
Chapter 6: 
Backpropagation Nets

• Architecture: at least one layer of non-linear 
hidden units

• Learning: supervised, error driven, generalized 
delta rule

• Derivation of the weight update formula (with 
gradient descent approach)

• Practical considerations
• Variations of BP nets
• Applications



Architecture of BP Nets
• Multi-layer, feed-forward network

– Must have at least one hidden layer 

– Hidden units must be non-linear units (usually with 
sigmoid activation functions)

– Fully connected between units in two consecutive layers, 
but no connection between units within one layer.

• For a net with only one hidden layer, each hidden unit 
z_j receives input from all input units x_i and sends 
output to all output units y_k
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– Additional notations: (nets with one hidden layer)
x = (x_1, ... x_n): input vector
z = (z_1, ... z_p): hidden vector (after x applied on input layer)
y = (y_1, ... y_m): output vector (computation result)

delta_k:  error term on Y_k 
• Used to update weights w_jk
• Backpropagated to z_j

delta_j:   error term on Z_j 
• Used to update weights v_ij

z_inj: = v_0j + Sum(x_i * v_ij): input to hidden unit Z_j
y_inj: = w_0k + Sum(z_j * w_jk):   input to output unit Y_k

y_kw_jkv_ij
x_i z_j

v_0j

1

w_0k

1

bias

weighted 
input



– Forward computing:
• Apply an input vector x to input units
• Computing activation/output vector z on hidden layer 

• Computing the output vector y on output layer 

y is the result of the computation.
• The net is said to be a map from input x to output y

– Theoretically nets of such architecture are able to 
approximate any L2 functions (all integral functions, 
including almost all commonly used math functions) to 
any given degree of accuracy, provided there are 
sufficient many hidden units

– Question: How to get these weights so that the mapping 
is what you want
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– Update of weights in W (between output and hidden 
layers): delta rule as in a single layer net

– Delta rule is not applicable to updating weights in V 
(between input and hidden layers) because we  don’t 
know the target values for hidden units z_1, ... z_p

– Solution: Propagating errors at output units to hidden 
units, these computed errors on hidden units drives the 
update of weights in V (again by delta rule), thus called 
error BACKPROPAGATION learning

– How to compute errors on hidden units is the key

– Error backpropagation can be continued downward if 
the net has more than one hidden layer.

Learning for BP Nets



BP Learning Algorithm

step 0: initialize the weights (W and V), including biases, to small 
random numbers

step 1: while stop condition is false do steps 2 – 9
step 2: for each training sample x:t do steps 3 – 8

/* Feed-forward phase (computing output vector y) */
step 3: apply vector x to input layer
step 4: compute input and output for each hidden unit Z_j

z_inj := v_0j + Sum(x_i * v_ij);
z_j := f(z_inj);

step 5: compute input and output for each output unit Y_k
y_ink := w_0k + Sum(v_j * w_jk);
y_k := f(y_ink);



/* Error backpropagation phase */

step 6: for each output unit Y_k
delta_k := (t_k – y_k)*f’(y_ink)     /* error term */

delta_w_jk := alpha*delta_k*z_j    /* weight change */

step 7: For each hidden unit Z_j

delta_inj := Sum(delta_k * w_jk)   /* erro BP */

delta_j := delta_inj * f’(z_inj)         /*error term */

delta_v_ij := alpha*delta_j*x_i      /* weight change */

step 8: Update weights (incl. biases)

w_jk := w_jk + delta_w_jk for all j, k;

v_ij := v_ij + delta_v_ij for all i, j;

step 9: test stop condition



Notes on BP learning:
– The error term for a hidden unit z_j is the weighted 

sum of error terms delta_k of all output units Y_k

delta_inj := Sum(delta_k * w_jk) 
times the derivative of its own output (f’(z_inj)

In other words, delta_inj plays the same role for hidden 
units v_j as (t_k – y_k) for output units y_k

– Sigmoid function can be either binary or bipolar

– For multiple hidden layers: repeat step 7 (downward)

– Stop condition:
• Total output error E = Sum(t_k – y_k)^2 falls into the 

given acceptable error range

• E changes very little for quite awhile

• Maximum time (or number of  epochs) is reached.



Derivation of BP Learning Rule

• Objective of BP learning: minimize the mean squared output 

error over all training samples

For clarity, the derivation is for error of one sample

• Approach: gradient descent.  Gradient      given the direction 

and magnitude of change of  f w.r.t its arguments

• For a function of single argument 

Gradient descent requires that x changes in the opposite 
direction of the gradient, i.e., . 
Then since for small       
we have
y monotonically decreases
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• For a multi-variable function (e.g., our error function E)

Gradient descent requires each argument     changes in the 

opposite direction of the corresponding 

Then because

we have

• Gradient descent guarantees that E monotonically decreases, 
and 

• Chain rule of derivatives is used for deriving partial derivatives
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Update W, the weights of the output layer
For a particular weight         (from units      to      )
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Update V, the weights of the hidden layer
For a particular weight      (from unit      to      )
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• Great representation power
– Any L2 function can be represented by a BP net (multi-layer 

feed-forward net with non-linear hidden units)
– Many such functions can be learned by BP learning (gradient 

descent approach)

• Wide applicability of BP learning
– Only requires that a good set of training samples is available)
– Does not require substantial prior knowledge or deep 

understanding of the domain itself (ill structured problems)
– Tolerates noise and missing data in training samples 

(graceful degrading)

• Easy to implement the core of the learning algorithm
• Good generalization power

– Accurate results for inputs outside the training set

Strengths of BP Nets



• Learning often takes a long time to converge
– Complex functions often need hundreds or thousands of epochs

• The net is essentially a black box
– If may provide a desired mapping between input and output 

vectors (x, y) but does not have the information of why a 
particular x is mapped to a particular y. 

– It thus cannot provide an intuitive (e.g., causal) explanation for 
the computed result.

– This is because the hidden units and the learned weights do not 
have a semantics. What can be learned are operational 
parameters, not general, abstract knowledge of a domain

• Gradient descent approach only guarantees to reduce the total 
error to a local minimum. (E may be be reduced to zero)
– Cannot escape from the local minimum error state
– Not every function that is representable can be learned

Deficiencies of BP Nets



– How bad: depends on the shape of the error surface. Too many 
valleys/wells will make it easy to be trapped in local minima

– Possible remedies: 
•Try nets with different # of hidden layers and hidden units (they may 
lead to different error surfaces, some might be better than others)

•Try different initial weights (different starting points on the surface)
•Forced escape from local minima by random perturbation (e.g., 
simulated annealing)

• Generalization is not guaranteed even if the error is reduced to 
zero
– Over-fitting/over-training problem: trained net fits the training 

samples perfectly (E reduced to 0) but it does not give accurate
outputs for inputs not in the training set

• Unlike many statistical methods, there is no theoretically well-
founded way to assess the quality of BP learning
– What is the confidence level one can have for a trained BP net, 

with the final E (which  not or may not be close to zero)



• Network paralysis with sigmoid activation function
– Saturation regions: |x| >> 1

– Input to an unit may fall into a saturation region when some of 
its incoming weights become very large during learning. 
Consequently, weights stop to change no matter how hard you 
try.

– Possible remedies:
• Use non-saturating activation functions
• Periodically normalize all weights
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• The learning (accuracy, speed, and generalization) is highly 
dependent of a set of learning parameters
– Initial weights, learning rate, # of hidden layers and # of 

units...
– Most of them can only be determined empirically (via 

experiments)



• A good BP net requires more than the core of the learning 
algorithms. Many parameters must be carefully selected to 
ensure a good performance.

• Although the deficiencies of BP nets cannot be completely 
cured, some of them can be eased by some practical means. 

• Initial weights (and biases)
– Random, [-0.05, 0.05], [-0.1, 0.1], [-1, 1]
– Normalize weights for hidden layer (v_ij) (Nguyen-Widrow)

• Random assign v_ij for all hidden units V_j

• For each V_j, normalize its weight by

where           is the normalization factor

• Avoid bias in weight initialization:

Practical Considerations
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• Training samples:
– Quality and quantity of training samples determines the quality 

of learning results
– Samples must be good representatives of the problem space

• Random sampling
• Proportional sampling (with prior knowledge of the problem space)

– # of training patterns needed: 
• There is no theoretically idea number. Following is a rule of thumb
• W: total # of weights to be trained (depends on net structure)

e: desired classification error rate
• If we have P = W/e training patterns, and we can train a net to 

correctly classify (1 – e/2)P of them,
• Then this net would (in a statistical sense) be able to correctly 

classify a fraction of 1 – e input patterns drawn from the same 
sample space

• Example: W = 80, e = 0.1, P = 800. If we can successfully train the 
network to correctly classify (1 – 0.1/2)*800 = 760 of the samples, 
we would believe that the net will work correctly 90% of time with 
other input.



• Data representation:
– Binary vs bipolar

• Bipolar representation uses training samples more efficiently

no learning will occur when with binary rep.
• # of patterns can be represented n input units:

binary: 2^n
bipolar: 2^(n-1) if no biases used, this is due to (anti)symmetry 
(if the net outputs y for input x, it will output –y for input –x)

– Real value data
• Input units: real value units (may subject to normalization)
• Hidden units are sigmoid
• Activation function for output units: often linear (even identity)

e.g., 
• Training may be much slower than with binary/bipolar data (some 

use binary encoding of real values)
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• How many hidden layers and hidden units per layer:
– Theoretically, one hidden layer (possibly with many hidden 

units) is sufficient for any L2 functions
– There is no theoretical  results on minimum necessary # of 

hidden units (either problem dependent or independent)
– Practical rule of thumb: 

• n =  # of input units; p = # of hidden units
• For binary/bipolar data: p = 2n
• For real data: p >> 2n

– Multiple hidden layers with fewer units may be trained faster 
for similar quality in some applications



• Over-training/over-fitting
– Trained net fits very well with the training samples 

(total error         ), but not with new input patterns 
– Over-training may become serious if

• Training samples were not obtained properly
• Training samples have noise

– Control over-training for better generalization
• Cross-validation: dividing the samples into two sets

- 90% into training set: used to train the network
- 10% into test set: used to validate training results

periodically test the trained net with test samples, stop 
training when test results start to deteriorating.

• Stop training early (before           )
• Add noise to training samples: x:t becomes  x+noise:t

(for binary/bipolar: flip randomly selected input units)

0≈E
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• Adding momentum term (to speedup learning)
– Weights update at time t+1 contains the momentum of the 

previous updates, e.g., 

an exponentially weighted sum of all previous updates
– Avoid sudden change of directions of weight update 

(smoothing the learning process)
– Error is no longer monotonically decreasing

• Batch mode of weight updates
– Weight update once per each epoch
– Smoothing the training sample outliers
– Learning independent of the order of sample presentations
– Usually slower than in sequential mode

Variations of BP nets
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• Variations on learning rate αα
– Give known underrepresented samples higher rates
– Find the maximum safe step size at each stage of learning 

(to avoid overshoot the minimum E when increasing αα)
– Adaptive learning rate (delta-bar-delta method)

• Each weight w_jk has its own rate α_jk

• If           remains in the same direction, increase α_jk (E has a 
smooth curve in the vicinity of current W)

• If           changes the direction, decrease α_jk (E has a rough curve 
in the vicinity of current W)
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– delta-bar-delta also involves momentum term (of α)
– Experimental comparison

• Training for XOR problem (batch mode)

• 25 simulations: success if E averaged over 50 consecutive 
epochs is less than 0.04

• results

447.32225
BP with delta-
bar-delta

2,056.32525
BP with 
momentum

16,859.82425BP

Mean epochssuccesssimulationsmethod



• Other activation functions
– Change the range of the logistic function from (0,1) to (a, b)
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– Change the slope of the logistic function

• Larger slope: 
quicker to move to saturation regions; faster convergence

• Smaller slope: slow to move to saturation regions, allows 
refined weight adjustment

• σ thus has a effect similar to the learning rate α (but more 
drastic)

– Adaptive slope (each node has a learned slope)
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– Another sigmoid function with slower saturation speed

the derivative of logistic function
– A non-saturating function (also differentiable)
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– Non-sigmoid activation function

Radial based function: it has a center c.
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• A simple example: Learning XOR 
– Initial weights and other parameters

• weights: random numbers in [-0.5, 0.5]
• hidden units: single layer of 4 units (A 2-4-1 net)
• biases used;
• learning rate: 0.02

– Variations tested
• binary vs. bipolar representation
• different stop criteria
• normalizing initial weights (Nguyen-Widrow)  

– Bipolar is faster than binary
• convergence: ~3000 epochs for binary, ~400 for bipolar
• Why?

Applications of BP Nets
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– Relaxing acceptable error range may speed up convergence
• is an asymptotic limits of sigmoid function, 
• When an output approaches          , it falls in a saturation 

region
• Use 

– Normalizing initial weights may also help

8.0 targets ±=

0.1±
0.1±

)8.0 (e.g., 0.10  where ±<<± aa

127264Bipolar with

224387Bipolar

1,9352,891Binary

Nguyen-WidrowRandom



• Data compression 
– Autoassociation of patterns (vectors) with themselves using 

a small number of hidden units:
• training samples:: x:x (x has dimension n)

hidden units: m < n (A n-m-n net)

• If training is successful, applying any vector x on input units 
will generate the same x on output units

• Pattern z on hidden layer becomes a compressed representation 
of x (with smaller dimension m < n)

• Application: reducing transmission cost

n nm
V W

Communication 
channel

mn
V

n
W

mx xz z

receiversender



– Example: compressing character bitmaps.
• Each character is represented by a 7 by 9 pixel 

bitmap, or a binary vector of dimension 63
• 10 characters (A – J) are used in experiment
• Error range: 

tight:  0.1 (off: 0 – 0.1; on: 0.9 – 1.0)
loose: 0.2 (off: 0 – 0.2; on: 0.8 – 1.0)

• Relationship between # hidden units, error range, 
and convergence rate (Fig. 6.7, p.304)

– relaxing error range may speed up
– increasing # hidden units (to a point) may speed up 

error range: 0.1 hidden units: 10  # epochs 400+
error range: 0.2 hidden units: 10  # epochs 200+
error range: 0.1 hidden units: 20  # epochs 180+
error range: 0.2 hidden units: 20  # epochs 90+
no noticeable speed up when # hidden units increases to 
beyond 22



• Other applications.
– Medical diagnosis

• Input: manifestation (symptoms, lab tests, etc.)
Output: possible disease(s)

• Problems: 
– no causal relations can be established
– hard to determine what should be included as 

inputs 
• Currently focus on more restricted diagnostic tasks

– e.g., predict prostate cancer or hepatitis B based on 
standard blood test

– Process control
• Input: environmental parameters

Output: control parameters
• Learn ill-structured control functions



– Stock market forecasting
• Input: financial factors (CPI, interest rate, etc.) and 

stock quotes of previous days (weeks)
Output: forecast of stock prices or stock indices (e.g., 
S&P 500)

• Training samples: stock market data of past few years
– Consumer credit evaluation

• Input: personal financial information (income, debt, 
payment history, etc.)

• Output: credit rating  
– And many more
– Key for successful application

• Careful design of input vector (including all 
important features): some domain knowledge 

• Obtain good training samples: time and other cost



• Architecture
– Multi-layer, feed-forward (full connection between 

nodes in adjacent layers, no connection within a layer)
– One or more hidden layers with non-linear activation 

function (most commonly used are sigmoid functions) 
• BP learning algorithm

– Supervised learning (samples s:t)
– Approach: gradient descent to reduce the total error 

(why it is also called generalized delta rule)
– Error terms at output units

error terms at hidden units (why it is called error BP)
– Ways to speed up the learning process

• Adding momentum terms
• Adaptive learning rate (delta-bar-delta)

– Generalization (cross-validation test)

Summary of BP Nets



• Strengths of BP learning
– Great representation power
– Wide practical applicability
– Easy to implement
– Good generalization power

• Problems of BP learning
– Learning often takes a long time to converge
– The net is essentially a black box 
– Gradient descent approach only guarantees a local minimum error
– Not every function that is representable can be learned
– Generalization is not guaranteed even if the error is reduced to zero
– No well-founded way to assess the quality of BP learning
– Network paralysis may occur (learning is stopped)
– Selection of learning parameters can only be done by trial-and-error
– BP learning is non-incremental (to include new training samples, the 

network must be re-trained with all old and new samples)


