Chapter 6:
Backpropagation Nets

Architecture: at least one layer of non-linear
hidden units

L ear ning: supervised, error driven, generalized
deltarule

Derivation of the welght update formula (with
gradient descent approach)

Practical considerations
Variations of BP nets
Applications



Architecture of BP Nets

o Multi-layer, feed-forward network
— Must have at least one hidden layer

— Hidden units must be non-linear units (usually with
sigmoid activation functions)

— Fully connected between units in two consecutive layers,
but no connection between units within one layer.

 For anet with only one hidden layer, each hidden unit
z_| receives input from all input units x_i and sends

output to all output unitsy k

non-linear
" units




— Additional notations: (nets with one hidden layer)
X=(x_1,..Xx_n): inputvector

z=(z 1,..z p). hidden vector (after x applied on input layer)
y=(y_1,..y_m): output vector (computation result)

delta k: errortermonY _k
o Used to update weightsw_jk
» Backpropagated to z_|

delta j: errortermon Z_| weighted
« Used to update weights v_ij " input

Z inj:=v 0] +Sum(x_i * v.4j);  input to hidden unit Z |
y inj: =w_ Ok +Sum(z_j * w_jk): Input to output unit Y_Kk

V—\{i ink
bias ‘ V_j ‘ w_jk "




— Forward computing:
o Apply an input vector x to input units
« Computing activation/output vector z on hidden layer
z, = f(z, +é. Vi X;)
« Computing the output vector y on output layer
Yi = T (Yo +é_ W Z;)
y is the result of the computation.
* The net issaid to be amap from input x to output y

— Theoretically nets of such architecture are able to
approximate any L2 functions (all integral functions,
Including almost all commonly used math functions) to
any given degree of accuracy, provided there are
sufficient many hidden units

— Question: How to get these weights so that the mapping
IS what you want



L earning for BP Nets

— Update of weightsin W (between output and hidden
layers): deltarule asin asingle layer net

— Deltarule is not applicable to updating weightsin V
(between input and hidden layers) because we don't
know the target valuesfor hidden unitsz_1, ...z p

— Solution: Propagating errors at output units to hidden
units, these computed errors on hidden units drives the
update of weightsin V (again by deltarule), thus called
error BACKPROPAGATION learning

— How to compute errors on hidden units is the key

— Error backpropagation can be continued downward if
the net has more than one hidden layer.



BP Learning Algorithm

step O: initialize the weights (W and V), including biases, to small
random numbers

step 1: while stop condition isfalse do steps 2 —9
step 2: for each training sample x:t do steps 3 — 8

[* Feed-forward phase (computing output vector y) */

step 3: apply vector x to input layer

step 4. compute input and output for each hidden unit Z_|
Z Inj:=v_0] + Sum(X_1 * v_Ij);
z | .=1f(z_in));

step 5: compute input and output for each output unit Y _k
y Iink:=w Ok + Sum(v_j * w_jk);
y_k :=1f(y_ink);



[* Error backpropagation phase */
step 6: for each output unit Y _k
delta k.= (t k—y K)*f" (y_ink) /* error term*/
delta w_jk ;= apha*delta k*z | /* weight change */
step 7: For each hidden unit Z_|
delta inj := Sum(delta k* w_jk) /* erro BP*/
delta j :=delta inj * ' (z_inj) [*error term */
delta v ij :=adpha*delta j*x 1 /* weight change*/
step 8: Update weights (incl. biases)
w_jk:=w jk + delta w_jk for all j, k;
V_Iij:=v_1j +deta v ij forali,j;
step 9: test stop condition



Notes on BP learning:

— The error term for a hidden unit z_j is the weighted
sum of error terms delta k of all output unitsY _k
delta inj := Sum(delta k* w_jk)
times the derivative of its own output (f' (z_in))

In other words, delta inj plays the same role for hidden
unitsv_j as(t_k —y k) for output unitsy _k

— Sigmoid function can be either binary or bipolar
— For multiple hidden layers: repeat step 7 (downward)
— Stop condition:

o Total output error E=Sum(t_k —y k)2 fallsinto the
given acceptable error range

» E changesvery little for quite awhile
e Maximum time (or number of epochs) is reached.



Derivation of BP Learning Rule

» Objective of BP learning: minimize the mean sguared output
P m
error over al training samples E :ié a (. (p)- Y (p)?

. L p=1 k=1
For clarity, the derivation isfor error of one sample x :t

E 20-55. (t, - yk)2
k=1 ~
» Approach: gradient descent. GradientNf given the direction

and magnitude of change of f w.r.t its arguments

 For afunction of single argument y = f (x), Ny:ﬂ: f'(x)

Gradient descent requires that x changes in the oppcg(site
direction of thegradient, i.eDx =- Ny =- f'(x) .
Then since Dy/ Dx » dy/ dx for small Dx

wehave Dy » f'(x)Dx=- f'“(X)£0

y monotonically decreases



« For amulti-variable function (e.g., our error function E)
T1E T1E )

NE =(—,.....
('le w,
Gradient descent requires each argument W, changes in the
TE

opposite direction of the corresponding — (i.e., Dw, = - E)
fTw, Tw,

Then because
d_E:(ﬂE dW1+...+ 1E dW”):NE )(dwl’mdwn
dt  fw, dt fw,  dt dt dt
we have ' e

DE » NE XDw,,..Dw_ )" =q —Dw, =- én (ﬂ—E)2 £0
=1 W, = I,
« Gradient descent guarantees that E monotonically decreases,

and DE = 0iff the partial derivativesfE /fw, =0" i
e Chainrule of derivativesis used for deriving partial derivatives
dy _ dy o
dz dx dz

)T

If y=f(x)and x =g(z),then



Update W, the weights of the output layer

For a particular weight w,, (from units Z, toy, )

E 3
e = T 058t - v))=—1— (05, - v,)?)
1-[WJK WJK k=1 WJK
1 q .
— - _ = (- - _ - f
(ty yK)ﬂWJK( Vi) =- (tg yK)ﬂWJK (y_ing)

ll

JK

=-(t, - yK)f'(y_inK)ﬂ (y_in,) (bychainrule)

=-(te - Y) F'(y_Ing)z,
Thelast equality cgmesfrom the fact that only one of the
termsin y_in, =@ Wy z; , namely w, .z, involves w,,

=1
: : 1E
Letd, =(t, - y.)f'(y_in.).Then Dw,, =a X-

)=ad, xz,
Wik

Thisisthe update rule in Step 6 of the algorithm



Update V, the weights of the hidden layer

For aparticular weight v,; (fromunit X, toZ; )

TE - T (058 (- v)?)

TIVI J 1-[VI J k=1

:-g_ ((t, - yk)ﬂﬂ Y.) (everyy, involvesy ; asitisconnectedto z;)
k=1 IJ
=-8 (& Y~ f(y_in)
k=1 ﬂ IJ
= é. ((t - y)f'(y_in, In))
=1 ﬂ
=-3 d, ﬂﬂ (y_in)) (becaused, = (t, - y,) f'(y_in,))
k=1 1J
_ & ll
=-a 4wy —12)

k=1

Thelast equality comesfrom the fact that only one of the

termsin y_in, = a_W,kzJ , namely W, .z, involvesV,; (viaz)
j=1



E o |l
--a dw, —z
" 21( W gy )
=-a dw,
k=1
é(d w, f'(z_in;)xx,) (onlyv,;X, Inz_in, involvesy,;)

=- f'(z_in,)»xx, xq d,w,  (becausex, andz_in, areindep.of k)
k=1

=- f'(z_in,)x, >d _in,

E):a d; X

VIJ

Thisisthe update rule in Step 7 of the algorithm

Letd, =d _in, f'(y_in,;). ThenDv,; =a (-



Strengths of BP Nets

« Great representation power

— Any L2 function can be represented by a BP net (multi-layer
feed-forward net with non-linear hidden units)

— Many such functions can be learned by BP learning (gradient
descent approach)
Wide applicability of BP learning
— Only requires that a good set of training samplesis available)

— Does not require substantial prior knowledge or deep
understanding of the domain itself (ill structured problems)

— Tolerates noise and missing data in training samples
(graceful degrading)

Easy to implement the core of the learning algorithm
Good generalization power
— Accurate results for inputs outside the training set



Deficiencies of BP Nets

« Learning often takes along time to converge
— Complex functions often need hundreds or thousands of epochs

 Thenetisessentialy ablack box

— If may provide a desired mapping between input and output
vectors (X, y) but does not have the information of why a
particular x is mapped to a particular y.

— It thus cannot provide an intuitive (e.g., causal) explanation for
the computed result.

— Thisis because the hidden units and the learned weights do not
have a semantics. What can be learned are operational
parameters, not general, abstract knowledge of adomain

» Gradient descent approach only guarantees to reduce the total
error to alocal minimum. (E may be be reduced to zero)

— Cannot escape from the local minimum error state

— Not every function that is representable can be learned



— How bad: depends on the shape of the error surface. Too many
valleys/wells will make it easy to be trapped in local minima
— Possible remedies:

* Try nets with different # of hidden layers and hidden units (they may
lead to different error surfaces, some might be better than others)

* Try different initial weights (different starting points on the surface)

» Forced escape from local minima by random perturbation (e.g.,
simulated annealing)

o Generalization is not guaranteed even if the error is reduced to

Z€ero
— Over-fitting/over-training problem: trained net fits the training
samples perfectly (E reduced to 0) but it does not give accurate
outputs for inputs not in the training set
* Unlike many statistical methods, there is no theoretically well-
founded way to assess the quality of BP |earning

— What 1s the confidence level one can have for atraned BP net,
with the final E (which not or may not be close to zero)



 Network paralysiswith ssigmoid activation function
— Saturation regions. |x| >> 1
f(x)=1/1+¢e "),itsderivative f '(x) = f (X)(1- f(Xx))® O
when x ® T, .
When x fallsinasaturationregion, f (x) hardly changesits vaue
regardless how fast themagnitudeof X increases

— Input to an unit may fall into a saturation region when some of
Its iIncoming weights become very large during learning.
Conseguently, weights stop to change no matter how hard you
try.

E
Dw, =a (- !
ﬂwjk
— Possible remedies:

» Use non-saturating activation functions

o Per|0dlca||y normalize all Welghts ij = ij /HWkHZ

)=a Xt - y)xt'(y_in) >




* Thelearning (accuracy, speed, and generalization) is highly
dependent of aset of learning parameters

— Initial weights, learning rate, # of hidden layers and # of
units...

— Most of them can only be determined empirically (via
experiments)



Practical Considerations

» A good BP net requires more than the core of the learning
algorithms. Many parameters must be carefully selected to
ensure a good performance.

 Although the deficiencies of BP nets cannot be completely
cured, some of them can be eased by some practical means.

e Initial weights (and biases)
— Random, [-0.05, 0.05], [-0.1, 0.1], [-1, 1]
— Normalize weights for hidden layer (v_ij) (Nguyen-Widrow)
e Random assign v_ij for all hidden unitsV _|

» For each V_j, normalize itsweight by V;; = b »v; /HV_J- H2
where HV i Hzis the normalization factor and b = O.7Q/B

where p =#of hiddent nodes, n =#of input nodes

« Avoid biasin weight initialization: HV-j HZ = b after normalization



e Training samples:
— Quality and quantity of training samples determines the quality
of learning results
— Samples must be good representatives of the problem space
» Random sampling
* Proportional sampling (with prior knowledge of the problem space)
— # of training patterns needed:
» Thereis no theoretically idea number. Following isarule of thumb
« \W: total # of weightsto be trained (depends on net structure)

e: desired classification error rate

* If we have P = W/e training patterns, and we can train a net to
correctly classify (1 —e/2)P of them,

» Then this net would (in a statistical sense) be able to correctly
classify afraction of 1 — e input patterns drawn from the same
sample space

« Example: W =80, e=0.1, P = 800. If we can successfully train the
network to correctly classify (1 —0.1/2)*800 = 760 of the samples,
we would believe that the net will work correctly 90% of time with
other input.



Data representation:
— Binary vsbipolar
 Bipolar representation uses training samples more efficiently
Dw, =a>d,x;, Dy, =a>d,xx
no learning will occur when x. =0 or Z, = Owith binary rep.
o # of patterns can be represented n input units;
binary: 2™n
bipolar: 2(n-1) if no biases used, thisis due to (anti)symmetry
(if the net outputsy for input X, it will output —y for input —x)
— Real value data
e Input units: real value units (may subject to normalization)
» Hidden units are sigmoid
 Activation function for output units. often linear (even identity)
eg, Y. =y_in = é W, Z,
 Training may be much slower than with binary/bipolar data (some
use binary encoding of real values)



« How many hidden layers and hidden units per layer:

— Theoretically, one hidden layer (possibly with many hidden
units) is sufficient for any L2 functions
— Thereisno theoretical results on minimum necessary # of
hidden units (either problem dependent or independent)
— Practical rule of thumb:
e n= #of input units; p = # of hidden units
* For binary/bipolar data: p = 2n
 For real data: p >> 2n
— Multiple hidden layers with fewer units may be trained faster
for similar quality in some applications



* Over-training/over-fitting
— Trained net fits very well with the training samples
(total error E » 0), but not with new input patterns
— Over-training may become serious if
 Training samples were not obtained properly
 Training samples have noise
— Control over-training for better generalization
e Cross-validation: dividing the samples into two sets
- 90% into training set: used to train the network
- 10% into test set: used to validate training results

periodically test the trained net with test samples, stop
training when test results start to deteriorating.

e Stop training early (before E» 0)
e Add noiseto training samples. x:t becomes x+noise:t
(for binary/bipolar: flip randomly selected input units)



Variations of BP nets

e Adding momentum term (to speedup learning)
— Welights update at time t+1 contains the momentum of the

previous updates, e.g.,
Dw, (t+1) =a >d, xz; + mxDw,, (t), where 0<m<a <<1

then Dw, (t+1) = é ma >, (s) >z (s)

an exponentially weighted sum of all previous updates

— Avoid sudden change of directions of weight update
(smoothing the learning process)
— Error is no longer monotonically decreasing

e Batch mode of weight updates
— Welight update once per each epoch
— Smoothing the training sample outliers
— Learning independent of the order of sample presentations

— Usually slower than in sequential mode



Variationson learning ratea
— Give known underrepresented samples higher rates

— Find the maximum safe step size at each stage of learning
(to avoid overshoot the minimum E when increasing a)

— Adaptive learning rate (delta-bar-delta method)
 Eachweight w_jk hasitsownratea_jk

o |f DWjk remainsin the same direction, increasea_jk (E hasa
smooth curve in the vicinity of current W)

* If Dw,, changesthe direction, decreasea_jk (E has arough curve
In the vicinity of current W)

D, =TE/fw, =-d,z
D; (t) = (1- b)Dy (t) +bDy (t- 1)
ia, (t)+k  if D, ()D,(t- >0
a (t+1) :l (1- g)a (1) if D, ()D, (t- 1) <0
ra (1) if D, (t)D, (t- 1) =0



— delta-bar-delta also involves momentum term (of a)
— Experimental comparison
e Training for XOR problem (batch mode)

o 25 simulations: success if E averaged over 50 consecutive
epochsislessthan 0.04

e results
method smulations | success | Mean epochs
BP 25 24 16,859.8
rEr)lch)r\;v;::um 25 25 2,056.3
EaF;-V&/ietl?adel * 25 22 447.3




Other activation functions
— Change the range of the logistic function from (0,1) to (a, b)

Let f(x)=1/(1+€e "),r=b-ah =-a.

g(x) =rf (x) - h isasigmoid function with range(a, b)

g'(x) =rf (x)A- T(x))=(a(x)+h)A- g(x)/r-h/r)
= (909 +h)(r - g~ h)

In particular, for bipolar sigmoid function, we have
a=-1Lb=1thenr=2h =1

9(x) =21 (x)- 1L and g'(x) :%(1+ 9(x))d- 9(x))



— Change the slope of the logistic function 1
f(x)=1/(1+e>"), | . e
f'(x)=sf(x)A- f(x)) 7 |

Fipure 6.8 Binary sigmoid with ¢ = | and o = 3

» Larger slope:
guicker to move to saturation regions; faster convergence

e Smaller slope: sow to move to saturation regions, allows
refined weight adjustment

» s thus has a effect similar to the learning rate a (but more
drastic)

— Adaptive dope (each node has a lear ned slope)

y. = f(sy_in), z, = f(s;z_in,). Then wehave

Dw, =-afE/fw, =ad,s,z;,whered, =(t, - y,)f'(s,y_in/)
Dv;, =-afE/qv, =ad;s ;x;,whered, =g d,s ,w,; f'(s ;z_In,)

Ds, =-afE/Ys, =ad,y_in,, Ds; =-afE/fs; =ad;z_in,

J



— Another ssigmoid function with slower saturation speed

2 N |
f (x) == arctan(x), f (X)_El+ 2

> Ismuch smaller than _ -
1+ X (1+e ")1+e")

the derivative of logistic function
— A non-saturating function (also differentiable)

For large| x|,
_Jlog(l+x) if x30

+
1

FOI=1 loga- x) i x <0
:::i If x30

fr(x)=1tX then, f'(x) ® Owhen |x|® ¥
}— if x<0

1- X



— Non-sigmoid activation function
Radial based function: it has a center c.

f (x) > Ofor all x
f (x) becomessmaller when |x - c| becomeslarger

f(x)® 0 when|x- ¢|® ¥

e.g., Gaussian function: s

f)=e”, J\
f'(x)=-2xf (x) o . :



Applications of BP Nets

A simpleexample: Learning XOR

— Initial weights and other parameters
o weights: random numbersin [-0.5, 0.5]
 hidden units: single layer of 4 units (A 2-4-1 net)
* biases used,
 learningrate: 0.02

— Variations tested
 binary vs. bipolar representation
o different stop criteria (targetswith £1.0 and with £0.8)
» normalizing initial weights (Nguyen-Widrow)

— Bipolar isfaster than binary
 convergence: ~3000 epochs for binary, ~400 for bipolar
o Why?



1 i I I i

500 1,000 1,500 2,000 2500 3,000
Nusmbet of epochs

Figure f.4 Total sguared error for binary representatmn of Xoe problem

I ]
100 200 300 390

Mumbcr of cpochs

Figure 6.5 Total squared crror for bipolar representation of Xor problem.



— Relaxing acceptable error range may speed up convergence
« +£1.0 isan asymptotic limits of sigmoid function,

e When an output approaches +1.0, it fallsin a saturation
region
« Use tawhereO<a<1.0(eg., £0.8)

— Normalizing initial weights may also help

Random Nguyen-Widrow

Binary 2,891 1,935
Bipolar 387 224
Bipolar with 264 127

targets=+0.8




Data compression
— Autoassociation of patterns (vectors) with themselves using
asmall number of hidden units:
 training samples:: x:x (x has dimension n)
hidden units: m< n (A n-m-n net)

e

« |f training is successful, applying any vector x on input units
will generate the same x on output units

 Pattern z on hidden layer becomes a compressed representation
of x (with smaller dimension m< n)

« Application: reducing transmission cost

[ e o

Communl cation:
sender i channel receiver




— Example: compressing character bitmaps.

» Each character isrepresented by a 7 by 9 pixel
bitmap, or a binary vector of dimension 63
» 10 characters (A — J) are used in experiment
e Error range:
tight: 0.1 (off: 0—0.1; on: 0.9-1.0)
loose: 0.2 (off: 0—0.2; on: 0.8 —1.0)
» Relationship between # hidden units, error range,
and convergencerate (Fig. 6.7, p.304)
— relaxing error range may speed up
— increasing # hidden units (to a point) may speed up
error range: 0.1 hidden units: 10 # epochs 400+
error range: 0.2 hidden units: 10 # epochs 200+
error range: 0.1 hidden units: 20 # epochs 180+
error range: 0.2 hidden units: 20 # epochs 90+

no noticeable speed up when # hidden units increases to
beyond 22



Other applications.
— Medical diagnosis
 Input: manifestation (symptoms, lab tests, etc.)
Output: possible disease(s)

* Problems:
—no causal relations can be established
— hard to determine what should be included as

INputs
 Currently focus on more restricted diagnostic tasks

—e.g., predict prostate cancer or hepatitis B based on
standard blood test

— Process control
 |nput: environmental parameters
Output: control parameters
» Learnill-structured control functions



— Stock market forecasting

 Input: financial factors (CPI, interest rate, etc.) and
stock quotes of previous days (weeks)

Output: forecast of stock prices or stock indices (e.g.,
S& P 500)

e Training samples. stock market data of past few years
— Consumer credit evaluation
 Input: personal financial information (income, debt,
payment history, etc.)
 Output: credit rating
— And many more
— Key for successful application

o Careful design of input vector (including all
Important features): some domain knowledge

» Obtain good training samples. time and other cost



Summary of BP Nets

e Architecture

— Multi-layer, feed-forward (full connection between
nodes in adjacent layers, no connection within alayer)

— One or more hidden layers with non-linear activation
function (most commonly used are sigmoid functions)

 BPlearningalgorithm
— Supervised learning (samples s:t)
— Approach: gradient descent to reduce the total error
(why it isalso called generalized deltarule)
— Error terms at output units
error terms at hidden units (why it is called error BP)

— Waysto speed up the learning process
« Adding momentum terms
o Adaptive learning rate (delta-bar-delta)
— Generalization (cross-validation test)



e Strengths of BP learning
— Great representation power
— Wide practical applicability
— Easy to implement
— Good generalization power
e Problemsof BP learning
— Learning often takes along time to converge
— The net is essentially a black box
— Gradient descent approach only guarantees alocal minimum error
— Not every function that is representable can be learned
— Generalization is not guaranteed even if the error is reduced to zero
— No well-founded way to assess the quality of BP learning
— Network paralysis may occur (learning is stopped)
— Selection of learning parameters can only be done by trial-and-error

— BPlearning is non-incremental (to include new training samples, the
network must be re-trained with all old and new samples)



