
Chapter 4. Neural Networks Based on
Competition

• Competition is important for NN
– Competition between neurons has been observed in

biological nerve systems
– Competition is important in solving many problems

To classify an input pattern
into one of the m classes
– idea case: one class node

has output 1, all other 0 ;
– often more than one class

nodes have non-zero output

– If these class nodes compete with each other, maybe only
one will win eventually (winner-takes-all). The winner
represents the computed classification of the input

C_m

C_1

x_n

x_1

INPUT CLASSIFICATION

• Winner-takes-all (WTA):
– Among all competing nodes, only one will win and all

others will lose

– We mainly deal with single winner WTA, but multiple
winners WTA are possible (and useful in some
applications)

– Easiest way to realize WTA: have an external, central
arbitrator (a program) to decide the winner by
comparing the current outputs of the competitors (break
the tie arbitrarily)

– This is biologically unsound (no such external arbitrator
exists in biological nerve system).

• Ways to realize competition in NN
– Lateral inhibition (Maxnet, Mexican hat)

output of each node feeds
to others through inhibitory
connections (with negative weights)

– Resource competition
• output of x_k is distributed to

y_i and y_j proportional to w_ki
and w_kj, as well as y_i and y_j

• self decay
• biologically sound

• Learning methods in competitive networks
– Competitive learning
– Kohonen learning (self-organizing map, SOM)
– Counter-propagation net
– Adaptive resonance theory (ART) in Ch. 5

y_jy_i
0<ijw

y_i y_j

x_k

kjw
kiw

0<iiw 0<jjw

Fixed-weight Competitive Nets

• Notes:
– Competition:

• iterative process until the net stabilizes (at most one node
with positive activation)

– where m is the # of competitors
• too small: takes too long to converge
• too big: may suppress the entire network (no winner)

• Maxnet
– Lateral inhibition between

competitors



 >

=





−
=

=

otherwise 0
0 if

)(

 :function activation

otherwise
 if 1

 :weights

xx
xf

ji
w ij εε

 ,/10 m<< εε
 εε
 εε

Mexical Hat
• Architecture: For a given node,

– close neighbors: cooperative (mutually excitatory , w > 0)
– farther away neighbors: competitive (mutually

inhibitory,w < 0)
– too far away neighbors: irrelevant (w = 0)

• Need a definition of distance (neighborhood):
– one dimensional: ordering by index (1,2,…n)
– two dimensional: lattice







>
=
<

=
kji
kjic
kjic

wij

),(distanceif0
),(distanceif
),(distanceif

weights

2

1

:functionramp

maxmax
max0

00
)(

function activation







>
≤≤

<
=

xif
xifx

xif
xf

• Equilibrium:
– negative input = positive input for all nodes

– winner has the highest activation;

– its cooperative neighbors also have positive activation;

– its competitive neighbors have negative activations.

)0.0,39.0,14.1,66.1,14.1,39.0,0.0()2(
)9.0,38.0,06.1,16.1,06.1,38.0,0.0()1(

)0.0,5.0,8.0,0.1,8.0,5.0,0.0()0(
:example

=
=
=

x
x
x

Hamming Network

• Hamming distance of two vectors, of
dimension n,
– Number of bits in disagreement.

– In bipolar:

yx and

distance Hammingshorterlarger larger
)(5.0

2
distancehamming

andindifferentbitsofnumberis
andinagreementinbitsofnumberis:where

⇒⇒⋅
+⋅=

−=⋅
−=

−=⋅

ayx
nyxa

nayx
and

yxd
yxa

dayx

• Suppose a space of patterns is divided into k classes, each
class has an exampler (representative) vector .

• An input belongs to class i, if and only if is closer to

than to any other , i.e.,

• Hamming net is such a classifier:

– Weights: let represent class j

– The total input to

je
x x

ijexex ji ≠∀⋅≥⋅ie je

jY

nbew jjj 5.0 ,5.0 ==•

jj

i
iijjj

anex

xwbiny

=+⋅=

+= ∑

)(
2

1

_
jY

• Upper layer: MAX net
– it takes the y_in as its initial value, then iterates toward

stable state

– one output node with highest y_in will be the winner
because its weight vector is closest to the input vector

• As associative memory:
– each corresponds to a stored pattern;

– pattern connection/completion;

– storage capacity

total # of nodes: k

total # of patterns stored: k

capacity: k (or k/k = 1)

jY

• Implicit lateral inhibition by competing limited
resources: the activation of the input nodes

y_1 y_j y_m

x_i
iijj

jjiijij

i
ijj

xwy

yyxwiny

inyiny

 of sharelarger takeslarger

)(_

__

ααββ −⋅=

= ∑
decay

W_ij

Competitive Learning
• Unsupervised learning
• Goal:

– Learn to form classes/clusters of examplers/sample patterns
according to similarities of these exampers.

– Patterns in a cluster would have similar features
– No prior knowledge as what features are important for

classification, and how many classes are there.

• Architecture:
– Output nodes:

Y_1,…….Y_m,
representing the m classes

– They are competitors

(WTA realized either by
an external procedure or
by lateral inhibition as in Maxnet)

• Training:
– Train the network such that the weight vector w.j associated

with Y_j becomes the representative vector of the class of
input patterns Y_j is to represent.

– Two phase unsupervised learning

• competing phase:
– apply an input vector randomly chosen from sample set.
– compute output for all y:
– determine the winner (winner is not given in training

samples so this is unsupervised)

• rewarding phase:
– the winner is reworded by updating its weights (weights

associated with all other output nodes are not updated)

• repeat the two phases many times (and gradually reduce
the learning rate) until all weights are stabilized.

x

jj wxy •⋅=

x

• Weight update:
– Method 1: Method 2

In each method, is moved closer to x

– Normalizing the weight vector to unit length after it is
updated

)(jj wxw •• −=∆ αα xw j αα=∆ •

jjj www ••• ∆+=

j

j
j

w

w
w

•

•
• =

w_j

x

x-w_j

a(x-w_j)

w_j +a(x-w_j)

jw•

w_j

x+w_j

w_j+ ax

ax

• is moving to the center of a cluster of sample vectors after
repeated weight updates
– Three examplers:

S(1), S(2) and S(3)
– Initial weight vector w_j(0)
– After successively trained

by S(1), S(2), and S(3),
the weight vector
changes to w_j(1),
w_j(2), and w_j(3)

jw•

S(2)

S(1)

S(3)

w_j(0)

w_j(1)

w_j(2)

w_j(3)

Examples
• A simple example of competitive learning (pp. 172-175)

– 4 vectors of dimension 4 in 2 classes (4 input nodes, 2 output nodes)

S(1) = (1, 1, 0, 0) S(2) = (0, 0, 0, 1)
S(3) = (1, 0, 0, 0) S(4) = (0, 0, 1, 1)

– Initialization: , weight matrix:
– Training with S(1)

6.0=αα



















=

3. 9.
7. 5.
4. 6.
8. 2.

W

86.1)09(.)05(.)16(.)12(.

)1()1(
2222

1

=−+−+−+−=

−= •wSD

 wins2 class ,98.0)1()1(2 =−= •wSD



















=



















−



















+



















=•

12.
28.
76.
92.

)

3.
7.
4.
8.

0
0
1
1

(6.0

3.
7.
4.
8.

2w



















=

12. 9.
28. 5.
76. 6.
92. 2.

then W

– Similarly, after training with

S(2) = (0, 0, 0, 1) ,

in which class 1 wins,

weight matrix becomes
– At the end of the first iteration

(each of the 4 vectors are used),
weight matrix becomes

– Reduce

– Repeat training. After 10
iterations, weight matrix becomes

3.06.05.05.0 =⋅=⋅= αααα



















=

12. 96.
28. 20.
76. 24.
92. 08.

W



















=

048. 980.
110. 680.
300. 096.
970. 032.

W
αα



















→



















−
−

−
−

=

0.0 0.1
0.0 5.0
5.0 0.0
0.1 0.0

160.1 000000.1
163.2 5100000.

4900000. 160.2
000000.1 177.6

e
e

e
e

W

• S(1) and S(3) belong
to class 2

• S(2) and S(4) belong
to class 1

• w_1 and w_2 are the
centroids of the two
classes

Comments

1. Ideally, when learning stops, each is close to the
centroid of a group/cluster of sample input vectors.

2. To stabilize , the learning rate may be reduced slowly
toward zero during learning.

3. # of output nodes:
– too few: several clusters may be combined into one class

– too many: over classification

– ART model (later) allows dynamic add/remove output nodes

4. Initial :
– training samples known to be in distinct classes, provided

such info is available

– random (bad choices may cause anomaly)

jw•

jw• αα

jw•

Example

will always win no matter

the sample is from which class

is stuck and will not participate

in learning

unstuck:

let output nodes have some conscience

temporarily shot off nodes which have had very high

winning rate (hard to determine what rate should be

considered as “very high”)

2•w

1•w
w_1

w_2

Kohonen Self-Organizing Maps (SOM)
• Competitive learning (Kohonen 1982) is a special case of

SOM (Kohonen 1989)
• In competitive learning,

– the network is trained to organize input vector space into
subspaces/classes/clusters

– each output node corresponds to one class
– the output nodes are not ordered: random map

w_3

w_2

cluster_1

cluster_3

cluster_2

w_1

• The topological order of the
three clusters is 1, 2, 3

• The order of their maps at
output nodes are 2, 3, 1

• The map does not preserve
the topological order of the
training vectors

• Topographic map
– a mapping that preserves neighborhood relations

between input vectors, (topology preserving or feature
preserving).

– if are two neighboring input vectors (by
some distance metrics),

– their corresponding winning output nodes (classes), i
and j must also be close to each other in some fashion

– one dimensional: line or ring, node i has neighbors
or

– two dimensional:grid.
rectangular: node(i, j) has neighbors:

hexagonal: 6 neighbors

2and 1 xx

1±i

))1,1(additionalor (),,1(),1,(±±±± jijiji

ni mod 1±

• Biological motivation
– Mapping two dimensional continuous inputs from

sensory organ (eyes, ears, skin, etc) to two dimensional
discrete outputs in the nerve system.

• Retinotopic map: from eye (retina) to the visual cortex.

• Tonotopic map: from the ear to the auditory cortex

– These maps preserve topographic orders of input.

– Biological evidence shows that the connections in these
maps are not entirely “pre-programmed” or “pre-wired”
at birth. Learning must occur after the birth to create
the necessary connections for appropriate topographic
mapping.

SOM Architecture
• Two layer network:

– Output layer:

• Each node represents a class (of inputs)

•

• Neighborhood relation is defined over these nodes
Each node cooperates with all its neighbors within
distance R and competes with all other output nodes.

• Cooperation and competition of these nodes can be
realized by Mexican Hat model

R = 0: all nodes are competitors (no cooperative)
à random map

R > 0: à topology preserving map

∑=⋅= •
i

iijjj xwwxy :activation Node

SOM Learning

1. Initialize , and to a small value

2. For a randomly selected input sample/exampler

determine the winning output node J

either is maximum or

is minimum

3. For all output node j with , update the weight

4. Periodically reduce and R slowly.

5. Repeat 2 - 4 until the network stabilized.

x

JWx •⋅

∑ −=− •
i

iijJ xwwx 2)(

RjJ ≤−

)(ijijij wxww −+= αα
αα

nodesoutput allfor jW• αα

Notes
1. Initial weights: small random value from (-e, e)
2. Reduction of :

Linear:
Geometric:

may be 1 or greater than 1
3. Reduction of R:

should be much slower than reduction.
R can be a constant through out the learning.

4. Effect of learning
For each input x, not only the weight vector of winner J
is pulled closer to x, but also the weights of J’s close
neighbors (within the radius of R).

5. Eventually, becomes close (similar) to . The
classes they represent are also similar.

6. May need large initial R

αα
αααααα ∆−=∆+)()(ttt

ββαααα)()(ttt =∆+
t∆

0)(while1)()(>−=∆+ tRtRttR
αα

jw• 1±• jw

Examples

• A simple example of competitive learning (pp. 172-175)
– 4 vectors of dimension 4 in 2 classes (4 input nodes, 2 output nodes)

S(1) = (1, 1, 0, 0) S(2) = (0, 0, 0, 1)
S(3) = (1, 0, 0, 0) S(4) = (0, 0, 1, 1)

– Initialization: , weight matrix:
– Training with S(1)

6.0=αα



















=

3. 9.
7. 5.
4. 6.
8. 2.

W

86.1)09(.)05(.)16(.)12(.

)1()1(
2222

1

=−+−+−+−=

−= •wSD

 wins2 class ,98.0)1()1(2 =−= •wSD



















=



















−



















+



















=•

12.
28.
76.
92.

)

3.
7.
4.
8.

0
0
1
1

(6.0

3.
7.
4.
8.

2w



















=

12. 9.
28. 5.
76. 6.
92. 2.

then W

• How to illustrate Kohonen map
– Input vector: 2 dimensional

Output vector: 1 dimensional line/ring or 2 dimensional grid.

Weight vector is also 2 dimension

– Represent the topology of output nodes by points on a 2 dimensional
plane. Plotting each output node on the plane with its weight vector
as its coordinates.

– Connecting neighboring output nodes by a line

output nodes: (1, 1) (2, 1) (1, 2)

weight vectors: (0.5, 0.5) (0.7, 0.2) (0.9, 0.9)

C(1, 2)

C(2, 1)

C(1, 1)

Traveling Salesman Problem (TSP) by SOM

• Each city is represented as a 2 dimensional input vector (its
coordinates (x, y)),

• Output nodes C_j form a one dimensional SOM, each node
corresponds to a city.

• Initially, C_1, ... , C_n have random weight vectors

• During learning, a winner C_j on an input (x, y) of city I, not only
moves its w_j toward (x, y), but also that of of its neighbors
(w_(j+1), w_(j-1)).

• As the result, C_(j-1) and C_(j+1) will later be more likely to win
with input vectors similar to (x, y), i.e, those cities closer to I

• At the end, if a node j represents city I, it would end up to have its
neighbors j+1 or j-1 to represent cities similar to city I (i,e., cities
close to city I).

• This can be viewed as a concurrent greedy algorithm

Initial position

Two candidate solutions:

ADFGHIJBC

ADFGHIJCB

Additional examples

Counter propagation network (CPN)
• Basic idea of CPN

– Purpose: fast and coarse approximation of vector mapping
• not to map any given x to its with given precision,
• input vectors x are divided into clusters/classes.
• each cluster of x has one output y, which is (hopefully) the

average of for all x in that class.
– Architecture: Simple case: FORWARD ONLY CPN,

)(xy φφ=
)(xφφ

)(xφφ

mpn

kjjji

yzx

ywzvx

yzx

 111

••

from (input)
features to class

from class to
(output) features

– Learning in two phases:
– training sample x:y where is the precise mapping

– Phase1: is trained by competitive learning to become the
representative vector of a cluster of input vectors x (use sample x
only)

1. For a chosen x, feedforward to determined the winning

2.

3. Reduce , then repeat steps 1 and 2 until stop condition is met

– Phase 2: is trained by delta rule to be an average output of
where x is an input vector that causes to win (use both x and y).
1. For a chosen x, feedforward to determined the winning

2. (optional)

3.

4. Repeat steps 1 – 3 until stop condition is met

)(xy φφ=

jv•

•jw)(xφφ
jz

jz

))(()()(oldvxoldvnewv ijiijij −+= αα

αα

))(()()(oldvxoldvnewv ijiijij −+= αα
))(()()(oldwyoldwneww jkkjkjk −+= αα

jz

• A combination of both unsupervised learning (for in phase 1) and
supervised learning (for in phase 2).

• After phase 1, clusters are formed among sample input x , each is
a representative of a cluster (average).

• After phase 2, each cluster j maps to an output vector y, which is the
average of

• View phase 2 learning as following delta rule

•

Notes

jv•
•jw

jv•

{ } :)(jclusterxx ∈φφ

 wins when)(2)(

because , where)(

2
jjjkkjjkk

jkjk

jk
jkkjkkjkjk

zzwyzwy
ww

E
w
E

wywyww

−−=−
∂

∂
=

∂
∂

∂
∂

−∝−−+=

∑

αα

 win make that samples trainingall ofmean theis where
)()(and)(

 , when ,shown that becan It

xx
xtwxtv

t
jj φφ→→

∞→
••

)1()()1()1(as rewriteen be

can rule update Weight similar.) is of (proof on only Show

++−=+ txtvtv

wv

iijij

jkij

αααα

[]t
iiii

iiij

iiij

iijij

xtxtxtx

txtxtv

txtxtv

txtvtv

)1)(1(...)1)(1()1)(()1(

)1()()1()1()1(

)1())()1()1)((1(

)1()()1()1(

2

2

αααααααα

αααααααα

αααααααα
αααα

−+−−+−++≈

++−+−−=

+++−−−=
++−=+

xx

x

xEtxEtxE

xtxtxEtvE

t
i

t

t
iiij

=
−−

⇒

−+−+=
−+−++=

−+−++=+

)1(1

1

])1....()1(1[

))]1(()1...())(()1())1(([

])1(...)1)(()1(([)]1([1

αα
αα

αααααα
αααααα

αααααα
 thenset, training thefromrandomly drawn are If x

• After training, the network works like a look-up of math
table.

– For any input x, find a region where x falls (represented by
the wining z node);

– use the region as the index to look-up the table for the
function value.

– CPN works in multi-dimensional input space

– More cluster nodes (z), more accurate mapping.

• If both

we can establish bi-directional approximation

• Two pairs of weights matrices:

V () and U () for approx. map x to

W () and T () for approx. map y to

• When x:y is applied (), they can
jointly determine the winner J or separately for

• pp. 196 –206 for more details

exist)(function inverse its and)(1 yxxy −== φφφφ

zx to)(xy φφ=

)(* xx φφ=

YyXx onandon

JyJx zz ,

Full CPN

yz to

zy to xz to

