseither beforeor

Vyi TVyi1) = : after city X in the circuit
{0 otherwise

xy XI(



the fourth term represents the circuit length herei+1, i-1 are
modulon. With the 5 city example B-A-E-C-D-B.

Va2 Vi Veq Vs Vi3
dpe t0pg +0gs gy +dep +doe +dpg +dpc +dec ey

=2(d,g +dpg +dgp +dep +dee)

e QObtaining weight matrix:
Method 1: Rewrite E in the form of

E___aawmij‘/ XJ aqX|

2 Xi Yyt xi
wherew, . ,q,; areintermsof parameters A, B, C, D.
no systematic procedure for such conversion



M ethod 2: Determine local function of motion U,; from E
e it should cause E to always decrease
. . . @)
* since by continuous HM, U= @ W, , *, *q
yit xi

it might be easier tofindw,; ..,q,, fromu,

Xi,yj !



(1) determining u_(t) from E so that withu_(t), E(t) <0
(gradient descent approach again)
dE _ o TE _av, du,
dt ?,‘ v, "du ot

|fu _-ﬂ_E then d_E:_édei%ﬂE)ZEO
ﬂVXi dt duxi 1-[in
uxi = - E
ﬂVXi
=-AQ V, (row inhibition: x =y, i =)
Xj
jti
- Bé_ V, (column inhibition: x =y, i =)
yt X
- C(§ & v, - n) (global inhibition: x I=y, i =j)
y
_ Dé_ Ay (V,1m+V, ) (tour length)

yl



(2) Sinceu, =in, = é W, i Wy +0, weights thus should
include the followthg

— A: between nodes in the same row
— B: between nodes in the same column
— C: between any two nodes

— D: dxy between nodes in different row but adjacent

column
W :-Adxy(l-dij)-Bdij(l-dxy)-C
- Dd xy(dj,i+1+dj,i-1)

Xi Vi

=1 if x=y

_
where d , = .
Y % 0 otherwise

— each node also has apositive bias q ,,=Cn



Notes

. Since Wyi.yi =W, > (@sumingw,; . =0) W can also be
used for discrete mode!.

. Initialization: randomly assign u_(0) betweenOand 1
suchthat 3 v, (0)=n

. No need to store explicit weight matrix.

. Hopfield’ s own experiments

A=B=D=500,C=200,n=15

20 trials (with different distance matrices): all trials converged:
16 to legal tours, 8 to shortest tours, 2 to second shortest tours.



5.General methodology of using Hopfield model for
combinatoria optimization.

— represent the problem: solution space to state space

— sum-up problem constraints and cost functions and other
considerations into an energy function E:

» E isdefined over the state space
 lower energy states correspond to better solutions
 penalty for constraint violation
— determine the local function of motion (gradient descent)
u =-ME/v.
— work out weight matrix from u.
— The hard part isto establish that

« Any solution (to the given problem) corresponds to a (local)
minimum energy state of the system

« Optimal solution corresponds to a globally minimum energy
state of the system.



6. Problems of continuous HM for optimization

— Only guarantees local minimum state (E always
decreasing)

— No general guiding principles for determining
parameters (e.q., A, B,C,DIn TSP)

— Energy functions are hard to come up and they may
result in different solution qualities

A (o) (o) (o) B (o) (o) (o)
E :?a adad inij +?a A ad VaVa T

c \IX o © 4  another energy

Elé‘ 1- q v, ) +a (1- a V)2 g function for TSP
I x i

D [°] o o

?a a a dxnyi (Vy,i+1 +Vy,i—1)
X i yl'x



Simulated Annealing

A genera purpose global optimization technique
e Motivation
BP/HM:
— Gradient descent to minimal error/energy function E.
— Iterative improvement: each step improves the solution.

— As optimization: stops when no improvement is possible
without making it worse first.

— Problem: trapped to local minimal .
key: DE=E(t+1)- E(t)£0 "t
— possible solution to escaping from local minimal:
allow E to increase occasionally (by adding random noise).



Annealing process in metallurgy

o Toimprove quality of metal works.

» Energy of astate (aconfig. of atomsin ametal piece)
— depends on the relative locations between atoms.
— minimum energy state: crystal lattice, durable, less
fragile/crisp
— many atoms are dislocated from crystal lattice, causing higher
(internal) energy.
» Each atom is able to randomly move
— If and how far an atom moves depends on the temperature (T)
» Dislocation and other disruptions can be eiminated by the
atom’ s random moves. ther mal agitation.
— takestoo long if done at room temperature
« Annealing: (to shorten the agitation time)
—starting at avery high T, gradually reduce T

o SA: apply the idea of annealing to NN optimization



Statistical M echanics

o System of multi-particles,
— Each particle can change its state
— Hard to know the system’ s exact state/config. , and its energy.
— Statistical approach: probability of the system is at agiven state.

assume all possible states obey Boltzmann-Gibbs distribution:
E, : the energy when the system is at statea
F, : the probability the system is at state a

1 : L
P, ==e®% wherez=§ e "% isthenormalization factorso § P, =1

a
y4 a r

b =(K T)*, where K : Boltzmann constant, T :absolutetemperature

Ingnoring K, andusing T for artificial temperature

1 -E, /T Pa e_Ea/T -(BEa- Ep)/T -DE/T
P ==e ,and =7 " =e

N P, e




Let E,<E, DE<O
(1) R/P,>1® P, >R,

(2) PR, and PR, differ little with high T, more opportunity to
change state in the beginning of annealing.

P, and B, differ alot with low T, help to keep the system
at low E state at the end of annealing.

when T=>0, P, /P, ® ¥ (systemisinfinitely more
likely to be in the global minimum energy state than in
any other state).
(3) Based on B-G distribution
P(S,)P(S, ® §))=P(S,)P(S, ® §,)
P(Sa ® Sb) — P(Sb) :e-(Eb-Ea)/T
P(S, ® S,) P(S,)




e Metropolis algorithm for optimization(1953)
S, . current state

anew state S, differsfrom S, by a small random
displacement, then accept s, will be accepted with the
probability
il if (E, - E,)<O
P(s, ® 5,) =]

(E,-E. /T :
s (55T gtherwise

Random noise introduced here

1.thesystemisallowed to movetostate b if it reduces E
2.thesystemisallowed to occasionally moveto state b

(with probability e ™' ) evenit increasses E,



Simulated Annealing in NN

« Algorithm (very close to Metropolis algorithm)
1. set the network to an initial state S
set the initial temperature T>>1

2. do the following steps many times until thermal
equilibrium isreached at the current T

2.1. randomly select a state displacement DS
2.2. cOmpute pE = E(s+Ds)- E(s)
2.3.1f DE <0Othens:=s+Ds
else generate a random number p between O and 1
if p£e ™" then s:=s+Ds
3. reduce T according to the coding schedule
4.1f T > T-lower-bound, then go to 2 else stop



 Comments
— thermal equilibrium (step 2) is hard to test, usually with
a pre-set iteration number/time

— displacement DS may be randomly generated
 choose one component of Sto change or
 changesto all components of the entire state vector
e DS should be small

— cooling schedule
e |nitial T: /T ~ 0 (so any state change can be accepted)

« Simpleexample: T:=Tx» where0<b <<1
» Another example:

Tk)=— O

non - linear, lower at theend
log(1+ k)




SA for discrete Hopfield M odéel

e Instep 2, each time only one node say Xi is selected for
possible update, all other nodes are fixed.

E_ renergy with x, =1; E, :energy with x, =0
P. : the probability toset x. =1;
e- E./T 1
I:)i - e E, /T +e En/T = 1+e—(Eb— E /T
This acceptancecriterion isdifferencefrom Metropolisalg.

If DE, =E,_ - E_>0(x, =1isbetter) P >0.5
If DE, <O (x, =0isbetter) P <0.5
i1 if DE. >0

whenT issmal P, » {
7 1e™IT it DE, <0



» Localize the computation

_ 148 o
E=--aa WXiX;-q X

j=1 jti

(o)
DE, :(Exk:O - Exkzl) =a W, X; g =In,

1
P, = Tro e no need to compute E_, and E,

|t can be shown that both acceptance criterion guarantees
the B-G distribution if athermal equilibrium is reached.

« When applying to TSP, using the energy function designed
for continuous HM



Variations of SA
o (Gauss machine: amore general framework

O
In, =@ wyX; +q, +e

wheree Istherandom noise

If e=0wehave HM

If e obeysGaussian distritution with mean =0and SD :T\/%
very closeto SA with (1+e ™'T) as acceptancecriterian

If e obeyslogisticdistritution with mean =0and SD :T\/%
exact SA with (1+e ™'")™



e Cauchy machine
€ obeys Cauchy distribution
acceptance criteria 1 1 00 DE,
2_p T
faster cooling: T (k) = %

* Need special random number generator for a particular
distribution )

1 - : .
Gauss. P (x) = e 2 dengsty function
vV 2p




Boltzmann Machine (BM)

 Hopfield model + hidden units + ssmulated annealing
« BM Architecture
— aset of visible units: nodes can be accessed from outside
— aset of hidden units: (may be empty)
 adding hidden nodes to increase the computing power
— connection between nodes
 Fully connected between any two nodes (not layered)
* Symmetric connection: w; =w; w, =0
— nodes are the same asin discrete HM net; = é. W; X; +q
jli

— energy function: E=->3 3 W, X, X - &g X

it



« BM computing ( SA), with agiven set of weights
1. Apply an input pattern to the visible units.

— Some components may be missing---pattern completion;

— some components may be permanently clamped to the input
values (as recall key or problem input parameters).

2. Assign randomly 0/1 to all unknown units
( including all hidden units and visible units with
missing input values).

3. Perform SA process according to a given cooling
schedule. Specifically, at any given temperature T.
an random picked non-clamped unit i is assigned
value of 1 with probability (L+e "*/T)* |
and O with probability 1- (1+e "/T)?



BM learning ( obtaining weights from examplers)

— what isto be learned?
o probability distribution of visible vectors in the environment.
« examplers: randomly drawn from the entire population of
possible visible vectors.
 construct amodel of the environment that has the same prob.
distri. of visible nodes as the one in the exampler set.
— There may be many models satisfying this condition
 because the model involves hidden units.

hidden 2O—0 3 need amodel with  Infinite waysto
P(1,0,0) assign prob. to
visible U1 +P(1,0,0) Individual states
+P(110)
F)(X1 =1) = 0.4 (from exaplers) +P(11))
=04

* |et the model have equal probability of theses states (max. entropy);
* |et these states obey B-G distribution (prob. proportional to energy).



—BM Learningrule:
{V.} : the set of examlers ( visible vectors)
{H,}: the set of vectors appearing on the hidden units
two phases:

 clamping phase: each exampler Vv, is clamped to
visible units.

e free-run phase: none of the visible unit is clamped

P*(V,) : probability that exampler v_isappliedin
clamping phase (determined by the training set)

P~ (V.): probability that the system is stabilized with v,
at visible unitsin free-run (determined by the
model)



learning is to construct the weight matrix such that
P (V,)isascloseto P*(V,) aspossible.

A measure of the closeness of two probability distributions
(called maximum livelihood, asymmetric divergence or
Infor mation gain):
2 + P+(V )
G=g P In 2
AP VI

It can be shown G3 0,andG =0onlyif P*(V,)=P (V,)

BM learning takes the gradient descent approach to
minimal G




16 NA

ﬂwij :aa. (\/)ﬂwu P (\/)
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V. UH, :visiblenodesarecollectivdy in statea
hidden nodesarecollectivdy in stateb

x.®: x. iseither avisibleor a hidden node

1G 1, . . _ - . a
w, :T (P ij- P7ij) whereP"j =§b_ P (VaUHb)Xiaij i
P :é |:)+(\/aL\JHb)Xiaijab

ab

then Dw; =- m1S - m(P" - Pi)

ij

P"ij - how likely both x,* and x,* are" on" over all possible
visiblestatesa and hidden stateb in freeruns

P*; - how likely both x,* and x,* are" on" over all possible
visiblestatesa and hidden state b in clamped runs



BM Learning algorithm
1. compute P

1.1. clamp one training vector to the visible units of the
network

1.2. anneal the network according to the annealing
schedule until equilibrium is reached at the desired
minimum temperature.

1.3. continue to run the network for several more cycles.
After each cycle, determine which pairs of connected
unit are “on” simultaneoudly.

1.4. average the co-occurrence results from 1.3

1.5. repeat steps 1.1 to 1.4 for all training vectors and
average the co-occurrence results to estimate P
for each pair of connected units.



2. Compute p-;

the same stepsas 1.1 to 1.5 except no visible unit is
clamped.

3. Calculate and apply weight change Dw; =m(p;” - p;’)
4. Repeat steps 1 to 3until p; - P; issufficiently small.



« Commentson BM learning

1. BM iIs a stochastic machine not a deterministic one.

2. It has higher representative/computation power than HM+SA
(due to the existence of hidden nodes).

3. Since learning takes gradient descent approach, only local
optimal result is guaranteed (computation still guarantees
global optimal if temperature decreases infinitely slow during

SA).
4. Learning can be extremely slow, due to repeated SA involved
5. Speed up:
— Hardware implementation
— Mean field theory: turning BM to deterministic.

approximating P, by (x; ><x | >
u

21 o
(%)= tanh?ﬁ(a Wij<xj>)H



