
Chapter3 Pattern Association & 
Associative Memory

• Associating patterns which are
– similar, 
– contrary, 
– in close proximity (spatial), 
– in close succession (temporal)

• Associative recall
– evoke associated patterns
– recall a pattern by part of it
– evoke/recall with incomplete/ noisy patterns

• Two types of associations. For two patterns s and t
– hetero-association (s != t) : relating two different patterns
– auto-association (s = t): relating parts of a pattern with 

other parts



• Architectures of  NN associative memory
– single layer (with/out input layer)
– two layers (for bidirectional  assoc.)

• Learning algorithms for AM
– Hebbian learning rule and its variations
– gradient descent

• Analysis
– storage capacity (how many patterns can be 

remembered correctly in a memory)
– convergence

• AM as a model for human memory



Training Algorithms for Simple AM
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• Goal of learning: 
– to obtain a set of weights w_ij 
– from a set of training pattern pairs {s:t} 
– such that when s is applied to the input layer, t is computed 

at the output layer
–

s_1

s_n

t_1

t_m

• Network structure: single layer
– one output layer of non-linear units and one input layer 
– similar to the simple network for classification in Ch. 2
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• Similar to hebbian learning for classification in Ch. 2

• Algorithm: (bipolar or binary patterns)
– For each training samples s:t:
–

are ON (binary) or have the same sign (bipolar)

•

• Instead of obtaining W by iterative updates, it can be 
computed from  the training set by calculating the outer 
product of s and t.
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• Outer product. Let s and t be row vectors.

Then for a particular training pair s:t

And                                   

• It involves 3 nested loops p, i, j  (order of p is irrelevant) 
p= 1 to P /* for every training pair */

i = 1 to n /* for every row in W      */
j = 1 to m /* for every element j in row i */
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• Does this method provide a good association?
– Recall with training samples (after the weights are 

learned or computed)

– Apply to one layer, hope         appear on the other, 
e.g.                             

– May not always succeed (each weight contains some 
information from all samples)
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• Principal term gives the association between s(k) and t(k). 
• Cross-talk represents correlation between s(k):t(k) and other 

training pairs. When cross-talk is large, s(k) will recall 
something other than t(k). 

• If all s(p) are orthogonal to each other, then                        ,    
no sample other than s(k):t(k) contribute to the result.

• There are at most n orthogonal vectors in an n-dimensional 
space.

• Cross-talk increases when P increases.

• How many arbitrary training pairs can be stored in an AM?
– Can it be more than n (allowing some non-orthogonal patterns 

while keeping cross-talk terms small)?
– Storage capacity (more later)
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Delta Rule
• Similar to that used in Adaline

• The original delta rule for weight update:

• Extended delta rule
– For output units with differentiable activation functions 
– Derived following gradient descent approach).
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• same as the update rule for output nodes in BP learning. 

• Works well if S are linearly independent (even if not 
orthogonal).



Example of hetero-associative memory
• Binary pattern pairs s:t with |s| = 4 and |t| = 2.
• Total weighted input to output units:
• Activation function: threshold

• Weights are computed by Hebbian rule (sum of outer 
products of all training pairs)

• Training samples:
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s(p)                       t(p)
p=1         (1 0 0 0)                 (1, 0)
p=2         (1 1 0 0)                 (1, 0)
p=3         (0 0 0 1)                 (0, 1)
p=4         (0 0 1 1)                 (0, 1)



( )


















=



















=⋅

00
00
00
01

01

0
0
0
1

)1()1( tsT

( )


















=



















=⋅

10
00
00
00

10

1
0
0
0

)3()3( tsT

( )


















=



















=⋅

00
00
01
01

01

0
0
1
1

)2()2( tsT

( )


















=



















=⋅

10
10
00
00

10

1
1
0
0

)4()4( tsT



















=

20

10

01

02

W
Computing the weights



recall:

x=(1 0 0 0) x=(0 1 0 0) (similar to S(1) and S(2)

x=(0 1 1 0)
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delta-rule would give same or 
similar results.



Example of auto-associative memory
• Same as hetero-associative nets, except t(p) =s (p).
• Used to recall a pattern by a its noisy or incomplete version.

(pattern completion/pattern recovery)
• A single pattern s = (1, 1, 1, -1) is stored (weights computed 

by Hebbian rule – outer product)

•
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• Diagonal elements will dominate the computation when 
multiple patterns are stored (= P).

• When P is large, W is close to an identity matrix. This 
causes output = input, which may not be any stoned 
pattern. The pattern correction power is lost.

• Replace diagonal elements by zero.

•
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Storage Capacity

• # of patterns that can be correctly stored & recalled by a 
network.

• More patterns can be stored if they are not similar to each  
other (e.g., orthogonal)
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• Adding one more orthogonal pattern the 
weight matrix becomes:

• Theorem: an n by n network is able to store up to n-1 
mutually orthogonal (M.O.) bipolar vectors of n-
dimension, but not n such vectors.

• Informal argument: Suppose m orthogonal vectors                 
are stored with the following weight matrix:
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• When m < n, a(k) can correctly recall itself
when m = n, output is a 0 vector, recall fails

• In linear algebraic term, a(k) is a eigenvector of W, whose 
corresponding eigenvalue is (n-m).
when m = n, W has eigenvalue zero, the only eigenvector is 
0, which is a trivial eigenvector.



• How many mutually orthogonal bipolar vectors with given 
dimension n? 
n can be written as               , where m is an odd integer.
Then maximally:        M.O. vectors

• Follow up questions:
– What would be the capacity of AM if stored patterns are not 

mutually orthogonal (say random)

– Ability of pattern recovery and completion.

How far off a pattern can be from a stored pattern that is still
able to recall a correct/stored pattern

– Suppose x is a stored pattern, x’ is close to x, and x”= 
f(xW) is even closer to x than x’. What should we do?

Feed back x” , and hope iterations of feedback will  lead to x

mn k2=
k2



Iterative Autoassociative Networks
• Example:

• In general: using current output as input of the next iteration

x(0) = initial recall input

x(I) = f(x(I-1)W),      I = 1, 2, ……

until x(N) = x(K) where K < N
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• Dynamic System: state vector x(I)
– If k = N-1,  x(N) is a stable state (fixed point)

f(x(N)W) = f(x(N-1)W) = x(N)
• If x(K) is one of the stored pattern, then x(K) is called a 

genuine memory
• Otherwise, x(K) is a spurious memory (caused by cross-

talk/interference between genuine memories)
• Each fixed point (genuine or spurious memory) is an 

attractor (with different attraction basin)

– If k != N-1, limit-circle, 
• The network will repeat 

x(K), x(K+1), …..x(N)=x(K) when iteration continues.
• Iteration will eventually stop because the total number of 

distinct state is finite (3^n) if threshold units are used.
• If sigmoid units are used, the system may continue evolve 

forever (chaos).



Discrete Hopfield Model

• A single layer network 
– each node as both input and output units

• More than an AM
– Other applications e.g., combinatorial optimization

• Different forms: discrete & continuous

• Major contribution of John Hopfield to NN
– Treating a network as a dynamic system

– Introduce the notion of energy function & attractors into 
NN research



Discrete Hopfield Model (DHM) as AM

• Architecture:
– single layer (units serve as both input and output)

– nodes are threshold units (binary or bipolar)

– weights: fully connected, symmetric, and zero diagonal

– are external

inputs, which

may be transient

or permanent

0=
=

ii

jiij

w

ww

ix



• Weights:
– To store patterns s(p),  p=1,2,…P

bipolar:

same as Hebbian rule (with zero diagonal)

binary:

converting s(p) to bipolar when constructing W.
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• Recall
– Use an input vector to recall a stored vector (book calls the 

application of DHM) 
– Each time, randomly select a unit for update

Recall Procedure
1.Apply recall input vector     to the network:

2.While convergence = fails do

2.1.Randomly select a unit

2.2. Compute

2.3. Determine activation of Yi 

2.4. Periodically test for convergence.
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• Notes:
1. Each unit should have equal probability to be selected 

at step 2.1

2. Theoretically, to guarantee convergence of the recall 
process, only one unit is allowed to update its 
activation at a time during the computation. However, 
the system may converge faster if all units are allowed 
to update their activations at the same time.

3. Convergence test:  

4. usually set to zero.

5. in step 2.2 (                              ) is optional.
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• Example:
Store one pattern:

Recall input 
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Convergence Analysis of DHM

• Two questions:
1.Will Hopfield AM converge (stop) with any given recall input?

2.Will Hopfield AM converge to the stored pattern that is closest
to the recall input ?

• Hopfield provides answer to the first question
– By introducing an energy function to this model, 

– No satisfactory answer to the second question so far.

• Energy function:
– Notion in thermo-dynamic physical systems. The system has a 

tendency to move toward lower energy state.

– Also known as Lyapunov function. After Lyapunov theorem 
for the stability of a system of differential equations.



• In general, the energy function                                is the state 
of the system at step (time) t, must satisfy two conditions

1.           is bounded from below

2. is monotonically nonincreasing.

• The energy function defined for DHM

• Show
At t+1,      is selected for update
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terms which are different in the two parts are those involving

• Show E(t) is bounded from below, since                       are
all bounded, E is bounded.
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• Comments:
1.Why converge.

• Each time, E is either unchanged or decreases an amount.
• E is bounded from below. 
• There is a limit E may decrease. After finite number of steps, 

E will stop decrease no matter what unit is selected for update.

2.The state the system converges is a stable state.
Will return to this state after some small perturbation. It is called 
an attractor (with different attraction basin)

3.Error function of BP learning is another example of
energy/Lyapunov function. Because
• It is bounded from below (E>0)
• It is monotonically non-increasing (W updates along gradient 

descent of E)
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• P: maximum number of random patterns of dimension n
can be stored in a DHM of n nodes

• Hopfield’s observation:

• Theoretical analysis:

P/n decreases because larger n leads to more 
interference between stored patterns.

• Some work to modify HM to increase its capacity to close 
to n, W is trained (not computed by Hebbian rule).
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Capacity Analysis of DHM



My Own Work:
• One possible reason for the small 

capacity of HM is that it does not 
have hidden nodes.

• Train feed forward network (with 
hidden layers) by BP to establish 
pattern auto-associative.

• Recall: feedback the output to 
input layer, making it a dynamic 
system.

• Shown 1) it will converge, and 2) 
stored patterns become genuine 
memories.

• It can store many more patterns 
(seems O(2^n))

• Its pattern complete/recovery 
capability decreases when n 
increases (# of spurious attractors 
seems to increase exponentially)

input1

hidden1

output1

input2

hidden2

output2

input

hidden

output

Auto-association

Hetero-association



Bidirectional AM(BAM)
• Architecture:

– Two layers of non-linear units:  X-layer, Y-layer

– Units: discrete threshold, continuing sigmoid (can  be 
either binary or bipolar).



• Weights:
– (Hebbian/outer product)

– Symmetric:
– Convert binary patterns to bipolar when constructing W

• Recall: 
– Bidirectional, either by                          or by
– Recurrent:

– Update can be either asynchronous (as in HM) or 
synchronous (change all Y units at one time, then all X 
units the next time)
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• Analysis (discrete case)
– Energy function: (also a Lyapunov function)

• The proof is similar to DHM

• Holds for both synchronous and asynchronous 
update (holds for DHM only with asynchronous 
update, due to lateral connections.)

– Storage capacity:
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