Chapter 5. Adaptive Resonance Theory (ART)

- ART1: for binary patterns; ART2: for continuous patterns
- Motivations: Previous methods have the following problem:
 - 1. Training is non-incremental:
 - with a fixed set of samples,
 - adding new samples often requires re-train the network with the enlarged training set until a new stable state is reached.
 - 2. Number of class nodes is pre-determined and fixed.
 - Under- and over- classification may result from training
 - No way to add a new class node (unless these is a free class node happens to be close to the new input).
 - Any new input x has to be classified into one of an existing classes (causing one to win), no matter how far away x is from the winner. no control of the degree of similarity.

- Ideas of ART model:
 - suppose the input samples have been appropriately classified into k clusters (say by competitive learning).
 - each weight vector $W_{\cdot j}$ is a representative (average) of all samples in that cluster.
 - when a new input vector \boldsymbol{x} arrives

1. Find the winner j among all k cluster nodes

2.Compare $W_{\bullet i}$ with x

if they are sufficiently similar (x resonates with class j),

then update $W_{\bullet i}$ based on $x - W_{\bullet j}$

else, find/create a free class node and make x as its

first member.

- To achieve these, we need:
 - a mechanism for testing and determining similarity.
 - a control for finding/creating new class nodes.
 - need to have all operations implemented by units of local computation.

ART1 Architecture

 $F_1(a)$: input units $F(b)_1$: interface units F_2 : cluster units $F_1(a)$ to $F_1(b)$: pair - wise connection between F_2 and $F_1(b)$: full connection

- b_{ij} : bottom up weights from x_i to y_j (real value)
- t_{ji} : top down weights

from y_j to x_i (representing class j binary/bipolar)

R, G1, G2 : control units

- F_2 cluster units: competitive, receive input vector x through weights b: to determine winner j.
- $F_1(a)$ input units: placeholder or external inputs
- $F_1(b)$ interface units:
 - pass s to x as input vector for classification by F_2
 - compare x and t_{i} (projection from winner y_i)
 - controlled by gain control unit G1
- Nodes in both $F_1(b)$ and F_2 obey 2/3 rule (output 1 if two of the three inputs are 1) G_1

Input to $F_1(b)$: s_i , G1, t_{ji} Input to F_2 : t_{ji} , G2, R

• Needs to sequence the three phases (by control units *G1*, *G2*, and *R*)

$$G_{1} = \begin{cases} 1 & \text{if } s \neq 0 \text{ and } y = 0 \\ 0 & \text{otherwise} \end{cases}$$

$$G_{1} = 1: \quad F_{1}(b) \text{ open to receive } s \neq 0$$

$$G_{1} = 0: \quad F_{1}(b) \text{ open for } t_{J}.$$

$$G_{2} = \begin{cases} 1 & \text{if } s \neq 0 \\ 0 & \text{otherwise} \end{cases}$$

$$G_{2} = 1 \text{ signals the start of a new classification for a new input}$$

$$R = \begin{cases} 0 & \text{if } \frac{\|x\|}{\|s\|} \ge r \end{cases}$$

1 otherwise

o < r < 1 vigilance parameter

R = 0: resonance occurs, update $b_{\bullet J}$ and $t_{J \bullet}$

 $\mathbf{R} = 1$: fails similarity test, inhibits \mathbf{J} from further computation

Working of ART1

- Initial state: nodes on $F_1(b)$ and F_2 set to zeros
- *Recognition phase*: determine the winner cluster for input *s*

 $s \neq 0$ is applied to $F_1(a)$ and stay there (clamped) $G_1 = 1$ (: $y = 0, s \neq 0$) $G_2 = 1$ (: $s \neq 0$) $F_1(b)$ is open to receive s R = 0 (|x|/|s| = 1 > r) F_2 is open to receive $x \cdot b_{\cdot j}$ determine winner Jx is tentatively classified to cluster J

$$\boldsymbol{Y}_J = 1 \quad \boldsymbol{Y}_{k \neq J} = 0$$

• Comparison phase: $t_{I_{\bullet}}$ is sent down from F_{2} $G_1 = 0 \quad (\mathbf{y} \neq 0)$ new **x** appears on $F_1(b)$: $x_i = s_i \wedge t_{Ji}$ (2/3 rule) if $||x|| / ||s|| \ge \mathbf{r} \quad \mathbf{R} = 0$ a resonance occurs, the classification is accepted if $||x|| / ||s|| < \mathbf{r}$ R = 1classification is rejected reset signal is sent (from \boldsymbol{R} to \boldsymbol{F}_2) y_I is permanently disabled all other y_k is set to zero goes back to recognition phase search for other possible match

• Weight update/adaptive phase

- Initial weight: (no bias) bottom up: $0 < b_{ij}(0) < L/(L-1+n)$ (*L* usually 2) top down: $t_{ji}(0) = 1$
- When a resonance occurs with y_J , update $b_{\bullet J}$ and $t_{J \bullet}$ s : current input (on $F_1(a)$)
 - x : comparison result between s and $t_{J\bullet}$ (on $F_1(b)$)

$$x_{i} = s_{i} \cdot t_{Ji}$$

new $t_{Ji} = x_{i}$ new $b_{ij} = \frac{Lx_{i}}{L - 1 + ||x||}$

- If k sample patterns are clustered to node y_{J} then $t_{\bullet J} =$ pattern whose 1's are common to all these k samples $t_{\bullet J} = s(1) \land s(2) \dots s(k)$ $b_{\bullet J} (\text{new}) \neq 0 \text{ iff } x_i \neq 0 \text{ only if } s_i \neq 0$ $t_{J \bullet} = x, b_{\bullet J} \text{ is a normalized } t_{\bullet J}$ – Winner may shift:

$$L = 2, b_{ij}(0) = 0.2$$

$$s(1) = (1 \ 1 \ 1 \ 0) \qquad t_{1 \bullet} = (1 \ 1 \ 1 \ 0)$$

$$s(2) = (1 \ 1 \ 0 \ 0) \qquad t_{1 \bullet} = (1 \ 1 \ 0 \ 0)$$

$$s(3) = (1 \ 0 \ 0 \ 0) \qquad t_{1 \bullet} = (1 \ 0 \ 0 \ 0)$$

$$s(1) = (1 \ 1 \ 1 \ 0) \qquad \frac{\|x\|}{\|s\|} = \frac{1}{3} < \mathbf{r}$$

- What to do when failed to classify into any existing cluster?
 - report failure/treat as outlier
 - add a new cluster node y_{m+1} with

$$b_{i,m+1} = \frac{L}{L-1+n}, t_{m+1,i} = 1$$

Notes

- 1. Classification as a search process
- 2. No two classes have the same *b* and *t*
- 3. Different ordering of sample input presentations may result in different classification.
- 4. Increase of ρ increases # of classes learned, and decreases the average class size.
- 5. Classification may shift during search, will reach stability eventually.
- 6. ART2 is the same in spirit but different in details.