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Notations
units:

activation/output:

if      is an input unit, 

for other  units ,

where f( .) is the activation function for

weights: 

from unit i to unit j (other books use          )
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bias:             ( a constant input)

threshold:       (for units with step/threshold

activation function) 

weight matrix: W={      }  

i: row index;  j: column index
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0 5           2      (       )  row vectors

3 0           4      (       ) 

1           6           -1     (      )

column vectors

vectors of weights: 

weights come into unit j

weights go out of unit i         
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Review of Matrix Operations

Vector: a sequence of elements (the order is important)

e.g., x=(2, 1) denotes a vector

length = sqrt(2*2+1*1)

orientation angle = a

x=(x1, x2, ……, xn), an n dimensional vector

a point on an n dimensional space

column vector: row vector
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norms of a vector: (magnitude)

vector operations:
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Cross product:

defines another vector orthogonal to the plan 

formed by x and y.
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the element  on the ith row and jth column
a diagonal element
a weight in a weight matrix W

each row or column is a vector
jth column vector
ith row vector
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a column vector of dimension m is a matrix of mx1

transpose:

jth column becomes jth row

square matrix:    

identity matrix:
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symmetric matrix: m = n

matrix operations:

The result is a row vector, each element of which is 
an inner product of       and a column vector 

jiijii
T aaijoraaiorAA =∀=∀= •• ,,

)(),......( 1 jin rarararA == ••

),......(

),......)(......(

1

11

n
TT

nmnm
T

axax

aaxxAx

••

••×

=

=

Tx
ja •



product of two matrices:

vector outer product:
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Calculus and Differential Equations

• ,  the derivative of     , with respect to time

• System of differential equations

solution: 

difficult to solve unless         are simple
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• Multi-variable calculus:

partial derivative: gives the direction and speed of 

change of y, with respect to 
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the total derivative: 

Gradient of f : 

Chain-rule:  y is a function of , is a function of  t
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dynamic system:

– change of       may potentially affect other x

– all      continue to change (the system evolves)

– reaches equilibrium when

– stability/attraction: special equilibrium point

(minimal energy state)   

– pattern of                      at a stable state often 
represents a solution
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Chapter 2: Simple Neural Networks 
for Pattern Classification

• General discussion

• Linear separability

• Hebb nets

• Perceptron

• Adaline



General discussion

• Pattern recognition

– Patterns: images, personal records, driving habits, etc.

– Represented as a vector of features (encoded as 
integers or real numbers in NN)

– Pattern classification:

• Classify a pattern to one of the given classes

• Form pattern classes

– Pattern associative recall

• Using a pattern to recall a related pattern

• Pattern completion: using a partial pattern to recall the 
whole pattern

• Pattern recovery: deals with noise, distortion, missing 
information



• General architecture

Single layer

net input to Y: 

bias b is treated as the weight from a special unit with 
constant output 1.

threshold    related to Y

output

classify                      into one of the two classes
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• Decision region/boundary

n = 2, b != 0, θ = 0

is a line, called decision boundary, which partitions the 
plane into two decision regions

If a point/pattern              is in the positive region, then

, and the output is one (belongs to 
class one)

Otherwise,   , output –1 (belongs to 
class two)

n = 2, b = 0, θ != 0 would result a similar partition
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– If n = 3 (three input units), then the decision 
boundary is a two dimensional plane in a three 
dimensional space

– In general, a decision boundary                             is a
n-1 dimensional hyper-plane in an n dimensional 
space, which partition the space into two decision 
regions

– This simple network thus can classify a given pattern 
into one of the two classes, provided one of these two 
classes is entirely in one decision region (one side of 
the decision boundary) and the other class is in 
another region.

– The decision boundary is determined completely by 
the weights W and the bias b (or threshold θθ).
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Linear Separability Problem

• If two classes of patterns can be separated by a decision boundary, 
represented by the linear equation 

then they are said to be linearly separable. The simple network can 
correctly classify any patterns.

• Decision boundary (i.e., W, b or θθ) of linearly separable classes can 

be determined either by some learning procedures or by solving 
linear equation systems based on representative patterns of each
classes 

• If such a decision boundary does not exist, then the two classes are 
said to be linearly inseparable.

• Linearly inseparable problems cannot be solved by the simple 
network , more sophisticated architecture is needed.
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• Examples of linearly separable classes

- Logical AND function

patterns  (bipolar)  decision boundary

x1   x2   y w1 = 1
-1   -1   -1 w2 = 1
-1    1   -1 b = -1
1   -1   -1 θ = 0
1    1     1 -1 + x1 + x2 = 0

- Logical OR function

patterns  (bipolar)  decision boundary

x1   x2   y w1 = 1
-1   -1   -1 w2 = 1
-1    1     1 b = 1
1   -1     1 θ = 0
1    1     1 1 + x1 + x2 = 0

x

oo

o

x: class I (y = 1)
o: class II (y = -1)

x

xo

x

x: class I (y = 1)
o: class II (y = -1)



• Examples of linearly inseparable classes

- Logical XOR (exclusive OR) function

patterns  (bipolar)  decision boundary

x1   x2   y
-1   -1   -1
-1    1     1
1   -1     1
1    1    -1

No line can separate these two classes, as can be seen from 
the fact that the following linear inequality system has no 
solution

because we have b < 0 from 

(1) + (4), and b >= 0 from 

(2) + (3), which is a 

contradiction

o

xo

x

x: class I (y = 1)
o: class II (y = -1)









<++
≥−+
≥+−
<−−

(4)

(3)

(2)

(1)

     0
     0
     0
     0

21

21

21

21

wwb
wwb
wwb
wwb



– XOR can be solved by a more complex network with 
hidden units

Y

z2

z1x1

x2

2

2

2

2

-2

-2

θ = 1

θ = 0

(-1, -1) (-1, -1) -1
(-1, 1) (-1, 1) 1
(1, -1) (1, -1) 1
(1, 1) (1, 1) -1



Hebb Nets

• Hebb, in his influential book The organization of 
Behavior (1949), claimed

– Behavior changes are primarily due to the changes of 
synaptic strengths (      ) between neurons I and j

– increases only when both I and j are “on”: the 
Hebbian learning law

– In ANN, Hebbian law can be stated:          increases 
only if the outputs of both units       and       have the 
same sign.

– In our simple network (one output and n input units)
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• Hebb net (supervised) learning algorithm (p.49)
Step 0.  Initialization: b = 0, wi = 0, i = 1 to n
Step 1.  For each of the training sample s:t do steps 2 -4

/* s is the input pattern, t the target output of the sample */

Step 2.       xi := si, I = 1 to n                 /* set s to input units */

Step 3.       y := t                          /* set y to the target */

Step 4.       wi := wi + xi * y, i = 1 to n  /* update weight */

b := b + xi * y                      /* update bias */

Notes: 1) α = 1, 2) each training sample is used only once.

• Examples: AND function
– Binary units (1, 0)

(x1, x2, 1)          y=t w1 w2 b
(1,   1,   1) 1 1 1 1
(1,   0,   1) 0 1 1 1
(0,   1,   1) 0 1 1 1
(0,   0,   1) 0 1 1 1

An incorrect boundary:
1 + x1 + x2 = 0

Is learned after using 
each sample once

bias unit



– Bipolar units (1, -1)

– It will fail to learn x1 ^ x2 ^ x3, even though the function is 
linearly separable.

– Stronger learning methods are needed.

• Error driven: for each sample s:t, compute y from s 
based on current W and b, then compare y and t

• Use training samples repeatedly, and each time only 
change weights slightly (α << 1)

• Learning methods of Perceptron and Adaline are good 
examples

(x1, x2, 1)           y=t w1 w2 b
(1,   1,   1) 1 1 1 1
(1,  -1,   1) -1 0 2 0
(-1,  1,   1) -1 1 1 -1
(-1, -1,   1) -1 2 2 -2

A correct boundary
-1 + x1 + x2 = 0

is successfully learned



Perceptrons

• By Rosenblatt (1962) 

– For modeling visual perception (retina)

– Three layers of units: Sensory, Association, and Response

– Learning occurs only on weights from A units to R units 
(weights from S units to A units are fixed).

– A single R unit receives inputs from n A units (same 
architecture as our simple network)

– For a given training sample s:t, change weights only if the 
computed output y is different from the target output t 
(thus error driven)



• Perceptron learning algorithm (p.62)
Step 0. Initialization: b = 0, wi = 0, i = 1 to n
Step 1. While stop condition is false do steps 2-5 
Step 2. For each of the training sample s:t do steps 3 -5
Step 3.       xi := si, i = 1 to n                 
Step 4.               compute y
Step 5.       If y != t

wi := wi + α ∗ xi * t, i = 1 to n
b := b + α * t

Notes:
- Learning occurs only when a sample has y != t
- Two loops, a completion of the inner loop (each sample 

is used once) is called an epoch
Stop condition
- When no weight is changed in the current epoch, or
- When pre-determined number of epochs is reached



Informal justification: Consider y = 1 and t = -1
– To move y toward t, w1should reduce net_y
– If xi = 1, xi * t < 0, need to reduce w1 (xi*w1 is reduced ) 
– If xi = -1, xi * t >0 need to increase w1 (xi*w1 is reduced )

See book (pp. 62-68) for an example of execution

• Perceptron learning rule convergence theorem
– Informal: any problem that can be represented by a 

perceptron can be learned by the learning rule

– Theorem: If there is a      such that                                for 

all P training sample patterns                    , then for any 

start weight vector       , the perceptron learning rule will 

converge to a weight vector such that                 

for all p.  ( and may not be the 

same.)

– Proof: reading for grad students (pp. 77-79
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Adaline

• By Widrow and Hoff (1960) 

– Adaptive Linear Neuron for signal processing

– The same architecture of our simple network

– Learning method: delta rule (another way of error driven), 
also called Widrow-Hoff learning rule

– The delta: t – y_in

• NOT t – y because y = f( y_in ) is not differentiable

– Learning algorithm: same as Perceptron learning except in  
Step 5:

b := b + α ∗ α ∗ (t – y_in)

wi := wi + α ∗ α ∗ xi * (t – y_in)



• Derivation of the delta rule
– Error for all P samples: mean square error 

• E is a function of W = {w1, ... wn}

– Learning takes gradient descent approach to reduce E by 
modify W

• the gradient of E:
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• How to apply the delta rule
– Method 1 (sequential mode): change wi after each 

training pattern by

– Method 2 (batch mode): change wi at the end of each 
epoch. Within an epoch, cumulate 
for every pattern (x(p), t(p))

– Method 2 is slower but may provide slightly better results 
(because Method 1 may be sensitive to the sample 
ordering)

• Notes:
– E monotonically decreases until the system reaches a state 

with (local) minimum E (a small change of any wi will 
cause E to increase).

– At a local minimum E state,                           , but E is not 
guaranteed to be zero 
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Summary of these simple networks

• Single layer nets have limited representation power 
(linear separability problem)

• Error drive seems a good way to train a net

• Multi-layer nets (or nets with non-linear hidden 
units) may overcome linear inseparability problem, 
learning methods for such nets are needed

• Threshold/step output functions hinders the effort to 
develop learning methods for multi-layered nets



Why hidden units must be non-linear?

• Multi-layer net with linear hidden layers is equivalent to a 
single layer net

– Because z1 and z2 are linear unit
z1 = a1* (x1*v11 + x2*v21) + b1
z1 = a2* (x1*v12 + x2*v22) + b2

– y_in = z1*w1 + z2*w2

= x1*u1 + x2*u2  + b1+b2   where

u1 = (a1*v11+ a2*v12)w1, u2 = (a1*v21 + a2*v22)*w2

y_in is still a linear combination of x1 and x2.

Y

z2

z1x1

x2

w1

w2

v11

v22

v12

v21

θ = 0


