
Chapter3 Pattern Association &
Associative Memory

• Associating patterns which are
– similar,
– contrary,
– in close proximity (spatial),
– in close succession (temporal)

• Associative recall
– evoke associated patterns
– recall a pattern by part of it
– evoke/recall with incomplete/ noisy patterns

• Two types of associations. For two patterns s and t
– hetero-association (s != t) : relating two different patterns
– auto-association (s = t): relating parts of a pattern with

other parts

• Architectures of NN associative memory
– single layer (with/out input layer)
– two layers (for bidirectional assoc.)

• Learning algorithms for AM
– Hebbian learning rule and its variations
– gradient descent

• Analysis
– storage capacity (how many patterns can be

remembered correctly in a memory)
– convergence

• AM as a model for human memory

Training Algorithms for Simple AM

y_m

w_11 y_1

x_n

x_1

w_1m

w_n1

w_nm

• Goal of learning:
– to obtain a set of weights w_ij
– from a set of training pattern pairs {s:t}
– such that when s is applied to the input layer, t is computed

at the output layer
–

s_1

s_n

t_1

t_m

• Network structure: single layer
– one output layer of non-linear units and one input layer
– similar to the simple network for classification in Ch. 2

jwsftts j
T

j allfor)(:: pairs trainingallfor •=

• Similar to hebbian learning for classification in Ch. 2

• Algorithm: (bipolar or binary patterns)
– For each training samples s:t:
–

are ON (binary) or have the same sign (bipolar)

•

• Instead of obtaining W by iterative updates, it can be
computed from the training set by calculating the outer
product of s and t.

jiij tsw ⋅=∆

}{)()(
1

ij

P

P
jiij wWptpsw == ∑

=

Hebbian rule

jiij tsw and both if increases ∆

patterns training allfor updatesafter Then, initiall. 0 If Pw ij =∆

• Outer product. Let s and t be row vectors.

Then for a particular training pair s:t

And

• It involves 3 nested loops p, i, j (order of p is irrelevant)
p= 1 to P /* for every training pair */

i = 1 to n /* for every row in W */
j = 1 to m /* for every element j in row i */

[]


















∆∆

∆∆

=



















=



















=⋅=∆

nmn

m

mnn

m

m

m

n

T

ww

ww

tsts

tsts
tsts

tt

s

s

ptpspW

......

......

......

......
......

,......)()()(

1

111

1

212

111

1

1

∑
=

⋅=
P

p

T ptpsPW
1

)()()(

)()(: ptpsww jiijij ⋅+=

• Does this method provide a good association?
– Recall with training samples (after the weights are

learned or computed)

– Apply to one layer, hope appear on the other,
e.g.

– May not always succeed (each weight contains some
information from all samples)

)(ks)(kt
)())((ktWksf =

∑

∑
∑∑

≠

≠

==

+=

+=

⋅⋅==

kp

T

kp

TT

P

p

T
P

p

T

ptpsksktks

ptpsksktksks

ptpsksptpsksWks

)()()()()(

)()()()()()(

)()()()()()()(

2

11

cross-talk
term

principal
term

• Principal term gives the association between s(k) and t(k).
• Cross-talk represents correlation between s(k):t(k) and other

training pairs. When cross-talk is large, s(k) will recall
something other than t(k).

• If all s(p) are orthogonal to each other, then ,
no sample other than s(k):t(k) contribute to the result.

• There are at most n orthogonal vectors in an n-dimensional
space.

• Cross-talk increases when P increases.

• How many arbitrary training pairs can be stored in an AM?
– Can it be more than n (allowing some non-orthogonal patterns

while keeping cross-talk terms small)?
– Storage capacity (more later)

0)()(=⋅ psks T

Delta Rule
• Similar to that used in Adaline

• The original delta rule for weight update:

• Extended delta rule
– For output units with differentiable activation functions
– Derived following gradient descent approach).

ijjji xytw)(−=∆ αα
)_()('

jijjji inyfxytw −=∆ αα

ijjj
ij

ij

IJJJ

iiJ
IJ

JJJ

IJ

J
JJ

IJ

J
JJJJ

IJ
JJ

IJ

xinyfyt
w
E

w

xinyfyt

xw
w

inyfyt

w
inyf

yt

w
y

ytyt
w

yt
w
E

)_()(22

)_()(2

)_()(2

)_(
)(2

)(2)()(2

'

'

'

−=
∂
∂

−∝∆

⋅−−=
∂

∂
⋅−−=

∂
∂

−−=

∂
∂

−−=−
∂

∂
−=

∂
∂

∑

∑
=

−=
m

j
jj ytE

1

2)(

• same as the update rule for output nodes in BP learning.

• Works well if S are linearly independent (even if not
orthogonal).

Example of hetero-associative memory
• Binary pattern pairs s:t with |s| = 4 and |t| = 2.
• Total weighted input to output units:
• Activation function: threshold

• Weights are computed by Hebbian rule (sum of outer
products of all training pairs)

• Training samples:

∑=
i

ijij wxiny _





≤
>

=
0_0

0_1

j

j
j inyif

inyif
y

∑
=

=
P

p
j

T
i ptpsW

1

)()(

s(p) t(p)
p=1 (1 0 0 0) (1, 0)
p=2 (1 1 0 0) (1, 0)
p=3 (0 0 0 1) (0, 1)
p=4 (0 0 1 1) (0, 1)

()


















=



















=⋅

00
00
00
01

01

0
0
0
1

)1()1(tsT

()


















=



















=⋅

10
00
00
00

10

1
0
0
0

)3()3(tsT

()


















=



















=⋅

00
00
01
01

01

0
0
1
1

)2()2(tsT

()


















=



















=⋅

10
10
00
00

10

1
1
0
0

)4()4(tsT



















=

20

10

01

02

W
Computing the weights

recall:

x=(1 0 0 0) x=(0 1 0 0) (similar to S(1) and S(2)

x=(0 1 1 0)

() ()

0,1

02

20
10
01
02

0001

21 ==

=



















yy

() ()

0,1

01

20
10
01
02

0010

21 ==

=



















yy

() ()

1,1

11

20
10
01
02

0110

21 ==

=



















yy

(1 0 0 0), (1 1 0 0) class (1, 0)
(0 0 0 1), (0 0 1 1) class (0, 1)
(0 1 1 0) is not sufficiently similar
to any class

delta-rule would give same or
similar results.

Example of auto-associative memory
• Same as hetero-associative nets, except t(p) =s (p).
• Used to recall a pattern by a its noisy or incomplete version.

(pattern completion/pattern recovery)
• A single pattern s = (1, 1, 1, -1) is stored (weights computed

by Hebbian rule – outer product)

•



















−−−
−
−
−

=

1111
1111
1111
1111

W

() () ()
() () ()

() () ()
() () recognizednot00001111noisy more

111122221100 info missing
111122221111pat noisy
111144441111 pat. training

=⋅−−−
−→−=⋅−
−→−=⋅−−
−→−=⋅−

W
W
W
W

• Diagonal elements will dominate the computation when
multiple patterns are stored (= P).

• When P is large, W is close to an identity matrix. This
causes output = input, which may not be any stoned
pattern. The pattern correction power is lost.

• Replace diagonal elements by zero.

•



















−−−
−
−
−

=

0111
1011
1101
1110

0W

wrongW
W
W
W

→−=−−−
−→−=−

−→−=−−
−→−=−

)1111(')1111(
)1111()1122(')1100(

)1111()1113(')1111(
)1111()3333(')1111(

Storage Capacity

• # of patterns that can be correctly stored & recalled by a
network.

• More patterns can be stored if they are not similar to each
other (e.g., orthogonal)

non-orthogonal

orthogonal

)1111(
)1111(
)1111(

−−
→−−

−−



















−−−
−−−
−−−
−−−

=

0111
1011
1101
1110

0W

)1111(
)1111(

−
→−−



















−
−−

−

=

020 2
2002

0000
2200

0W

correctly storednot isIt
)1 1 0 1()1111(0 −=⋅−− W

recalledcorrectly
 becan patterns threeAll

• Adding one more orthogonal pattern the
weight matrix becomes:

• Theorem: an n by n network is able to store up to n-1
mutually orthogonal (M.O.) bipolar vectors of n-
dimension, but not n such vectors.

• Informal argument: Suppose m orthogonal vectors
are stored with the following weight matrix:



















=

0000

0000

0000

0000

W

)1111(

The memory is
completely destroyed!

)()......1(maa





 =

= ∑
=

m

p
ji

ji papa

ji
w

1

rule) (Hebbian otherwise)()(

)diagonal (zero if0

∑ ∑

∑ ∑ ∑

∑∑∑

= ≠

= ≠ =

===

•••

•••

⋅=

⋅=

=

⋅=
=

m

p ji
iij

n

i ji

m

p
jiiiji

n

i
ini

n

i
ii

n

i
ii

n

n

pakapa

papakawka

wkawkawka

wkawkawka
wwwkaWka

1

1 1

11
2

1
1

21

21

)()()(

)()()()(

:componentjththe

))(......,)(,)((

))(,......)(,)((
),......,)(()(

Let’s try to recall one of them, say))()......(()(1 kakaka n=





=⋅=−

≠−
=

−= ∑∑
=≠

))()((since 1

M.O.) are)(and)((since)()(

)()()()()()(
1

npapapkn

pakapkpaka

pakapakapaka

T

jj

n

i
jjii

ji
ii

[]

)()(

)1)(()()1(

)1)(()(

)1)(()()()()()()(
1

kamn

nkakam

nkaka

nkapakapapakapa

j

jj

kp
jj

j

m

p ji kp
jjjiij

−=
−+−−=

−+−=

−+−=

∑
∑ ∑ ∑

≠

= ≠ ≠

)()()(Therefore, kamnWka −=

• When m < n, a(k) can correctly recall itself
when m = n, output is a 0 vector, recall fails

• In linear algebraic term, a(k) is a eigenvector of W, whose
corresponding eigenvalue is (n-m).
when m = n, W has eigenvalue zero, the only eigenvector is
0, which is a trivial eigenvector.

• How many mutually orthogonal bipolar vectors with given
dimension n?
n can be written as , where m is an odd integer.
Then maximally: M.O. vectors

• Follow up questions:
– What would be the capacity of AM if stored patterns are not

mutually orthogonal (say random)

– Ability of pattern recovery and completion.

How far off a pattern can be from a stored pattern that is still
able to recall a correct/stored pattern

– Suppose x is a stored pattern, x’ is close to x, and x”=
f(xW) is even closer to x than x’. What should we do?

Feed back x” , and hope iterations of feedback will lead to x

mn k2=
k2

Iterative Autoassociative Networks
• Example:

• In general: using current output as input of the next iteration

x(0) = initial recall input

x(I) = f(x(I-1)W), I = 1, 2, ……

until x(N) = x(K) where K < N



















−−−
−
−
−

=−=

0111
1011
1101
1110

)1,1,1,1(Wx

xWx
xWx

x

=−→−=
=−=

=

)1,1,1,1()3,2,2,3("
")1,1,1,0('

)0,0,0,1(' :input recall incompleteAn

Output units are
threshold units

• Dynamic System: state vector x(I)
– If k = N-1, x(N) is a stable state (fixed point)

f(x(N)W) = f(x(N-1)W) = x(N)
• If x(K) is one of the stored pattern, then x(K) is called a

genuine memory
• Otherwise, x(K) is a spurious memory (caused by cross-

talk/interference between genuine memories)
• Each fixed point (genuine or spurious memory) is an

attractor (with different attraction basin)

– If k != N-1, limit-circle,
• The network will repeat

x(K), x(K+1), …..x(N)=x(K) when iteration continues.
• Iteration will eventually stop because the total number of

distinct state is finite (3^n) if threshold units are used.
• If sigmoid units are used, the system may continue evolve

forever (chaos).

Discrete Hopfield Model

• A single layer network
– each node as both input and output units

• More than an AM
– Other applications e.g., combinatorial optimization

• Different forms: discrete & continuous

• Major contribution of John Hopfield to NN
– Treating a network as a dynamic system

– Introduce the notion of energy function & attractors into
NN research

Discrete Hopfield Model (DHM) as AM

• Architecture:
– single layer (units serve as both input and output)

– nodes are threshold units (binary or bipolar)

– weights: fully connected, symmetric, and zero diagonal

– are external

inputs, which

may be transient

or permanent

0=
=

ii

jiij

w

ww

ix

• Weights:
– To store patterns s(p), p=1,2,…P

bipolar:

same as Hebbian rule (with zero diagonal)

binary:

converting s(p) to bipolar when constructing W.

0

)()(

=

≠= ∑
ii

p
jiij

w

jipspsw

0

)1)(2)(1)(2(

=

≠−−= ∑
ii

p
jiij

w

jipspsw

• Recall
– Use an input vector to recall a stored vector (book calls the

application of DHM)
– Each time, randomly select a unit for update

Recall Procedure
1.Apply recall input vector to the network:

2.While convergence = fails do

2.1.Randomly select a unit

2.2. Compute

2.3. Determine activation of Yi

2.4. Periodically test for convergence.

x nixy ii ,....2,1: ==

∑
≠

+=
ij

jijii wyxiny _







<−
=
>

=

ii

iii

ii

i

inyif
inyify
inyif

y
θθ
θθ
θθ

_1
_
_1

• Notes:
1. Each unit should have equal probability to be selected

at step 2.1

2. Theoretically, to guarantee convergence of the recall
process, only one unit is allowed to update its
activation at a time during the computation. However,
the system may converge faster if all units are allowed
to update their activations at the same time.

3. Convergence test:

4. usually set to zero.

5. in step 2.2 () is optional.

inextycurrenty ii ∀=)()(

iθ

ix ∑+=
j

jijij wyxiny _

• Example:
Store one pattern:

Recall input

) same thegives
1)- 1 1 (1t counterpar(bipolar

)0,1,1,1(patternbinary

W

 wrongare bits first two),0,1,0,0(=x

)0,1,0,1(
1

110_

1

1111

=
=

=+=⋅+= ∑

Y
y

wyxiny j

selected is 1Y



















−−−
−
−
−

=

0111
1011
1101
1110

W

selected is 4Y

)0,1,0,1(
2

2)2(0 _

4

4444

=
−=

−=−+=⋅+= ∑

Y
y

wyxiny j

)0,1,0,1(
1

211_

3

3333

=
=

=+=⋅+= ∑

Y
y

wyxiny j

selected is 3Y selected is 2Y

)0,1,1,1(
1

220_

2

2222

=
=

=+=⋅+= ∑

Y
y

wyxiny j

The stored pattern is correctly recalled

Convergence Analysis of DHM

• Two questions:
1.Will Hopfield AM converge (stop) with any given recall input?

2.Will Hopfield AM converge to the stored pattern that is closest
to the recall input ?

• Hopfield provides answer to the first question
– By introducing an energy function to this model,

– No satisfactory answer to the second question so far.

• Energy function:
– Notion in thermo-dynamic physical systems. The system has a

tendency to move toward lower energy state.

– Also known as Lyapunov function. After Lyapunov theorem
for the stability of a system of differential equations.

• In general, the energy function is the state
of the system at step (time) t, must satisfy two conditions

1. is bounded from below

2. is monotonically nonincreasing.

• The energy function defined for DHM

• Show
At t+1, is selected for update

)(where)),((tytyE

)(tE

tctE ∀≥)()(tE

)0)(:versioncontinuous(in 0)()1()1(≤≤−+=+∆ tEtEtEtE &

i
ji j i i

iiiijji yyxwyyE ∑∑ ∑ ∑
≠

+−−= θθ5.0

0)1(≤+∆ tE

kY

))()()()(5.0(

))1()1()1()1(5.0(

)()1(

 time)aat updatecan unit one(only 0)1(:Note
)()1()1(

tytyxwtyty

tytyxwtyty
tEtE

kjty
tytyty

i
ji j i i

iiiijji

i
ji j i i

iiiijji

j

kkk

∑∑ ∑ ∑
∑∑ ∑ ∑

≠

≠

+−−−

+++−++−=
−+

≠=+∆
−+=+∆

θθ

θθ

terms which are different in the two parts are those involving

• Show E(t) is bounded from below, since are
all bounded, E is bounded.

0)1(0)1()()1(otherwise,
0)1(_

1)1(1)1(&1)(if
0)1(_

2)1(1)1(&1)(if
:cases

)1(])([)1(

,,,

=+∆⇒=+∆⇒=+
<+∆⇒>⇒

=+∆=+−=
<+∆⇒<⇒

−=+∆−=+=

+∆−+−=+∆ ∑
∑∑

≠

tEtytyty
tEiny

tytyty
tEiny

tytyty

tyxwtytE

yyxwyywyy

kkk

kk

kkk

kk

kkk

k
kj

kkjkj

kkkk
i

i
j

jkjk kik

θθ

θθ

θθ

θθ

ijiii wxy ,,, θθ

ky

)1(_ +tiny k

• Comments:
1.Why converge.

• Each time, E is either unchanged or decreases an amount.
• E is bounded from below.
• There is a limit E may decrease. After finite number of steps,

E will stop decrease no matter what unit is selected for update.

2.The state the system converges is a stable state.
Will return to this state after some small perturbation. It is called
an attractor (with different attraction basin)

3.Error function of BP learning is another example of
energy/Lyapunov function. Because
• It is bounded from below (E>0)
• It is monotonically non-increasing (W updates along gradient

descent of E)

0_
0)()1(

=∆⇒=
=∆⇒=+∀

kk

kkk

yinyor
ytytyeitherk

θθ

• P: maximum number of random patterns of dimension n
can be stored in a DHM of n nodes

• Hopfield’s observation:

• Theoretical analysis:

P/n decreases because larger n leads to more
interference between stored patterns.

• Some work to modify HM to increase its capacity to close
to n, W is trained (not computed by Hebbian rule).

15.0,15.0 ≈≈
n
P

nP

nn
P

n
n

P
22 log2

1
,

log2
≈≈

Capacity Analysis of DHM

My Own Work:
• One possible reason for the small

capacity of HM is that it does not
have hidden nodes.

• Train feed forward network (with
hidden layers) by BP to establish
pattern auto-associative.

• Recall: feedback the output to
input layer, making it a dynamic
system.

• Shown 1) it will converge, and 2)
stored patterns become genuine
memories.

• It can store many more patterns
(seems O(2^n))

• Its pattern complete/recovery
capability decreases when n
increases (# of spurious attractors
seems to increase exponentially)

input1

hidden1

output1

input2

hidden2

output2

input

hidden

output

Auto-association

Hetero-association

Bidirectional AM(BAM)
• Architecture:

– Two layers of non-linear units: X-layer, Y-layer

– Units: discrete threshold, continuing sigmoid (can be
either binary or bipolar).

• Weights:
– (Hebbian/outer product)

– Symmetric:
– Convert binary patterns to bipolar when constructing W

• Recall:
– Bidirectional, either by or by
– Recurrent:

– Update can be either asynchronous (as in HM) or
synchronous (change all Y units at one time, then all X
units the next time)

∑
=

× ⋅=
P

p

T
mn ptpsW

1

)()(

)arecallto(YX)arecallto(XY

∑

∑

=

=

⋅=+

++=+

−⋅=

=

m

j
jiji

n

n

i
ijij

m

tywtinx

tinxftinxftx

txwtiny

tinyftinyfty

1

1

1

1

)()1(_ where

))1(_(),......1(_(()1(

)1()(_ where

))(_(),......(_(()(

jiij ww =

• Analysis (discrete case)
– Energy function: (also a Lyapunov function)

• The proof is similar to DHM

• Holds for both synchronous and asynchronous
update (holds for DHM only with asynchronous
update, due to lateral connections.)

– Storage capacity:

∑ ∑
= =

−=

−=+−=
m

j

n

i
jiji

TTTT

ywx

XWYXYWXWYL

1 1

)(5.0

)),(max(mnοο

