
Chapter 5. Adaptive Resonance Theory (ART)

• ART1: for binary patterns; ART2: for continuous patterns

• Motivations: Previous methods have the following problem:

1. Training is non-incremental: 
– with a fixed set of samples, 

– adding new samples often  requires re-train the network with 
the enlarged training set until a new stable state is reached.

2. Number of class nodes is pre-determined and fixed.
– Under- and over- classification may result from training

– No way to add a new class node (unless these is a free 
class node happens to be close to the new input).

– Any new input x has to be classified into one of an existing 
classes (causing one to win), no matter how far away x is 
from the winner. no control of the degree of similarity. 



• Ideas of ART model:
– suppose the input samples have been appropriately classified 

into k clusters (say by competitive learning).

– each weight vector        is a representative (average) of all 
samples in that cluster.

– when a new input vector x arrives

1.Find the winner  j among all k cluster nodes

2.Compare        with x

if they are sufficiently similar (x resonates with class j),

then update        based on       

else, find/create a free class node and make x as its

first member.
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• To achieve these, we need:
– a mechanism for testing and determining similarity.

– a control for finding/creating new class nodes.

– need to have all operations implemented by units of
local computation.



ART1 Architecture
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• cluster units: competitive, receive input vector x
through weights b: to determine winner j.

• input units: placeholder or external inputs

• interface units: 

– pass s to x as input vector for classification by 

– compare x and       

– controlled by gain control unit G1

•

• Needs to sequence the three phases (by control units G1, 
G2, and R)
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Working of ART1

• Initial state: nodes on                  set to zeros

• Recognition phase: determine the winner cluster for input s
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• Comparison phase:
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• Weight update/adaptive phase
– Initial weight: (no bias)

bottom up:
top down:

– When a resonance occurs with

– If k sample patterns are clustered to node      then
= pattern whose 1’s are common to all these k samples 
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– Winner may shift:

ρρ<==

==
==
==

==

•

•

•

3

1
)0111()1(

)0001()0001()3(
)0011()0011()2(

)0111( )0111()1(
2.0)0(,2

1

1

1

s

x
s

ts
ts
ts

bL ij

– What to do when failed to classify into any existing 
cluster?

– report failure/treat as outlier

– add a new cluster node
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Notes
1. Classification as a search process

2. No two classes have the same b and t

3. Different ordering of sample input presentations may result 
in different classification.

4. Increase of ρ increases # of classes learned, and decreases 
the average class size.

5. Classification may shift during search, will reach stability 
eventually.

6. ART2 is the same in spirit but different in details.


