Chapter 3 Pattern Association &
Associative Memory

« Associating patterns which are
—similar,
— contrary,
—in close proximity (spatial),
—in close succession (temporal)
» Associative recall
— evoke associated patterns
—recall a pattern by part of it
— evoke/recall with incomplete/ noisy patterns

» Two types of associations. For two patterns sand t
— hetero-association (s!=1) : relating two different patterns
— auto-association (s =t): relating parts of a pattern with
other parts



o Architectures of NN associative memory
—single layer (with/out input layer)
—two layers (for bidirectional assoc.)
e Learning algorithms for AM
— Hebbian learning rule and its variations
— gradient descent
 Analysis
— storage capacity (how many patterns can be
remembered correctly in a memory)
— convergence

« AM as amodel for human memory



Training Algorithmsfor Simple AM

* Network structure: single layer
— one output layer of non-linear units and one input layer
— similar to the ssimple network for classification in Ch. 2

S1 ‘ wh >‘ t1
@
— W_nm

e Goal of learning:
— to obtain a set of weightsw ]
— from aset of training pattern pairs { s.t}
— such that when sis applied to the input layer, t is computed
at the output layer

— forall traning pairss:t:t; = f(sTW_j)foraII |

tm



Hebbian rule

e Similar to hebbian learning for classification in Ch. 2

 Algorithm: (bipolar or binary patterns)
— For each training samplessit:  Dw;, = s, X,
— Dw;; increases if both s and t;
are ON (binary) or have the same sign (bipolar)
 If Dw; =0initial. Then, after updates for al P training patterns

w, =a s (Pt (p) W ={w,}

P=1

e Instead of obtaining W by iterative updates, it can be
computed from the training set by cal culating the outer
product of sand t.



e Quter product. Let sand t be row vectors.
Then for aparticular training pair s:t

é U &ty Sty U EDMy....Dy,
é U u é
OW(P) =8 (DA =6 U8, =85 =
é & 0 e
&.0 &st...st.d w,...Dw
And W (P)=g s'(p)%(p)
p=1
e |tinvolves 3 nested loopsp,i,] (order of pisirrelevant)
p=1toP [* for every training pair */
I=1ton [* for every row iInW  */
j=1tom [* for every element j inrow | */

w; =w; +s(p)%;(p)



e Doesthis method provide a good association?

— Recall with training samples (after the weights are
learned or computed)

— Apply s(k) to onelayer, hope t(k) appear on the other,
e.g0. f (s(k)W) =t(k)

— May not always succeed (each weight contains some
Information from all samples)

s(kW =s(k)a s" (p)t(p) =a s(k)>s" (p)2(p)

=s(k)s" (k) t(k) +Q s(k)s" (p)t(p)

= || t(k) + & s(k)s" (p)t(p)

principal / p k \ cross-talk

term term



Principal term gives the association between s(k) and t(k).

Cross-talk represents correlation between s(k):t(k) and other
training pairs. When cross-talk islarge, s(k) will recall
something other than t(k).

If all s(p) are orthogonal to each other, then s(k)>s' (p) =0,
no sample other than s(k):t(k) contribute to the result.

There are at most n orthogonal vectors in an n-dimensional
space.

Cross-talk 1ncreases when P increases.

How many arbitrary training pairs can be stored in an AM?
— Can it be more than n (allowing some non-orthogonal patterns
while keeping cross-talk terms small)?
— Storage capacity (more later)



Delta Rule

e Similar to that used in Adaline
* Theoriginal deltarule for weight update: Dw;; =a (t; - y;)X;

» Extended deltarule Dw;; =a (t; - y,)x f (y_in))
— For output units with differentiable activation functions
— Derived following gradient descent approach). E = g (t, - y,)?

=1
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e same asthe update rule for output nodes in BP learning.

 Workswell if Sarelinearly independent (even if not
orthogonal).



Example of heter o-associative memory
Binary pattern pairs s:t with |s| =4 and |t| =
Total weighted input to output units:y _in; = a X W,
Activation function: threshold
i1 if y_in, >0

YiZlo i y_in £0
Welights are computed by Hebbian rule (sum of outer
products of all training pairs)

W =3 s (pt(p)

p=1

Training samples.

s(p) t(p)
p=1 (1000) (1, 0)
p=2 (1100) (1, 0)
p=3 (0001) (0, 1)

p=4  (0011) 0, 1)
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x=(1000)
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x=(0110)

0 11 o)g%) 2::(1 1)
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y, =1 y,=1

x=(01 0 0) (smilar to S(1) and S(2)

0._
010 o)gt 1?_(1 0)
&0 2
=1L y,=0

(1000),(1100) class(1, 0)
(0001),(0011) class (0, 1)

(011 0) isnot sufficiently ssimilar
to any class

delta-rule would give same or
similar results.



Example of auto-associative memory

Same as hetero-associative nets, except t(p) =s (p).

Used to recall apattern by aits noisy or incomplete version.
(pattern completion/pattern recovery)

A singlepatterns= (1, 1, 1, -1) is stored (weights computed
by Hebbian rule — outer product)

él 1 1 1u

9 1 1 -1

g 1 Y

&1 -1 -1 1§
training pat. (111- 1w =(444- 4)® (111- 1)
noisy pat (-111- ) =(222- 2)® (111- 1)
missing info (001-1)pw =(222- 2)® (111- 1)

more noisy (-1-11-1)wv =(0000) not recognized



Diagonal elements will dominate the computation when
multiple patterns are stored (= P).

When Pislarge, W is closeto an identity matrix. This
causes output = input, which may not be any stoned
pattern. The pattern correction power is|ost.

Replace diagonal elements by zero.
e 1 1 - 1u

O 1 - 13

1 0 -1y

-1 0§

W, =

MW'=(333-3)® 1 11-1
(- -DW'=3 1 1 -)® @1 1 1 -1
O 01 -)Ww=2 21 -)®@1 11 -1
-1 -11 -1)W'=11 -1 1)® wrong

PR @ OO®

1-1
11
11



Storage Capacity

o # of patternsthat can be correctly stored & recalled by a
network.

More patterns can be stored if they are not similar to each

other (e.g., orthogonal)
non-orthogonal

1 -1-11)®
@1 -11

W, =

orthogonal

11 -1 -2

-1 1
-1 1

1 '1)® WO:
1 1)

€ 0 -2 2u

© o0 0 oU

52 0 0 -2; (1-1-1W,=(10-11)
@ 0 -2 0g Itisnotstoredcorrectly
O -1 -1 -1y

€10 -1 -

2-1 -1 0 13 All three patternscan be
&1 -1 -1 0§ correctlyrecalled



« Adding one more orthogonal pattern (1 1 1 1) the
weight matrix becomes:

w =€ 4 Thememory is
go 0 0 08 completely destroyed!

e Theorem: an n by n network is able to store up to n-1
mutually orthogonal (M.O.) bipolar vectors of n-
dimension, but not n such vectors.

« Informal argument: Suppose m orthogonal vectorsa(l)...... a(m)
are stored with the following weight matrix:

10 If 1=] (zerodiagona)
|

Wi :{-ém.ai(p)aj(p) otherwise (Hebbian rule)

| p=1



Let’stry to recall one of them, say a(k) = (a,(k)......a,(Kk))

a(K)W = a(K) (W, W, W)
= (a(k) W, a(K)W ,.....a(k)w )

=(a & (Kw,,a 8 (KW, 3 (K)W,,)
i=1 i=1 =1
the jth component

é. a; (K)w; = é. ai(k)xé a, (p)a;(p)
=1 it ] p=1

-3 2,(p) 8 a,(K)a,(p)
e‘i a,(K)a (p) - a;(K)a, (p)

i-a(k)a(p) k! p(sincea(k)anda(p)aeM.O.)
Tin-1 k= p (sincea’ (p)>a(p) =n)

a a(a (p)=



Sa(Paa®a(p=aa - a®a |+ ®n-1
ptk

p=1 it

=4 - aKk)+a (K(n- 1)
ptk

=- (m- :I)aj (k) +aj (k)(n' :D
=(n- m)a, (k)

Therefore, a(k)W =(n- m)a(k)

 When m < n, a(k) can correctly recall itself
when m = n, output isa 0 vector, recall fails

* Inlinear agebraic term, a(k) is aeigenvector of W, whose
corresponding eigenvalue is (n-m).
when m = n, W has eigenvalue zero, the only eigenvector is
0, which isatrivial eigenvector.



 How many mutually orthogonal bipolar vectors with given
dimension n?
n can be written as n = 2“m, where m isan odd integer.
Then maximally: 2% M.O. vectors

* Follow up questions:

— What would be the capacity of AM if stored patterns are not
mutually orthogonal (say random)

— Ability of pattern recovery and completion.

How far off a pattern can be from a stored pattern that is still
able to recall a correct/stored pattern

— Suppose x Isastored pattern, X’ iscloseto x, and X" =
f (XW Iisevencloserto x than x’ . What should we do?

Feed back x” , and hope iterations of feedback will lead to x



| ter ative Autoassociative Networ ks
e Example:

X=(11L-1) W= Output units are

u
-1 threshold units

Anincompleterecall input : x'= (1, 0, O, 0)
X'W =(0,1,1-1)=x"
X"W =(3,2,2,-3)® (1L,1L1,-D=x

* In general: using current output as input of the next iteration
X(0) = initial recall input

x( =fx(-)W), 1=1,2,......
until X(N) = x(K) whereK <N



« Dynamic System: state vector X(I)
— If k=N-1, X(N) isastable state (fixed point)
f(X(N)W) = f(X(N-1)W) = x(N)
* 1T x(K) Isone of the stored pattern, then x(K) iscalled a
genuine memory

o Otherwise, X(K) isaspurious memory (caused by cross-
talk/interference between genuine memories)

 Each fixed point (genuine or spurious memory) is an
attractor (with different attraction basin)

— If k1= N-1, limit-circle,
e The network will repeat
X(K), X(K+1), ....X(N)=x(K) when iteration continues.

o [teration will eventually stop because the total number of
distinct state is finite (3*n) if threshold units are used.

e |f sigmoid units are used, the system may continue evolve
forever (chaos).



Discrete Hopfield M odéel

A single layer network
— each node as both input and output units
More than an AM
— Other applications e.qg., combinatorial optimization
Different forms:. discrete & continuous
Major contribution of John Hopfield to NN
— Treating a network as a dynamic system

— Introduce the notion of energy function & attractors into
NN research



Discrete Hopfield Model (DHM) as AM

e Architecture:

— single layer (units serve as both input and output)
— nodes are threshold units (binary or bipolar)
— weights: fully connected, symmetric, and zero diagonal

W =W,
w, =0

— X; areexternal
Inputs, which
may be transient
or permanent

r__,——df_—___‘_‘——___h__—-—_"'-—-... Wi
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 Waelghts:
— To store patterns s(p), p=1,2,...P
bipolar: w; =g s (p)s;(p) it ]
P

w; =0
same as Hebbian rule (with zero diagonal)

binary: w, =3 (2s(p)- D(2s,(p)-1) i? ]
Wii:Op

converting s(p) to bipolar when constructing W.



e Recall

— Use an input vector to recall a stored vector (book calls the
application of DHM)

— Each time, randomly select a unit for update

Recall Procedure
1.Apply recall input vector X to the network: Y, =%, 1=12,...n

2.While convergence = failsdo
2.1.Randomly select a unit
2.2. Computey_in, =X, +Q Y,w,
2.3. Determine activation c;f IYi
11 If y_in, >q,
Yi :_:'_ y; If y_in =q,
t-1 1t y_in <q
2.4. Periodically test for convergence.



Notes:

1. Each unit should have equal probability to be selected
at step 2.1

2. Theoretically, to guarantee convergence of the recall
process, only one unit is allowed to update its
activation at atime during the computation. However,
the system may converge faster if all units are allowed
to update their activations at the same time.

3. Convergencetest:y (current) = y,(next) "I

4. @, usualy setto zero.

5. X instep 2.2 (y_in, =x,+Q y,w;) isoptional.
j



Y =

Example:

Store one pattern: € 1 1-1i
binary pattern (1,1, 1, 0) W = @ 0 1-1

. =€ u
(bipolar counterpart (111-1) al 1 0-1y
givesthesameW) g 1-1-1 09

Recall input x =(0, 0,1, 0), first two bitsarewrong

Y, isselected Y, isselected
y_in1= X1+é y1>QNj1=O+1=1 y_in4:X4+é. y4wj4:O+(_ 2):'2
y, =1 Ya=-2
Y =(10,1 0) Y =(10,1 0)

Y. Isselected Y, isselected
Y_ing =X, +Q YW, =1+1=2 y_in,=x,+§ y,w, =0+2=2
y; =1 y, =1

(1,0,1,0) Y =(1,1,1,0)

The stored pattern iscorrectly recalled



Convergence Analysis of DHM

e Two questions:
1.Will Hopfield AM converge (stop) with any given recall input?

2.Will Hopfield AM converge to the stored pattern that is closest
to the recall input ?

* Hopfield provides answer to the first question
— By introducing an ener gy function to this model,
— No satisfactory answer to the second question so far.

 Energy function:

— Notion in thermo-dynamic physical systems. The system hasa
tendency to move toward lower energy state.

— Also known as Lyapunov function. After Lyapunov theorem
for the stability of a system of differential equations.



* |Ingenera, the energy functionE(y(t)), where y(t) isthe state
of the system at step (time) t, must satisfy two conditions
1. E(t) isbounded frombelow E(t)3 ¢ "t
2. E (t) ismonotonically nonincreasing.
DE(t+1) = E(t+1)- E(t) £0 (incontinuousversion: E(t) £ 0)
* Theenergy function defined for DHM
E :'O-5é é. YiY;W - é_. XY +é.qiyi
e Show DE&tJ+i)£O | |
At t+1)Y, issdected for update
Dy, (t+1) =y, (t+1) - y, (t)
Note:Dy,(t+1) =0 | k (only oneunit can updateat atime)
E(t+1)- E(t)
=(-053 & Y (t+Dy;(t+Dw; - @ Xy, (t+D+Q q; y; (t +D)
it i i
-(-05a @ YOy, (Ow; - @ %% O+ a (1)

1]



terms which are different in the two parts are those involving Y,
o) o)
a YooYW, a¥YYW., XYoo O
] i

DE(t+1) =-[Q v, ()W, + X, - 4, ]Dy, (t +1)
LK W,
y_iﬁf(“l)

Cases:
if y@)=1&y (t+)=-1 Dy (t+)=-2
Py in<q P DE(t+1)<0
if y({t)=-1& vy (t+)=1 Dy (t+D) =1
Py in>q,pbP DE(t+1)<0
otherwise, y, (t+) =y, (t) P Dy (t+1)=0P DE(t+1) =0

 Show E(t) isbounded from below, since y;, x;,q;, w; are
all bounded, E is bounded.



e Comments:

1.Why converge.
e Each time, E is either unchanged or decreases an amount.
e E isbounded from below.
 Thereisalimit E may decrease. After finite number of steps,
E will stop decrease no matter what unit is selected for update.

" k either y, (t+1) = y, (t) P Dy, =0
ory_in ., =qb Dy, =0

2.The state the system converges is a stable state.

Will return to this state after some small perturbation. It is called
an attractor (with different attraction basin)

3.Error function of BP learning is another exampl e of
energy/Lyapunov function. Because
e |t isbounded from below (E>0)

e |t iIsmonotonically non-increasing (W updates along gradient
descent of E)



Capacity Analysis of DHM

P: maximum number of random patterns of dimension n
can be stored in aDHM of n nodes
P

Hopfield’ s observation: P » 0.15n, F»0.15

Theoretical analysiss.  p,_ " P 1
2log,n n 2log,n

P/n decreases because larger n leads to more
Interference between stored patterns.

Some work to modify HM to increase its capacity to close
ton, W istrained (not computed by Hebbian rule).



My Own Work:

One possible reason for the small
capacity of HM isthat it does not
have hidden nodes.

Train feed forward network (with
hidden layers) by BP to establish
pattern auto-associative.

Recall: feedback the output to
Input layer, making it adynamic
system.

Shown 1) it will converge, and 2)
stored patterns become genuine
memories.

It can store many more patterns
(seems O(2*n))

|ts pattern complete/recovery
capability decreases when n
Increases (# of spurious attractors
seems to increase exponentially)

output

T
hidden

T
Input
A

Auto-association

outputl output2
r i

hidden1 hidden2
r j

inputl input2
A 4

H eter 0-association




Bidirectional AM(BAM)

o Architecture:
— Two layers of non-linear units. X-layer, Y-layer

— Units: discrete threshold, continuing sigmoid (can be
either binary or bipolar).

win Wi Wpi wyj Wi W

Wim Wim Wam

Figure 3.8 Bidirectional associative memor y.



* Weights:
~W._. =3 s"(p)x(p) (Hebbian/outer product)

p=1
— Symmetric: w;, =W,

— Convert binary patterns to bipolar when constructing W
* Recall:
— Bidirectional, either by X (torecallaY) or by Y (torecal a X)
—Recurrent: y(t) =(f (y_in.(t),...... f(y_in_(t))
wherey _in, (t) :én w; ;> (t- 1)

=1

X(t+D)=(f(x_in(t+D),...... f(x_in (t+1)
wherex _in (t+1) :ém w; Xy, (t)

=1
— Update can be either asynchronousJ (asin HM) or
synchronous (change all Y units at one time, then all X
units the next time)



e Analysis (discrete case)
— Energy function: (also a Lyapunov function)
L=-05(XWY T +YW TXT)=- XWY T
-
--a d XiWij yj
j=1 i=1
e The proof issimilar to DHM

 Holds for both synchronous and asynchronous
update (holds for DHM only with asynchronous
update, due to lateral connections.)

— Storage capacity: o (max(n, m))



