
Chapter 4. Neural Networks Based on 
Competition

• Competition is important for NN
– Competition between neurons has been observed in 

biological nerve systems
– Competition is important in solving many problems

To classify an input pattern 
into one of the m classes
– idea case: one class node 

has output 1, all other 0 ;
– often more than one class 

nodes have non-zero output

– If these class nodes compete with each other, maybe only 
one will win eventually (winner-takes-all). The winner 
represents the computed classification of the input
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• Winner-takes-all (WTA):
– Among all competing nodes, only one will win and all 

others will lose

– We mainly deal with single winner WTA, but multiple 
winners WTA are possible (and useful in some 
applications)                            

– Easiest way to realize WTA: have an external, central 
arbitrator (a program) to decide the winner by 
comparing the current outputs of the competitors (break 
the tie arbitrarily)

– This is biologically unsound (no such external arbitrator 
exists in biological nerve system).



• Ways to realize competition in NN
– Lateral inhibition (Maxnet, Mexican hat)

output of each node feeds 
to others through inhibitory 
connections (with negative weights)

– Resource competition
• output of x_k is distributed to 

y_i and y_j proportional to w_ki 
and w_kj, as well as y_i and y_j 

• self decay
• biologically sound

• Learning methods in competitive networks
– Competitive learning
– Kohonen learning (self-organizing map, SOM)
– Counter-propagation net
– Adaptive resonance theory (ART) in Ch. 5
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Fixed-weight Competitive Nets 

• Notes: 
– Competition: 

• iterative process until the net stabilizes (at most one node 
with positive activation)

– where m is the # of competitors
• too small: takes too long to converge
• too big: may suppress the entire network (no winner)

• Maxnet
– Lateral inhibition between 

competitors
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Mexical Hat
• Architecture: For a given node,

– close neighbors: cooperative (mutually excitatory , w > 0)
– farther away neighbors: competitive (mutually 

inhibitory,w < 0)
– too far away neighbors: irrelevant (w = 0)

• Need a definition of distance (neighborhood):
– one dimensional: ordering by index (1,2,…n)
– two dimensional: lattice
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• Equilibrium: 
– negative input = positive input for all nodes

– winner has the highest activation;

– its cooperative neighbors also have positive activation;

– its competitive neighbors have negative activations.
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Hamming Network

• Hamming distance of two vectors,              of 
dimension n,
– Number of bits in disagreement.

– In bipolar:
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• Suppose a space of patterns is divided into k classes, each 
class has an exampler (representative) vector      .

• An input      belongs to class i, if and only if     is closer to        

than to any other     , i.e.,  

• Hamming net is such a classifier:

– Weights: let     represent class j

– The total input to
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• Upper layer: MAX net
– it takes the y_in as its initial value, then iterates toward 

stable state

– one output node with highest y_in will be the winner 
because its weight vector is closest to the input vector

• As associative memory:
– each     corresponds to a stored pattern;

– pattern connection/completion;

– storage capacity

total # of nodes: k

total # of patterns stored: k

capacity: k (or k/k = 1)
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• Implicit lateral inhibition by competing limited 
resources: the activation of the input nodes
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Competitive Learning
• Unsupervised learning
• Goal: 

– Learn to form classes/clusters of examplers/sample patterns 
according to similarities of these exampers.

– Patterns in a cluster would have similar features
– No prior knowledge as what features are important for 

classification, and how many classes are there.

• Architecture:
– Output nodes: 

Y_1,…….Y_m, 
representing the m classes

– They are competitors 

(WTA realized either by 
an external procedure or 
by lateral inhibition as in Maxnet)



• Training: 
– Train the network such that the weight vector w.j associated 

with Y_j becomes the representative vector of the class of 
input patterns Y_j is to represent.

– Two phase unsupervised learning

• competing phase:
– apply an input vector     randomly chosen from sample set.
– compute output for all y: 
– determine the winner (winner is not given in training 

samples so this is unsupervised) 

• rewarding phase:
– the winner is reworded by updating its weights (weights 

associated with all other output nodes are not updated)

• repeat the two phases many times (and gradually reduce 
the learning rate) until all weights are stabilized.
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• Weight update: 
– Method 1: Method 2

In each method,          is moved closer to  x

– Normalizing the weight vector to unit length after it is 
updated
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• is moving to the center of  a cluster of sample vectors after 
repeated weight updates 
– Three examplers:

S(1), S(2) and S(3)
– Initial weight vector w_j(0)
– After successively trained

by S(1), S(2), and S(3),
the weight vector
changes to w_j(1),
w_j(2), and w_j(3)
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Examples
• A simple example of competitive learning (pp. 172-175)

– 4 vectors of dimension 4 in 2 classes (4 input nodes, 2 output nodes)

S(1) = (1, 1, 0, 0) S(2) = (0, 0, 0, 1) 
S(3) = (1, 0, 0, 0) S(4) = (0, 0, 1, 1)

– Initialization: , weight matrix:
– Training with S(1) 
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– Similarly, after training with 

S(2) = (0, 0, 0, 1) , 

in which class 1 wins, 

weight matrix becomes
– At the end of the first iteration

(each of the 4 vectors are used),
weight matrix becomes

– Reduce 

– Repeat training. After 10
iterations, weight matrix becomes
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• S(1) and S(3) belong 
to class 2

• S(2) and S(4) belong 
to class 1

• w_1 and w_2 are the 
centroids of the two 
classes



Comments

1. Ideally, when learning stops, each        is close to the 
centroid of a group/cluster of sample input vectors.

2. To stabilize      , the learning rate    may be reduced slowly 
toward zero during learning.

3. # of output nodes:
– too few: several clusters may be combined into one class

– too many: over classification

– ART model (later) allows dynamic add/remove output nodes

4. Initial      :
– training samples known to be in distinct classes, provided 

such info is available

– random (bad choices may cause anomaly)
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Example

will always win no matter

the sample is from which class

is stuck and will not participate

in learning

unstuck: 

let output nodes have some conscience

temporarily shot off nodes which have had very high

winning rate (hard to determine what rate should be

considered as “very high”)
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Kohonen Self-Organizing Maps (SOM)
• Competitive learning (Kohonen 1982) is a special case of 

SOM (Kohonen 1989)
• In competitive learning, 

– the network is trained to organize input vector space into 
subspaces/classes/clusters 

– each output node corresponds to one class
– the output nodes are not ordered: random map

w_3

w_2

cluster_1

cluster_3

cluster_2

w_1

• The topological order of  the 
three clusters is 1, 2, 3

• The order of their maps at 
output nodes are 2, 3, 1

• The map does not preserve 
the topological order of the 
training vectors



• Topographic map
– a mapping that preserves neighborhood relations 

between input vectors, (topology preserving or feature 
preserving).

– if                   are two neighboring input vectors ( by 
some distance metrics), 

– their corresponding winning output nodes (classes), i 
and j must also be close to each other in some fashion 

– one dimensional: line or ring, node i has neighbors        
or 

– two dimensional:grid. 
rectangular: node(i, j) has neighbors:

hexagonal: 6 neighbors

2and 1 xx

1±i

))1,1(additionalor (),,1(),1,( ±±±± jijiji

ni mod 1±



• Biological motivation
– Mapping two dimensional continuous inputs from 

sensory organ (eyes, ears, skin, etc) to two dimensional 
discrete outputs in the nerve system.

• Retinotopic map: from eye (retina) to the visual cortex.

• Tonotopic map: from the ear to the auditory cortex

– These maps preserve topographic orders of input.

– Biological evidence shows that the connections in these 
maps are not entirely “pre-programmed” or “pre-wired” 
at birth. Learning must occur after the birth to create 
the necessary connections for appropriate topographic 
mapping.



SOM Architecture
• Two layer network:

– Output layer: 

• Each node represents a class (of inputs)

•

• Neighborhood relation is defined over these nodes 
Each node cooperates with all its neighbors within     
distance R and competes with all other output nodes.

• Cooperation and competition of these nodes can be 
realized by Mexican Hat model 

R = 0: all nodes are competitors (no cooperative) 
à random map

R > 0: à topology preserving map
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SOM Learning

1. Initialize                                   , and     to a small value

2. For a randomly selected input sample/exampler

determine the winning output node J

either is maximum or 

is minimum

3. For all output node j with                  , update the weight 

4. Periodically reduce      and R slowly.

5. Repeat 2 - 4 until the network stabilized.
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Notes
1. Initial weights: small random value from (-e, e)
2. Reduction of     : 

Linear: 
Geometric:

may be 1 or greater than 1
3. Reduction of  R:

should be much slower than     reduction.
R can be a constant through out the learning.

4. Effect of learning
For each input x, not only the weight vector of winner J
is pulled closer to x, but also the weights of J’s close 
neighbors (within the radius of R).

5. Eventually,        becomes close (similar) to         . The 
classes they represent are also similar.

6. May need large initial R
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Examples

• A simple example of competitive learning (pp. 172-175)
– 4 vectors of dimension 4 in 2 classes (4 input nodes, 2 output nodes)

S(1) = (1, 1, 0, 0) S(2) = (0, 0, 0, 1) 
S(3) = (1, 0, 0, 0) S(4) = (0, 0, 1, 1)

– Initialization: , weight matrix:
– Training with S(1) 
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• How to illustrate Kohonen map
– Input vector: 2 dimensional

Output vector: 1 dimensional line/ring or 2 dimensional grid.

Weight vector is also 2 dimension

– Represent the topology of output nodes by points on a 2 dimensional 
plane. Plotting each output node on the plane with its weight vector 
as its coordinates.

– Connecting neighboring output nodes by a line

output nodes: (1, 1) (2, 1) (1, 2)

weight vectors: (0.5, 0.5)   (0.7, 0.2)   (0.9, 0.9)

C(1, 2)

C(2, 1)

C(1, 1)



Traveling Salesman Problem (TSP) by SOM

• Each city is represented as a 2 dimensional input vector (its 
coordinates (x, y)), 

• Output nodes C_j form a one dimensional SOM, each node 
corresponds to a city.

• Initially, C_1, ... , C_n have random weight vectors 

• During learning, a winner C_j on an input (x, y) of city I, not only 
moves its w_j toward (x, y), but also that of of its neighbors 
(w_(j+1), w_(j-1)).

• As the result, C_(j-1) and C_(j+1) will later be more likely to win 
with input vectors similar to (x, y), i.e, those cities closer to I

• At the end, if a node j represents city I, it would end up to have its 
neighbors j+1 or j-1 to represent cities similar to city I (i,e., cities 
close to city I).

• This can be viewed as a concurrent greedy algorithm



Initial position

Two candidate solutions:
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Additional examples





Counter propagation network (CPN)
• Basic idea of CPN

– Purpose: fast and coarse approximation of vector mapping
• not to map any given x to its           with given precision,
• input vectors x are divided into clusters/classes.
• each cluster of x has one output y, which is (hopefully) the 

average of            for all x in that class.
– Architecture: Simple case: FORWARD ONLY CPN, 
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– Learning in two phases: 
– training sample x:y where               is the precise mapping

– Phase1:         is trained by competitive learning to become the
representative vector of a cluster of input vectors x (use sample x
only)

1. For a chosen x, feedforward to determined the winning

2.

3. Reduce    , then repeat steps 1 and 2 until stop condition is met

– Phase 2:        is trained by delta rule to be an average output of           
where x is an input vector that causes      to  win (use both x and  y). 
1. For a chosen x, feedforward to determined the winning

2.                                                              (optional) 

3.

4. Repeat steps 1 – 3 until stop condition is met  
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• A combination of both unsupervised learning (for       in phase 1) and 
supervised learning (for       in phase 2). 

• After phase 1, clusters are formed among sample input x , each        is 
a representative of a cluster (average).

• After phase 2, each cluster j maps to an output vector y, which is the 
average of

• View phase 2 learning as following delta rule

•

Notes
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• After training, the network works like a look-up of math 
table. 

– For any input x, find a region where x falls (represented by 
the wining z node); 

– use the region as the index to look-up the table for the 
function value.

– CPN works in multi-dimensional input space

– More cluster nodes (z), more accurate mapping.



• If both 

we can establish bi-directional approximation

• Two pairs of weights matrices:

V (           ) and U (          ) for approx. map x to

W (            ) and T (            ) for approx. map y to

• When x:y is applied  ( ), they can 
jointly determine the winner J or separately for

• pp.  196 –206 for more details
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