
Introduction to
Neural Networks Computing

CMSC491N/691N, Spring 2001

Notations
units:

activation/output:

if is an input unit,

for other units ,

where f(.) is the activation function for

weights:

from unit i to unit j (other books use)

ji yx ,
ji YX ,

iX signalinput=ix

jY)_(jj inyfy =

jY

jiw
ijw

iX jYijw

bias: (a constant input)

threshold: (for units with step/threshold

activation function)

weight matrix: W={ }

i: row index; j: column index

jb

jθθ

ijw

0 5 2 () row vectors

3 0 4 ()

1 6 -1 ()

column vectors

vectors of weights:

weights come into unit j

weights go out of unit i
) (3,2,1 jjjj wwww L=•

)(3,2,1 iiii wwww L=•

•1w

•2w

•3w

1•w 2•w
3•w

1 2 3

2

1

5

3

4

6

-1

smallusuallyofscalethespecifies
ratelearning :

n)computatiovector(forinput)......,(
vectorputtarget)out(or training)......,(

vectorinputtraining).......(
}{

raininglearning/t)()(

,

21

2

2,1

ij

n

m

n

ij

ijijij

w

xxxx
tttt

ssss
wW

oldwnewww

∆

=
=
=

∆=∆
−=∆

αα
αα

Review of Matrix Operations

Vector: a sequence of elements (the order is important)

e.g., x=(2, 1) denotes a vector

length = sqrt(2*2+1*1)

orientation angle = a

x=(x1, x2, ……, xn), an n dimensional vector

a point on an n dimensional space

column vector: row vector





















=

8

5

2

1

x

a

Txy ==)8521(

xx TT =)(

X (2, 1)

transpose

norms of a vector: (magnitude)

vector operations:

i
ni

i
n
i

i
n
i

xxnormL

xxnormL

xxnormL

max

)(

1

2/12
122

111

≤≤∞∞

=

=

=

∑=

∑=

xy

x

x
x

yyyyx

y

y
y

xxxyx

nyx

xrrxrxrxrx

T

n

nii

n

i

n

n
T

T
n

•=

















==

















=•

=

Σ
=

MM
)...,(

)......,(

 dimension same of vectorscolumn are ,
product)dot(inner

vectorcolumn a :,scaler a :),......,(

2

1

21
1

2

1

21

21

Cross product:

defines another vector orthogonal to the plan

formed by x and y.

yx ×

the element on the ith row and jth column
a diagonal element
a weight in a weight matrix W

each row or column is a vector
jth column vector
ith row vector

nmji

mnmm

n

nm a
aaa

aaa
A ×× =














= }{

......

......

21

11211

M














==

•

•

••

•

•

m

nnm

i

j

a

a
aaA

a
a

M)......(

:
:

1

1x

:
:
:

ij

ii

ij

w
a
a

a column vector of dimension m is a matrix of mx1

transpose:

jth column becomes jth row

square matrix:

identity matrix:

















=×

mnnn

m

T

nm

aaa

aaa

A

......

......

21

12111

nnA ×



 =

=
















=
otherwise

jiif
aI

ji 0
1

1......00

0......10
0.....01

symmetric matrix: m = n

matrix operations:

The result is a row vector, each element of which is
an inner product of and a column vector

jiijii
T aaijoraaiorAA =∀=∀= •• ,,

)(),......(1 jin rarararA == ••

),......(

),......)(......(

1

11

n
TT

nmnm
T

axax

aaxxAx

••

••×

=

=

Tx
ja •

product of two matrices:

vector outer product:

jiijpmpnnm baCwhereCBA ••××× •==×

nmnnnm AIA ××× =×

()





















=



















=⋅

nmmm

n

n

m

i
T

yxyxyx

yxyxyx

yy

x

x

x

yx

......,,

,......,

......

21

12111

1

1

M
M

M

Calculus and Differential Equations

• , the derivative of , with respect to time

• System of differential equations

solution:

difficult to solve unless are simple

(t)ix&







=

=

)()(

)()(11

tftx

tftx

nn
&
M

&

ix t

))(),((1 txtx nL

)(tf i

• Multi-variable calculus:

partial derivative: gives the direction and speed of

change of y, with respect to

))(......),(),(()(21 txtxtxfty n=

)(

3

)(
2

2

)(
1

1

)(2

21

321

321

321

321

2

)cos(

)sin(

xxx

xxx

xxx

xxx

e
x

y

ex
x

y

ex
x

y

exxy

++−

++−

++−

++−

−=
∂

∂

−=
∂

∂

−=
∂

∂

++=

ix

the total derivative:

Gradient of f :

Chain-rule: y is a function of , is a function of t

T

n

txtx

txtxty

nf

nx

f

x

f

dt

df

)......
1

(

......
1

)()(

)()()(
1

&&

&&&

•∇=

∂

∂
+

∂

∂
==

)......,(
1 nx

f

x

f
f

∂

∂

∂

∂
=∇

))(......),(),(()(21 txtxtxfty n=

ixix

dynamic system:

– change of may potentially affect other x

– all continue to change (the system evolves)

– reaches equilibrium when

– stability/attraction: special equilibrium point

(minimal energy state)

– pattern of at a stable state often
represents a solution














=

=

)......,(

).....,(
1

1

11

)(

)(

nn

n

xxfn

xxf

tx

tx

&

&

M

ix
ix i ∀= 0&

)......,(1 nxx

ix

Chapter 2: Simple Neural Networks
for Pattern Classification

• General discussion

• Linear separability

• Hebb nets

• Perceptron

• Adaline

General discussion

• Pattern recognition

– Patterns: images, personal records, driving habits, etc.

– Represented as a vector of features (encoded as
integers or real numbers in NN)

– Pattern classification:

• Classify a pattern to one of the given classes

• Form pattern classes

– Pattern associative recall

• Using a pattern to recall a related pattern

• Pattern completion: using a partial pattern to recall the
whole pattern

• Pattern recovery: deals with noise, distortion, missing
information

• General architecture

Single layer

net input to Y:

bias b is treated as the weight from a special unit with
constant output 1.

threshold related to Y

output

classify into one of the two classes

∑
=

+=
n

i
ii wxbnet

1





<
≥

==
θθ
θθ

net
net

netfy
 if 1-
 if 1

)(

θθ

Y

xn

x1
1w

nw

1

b

)......,(1 nxx

• Decision region/boundary

n = 2, b != 0, θ = 0

is a line, called decision boundary, which partitions the
plane into two decision regions

If a point/pattern is in the positive region, then

, and the output is one (belongs to
class one)

Otherwise, , output –1 (belongs to
class two)

n = 2, b = 0, θ != 0 would result a similar partition

2

1

2

1
2

2211 or 0

w

b
x

w

w
x

wxwxb

−−=

=++

2x

1x

+

-

),(21 xx

02211 ≥++ wxwxb

02211 <++ wxwxb

– If n = 3 (three input units), then the decision
boundary is a two dimensional plane in a three
dimensional space

– In general, a decision boundary is a
n-1 dimensional hyper-plane in an n dimensional
space, which partition the space into two decision
regions

– This simple network thus can classify a given pattern
into one of the two classes, provided one of these two
classes is entirely in one decision region (one side of
the decision boundary) and the other class is in
another region.

– The decision boundary is determined completely by
the weights W and the bias b (or threshold θθ).

0
1

=+ ∑ =

n

i ii wxb

Linear Separability Problem

• If two classes of patterns can be separated by a decision boundary,
represented by the linear equation

then they are said to be linearly separable. The simple network can
correctly classify any patterns.

• Decision boundary (i.e., W, b or θθ) of linearly separable classes can

be determined either by some learning procedures or by solving
linear equation systems based on representative patterns of each
classes

• If such a decision boundary does not exist, then the two classes are
said to be linearly inseparable.

• Linearly inseparable problems cannot be solved by the simple
network , more sophisticated architecture is needed.

0
1

=+ ∑ =

n

i ii wxb

• Examples of linearly separable classes

- Logical AND function

patterns (bipolar) decision boundary

x1 x2 y w1 = 1
-1 -1 -1 w2 = 1
-1 1 -1 b = -1
1 -1 -1 θ = 0
1 1 1 -1 + x1 + x2 = 0

- Logical OR function

patterns (bipolar) decision boundary

x1 x2 y w1 = 1
-1 -1 -1 w2 = 1
-1 1 1 b = 1
1 -1 1 θ = 0
1 1 1 1 + x1 + x2 = 0

x

oo

o

x: class I (y = 1)
o: class II (y = -1)

x

xo

x

x: class I (y = 1)
o: class II (y = -1)

• Examples of linearly inseparable classes

- Logical XOR (exclusive OR) function

patterns (bipolar) decision boundary

x1 x2 y
-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

No line can separate these two classes, as can be seen from
the fact that the following linear inequality system has no
solution

because we have b < 0 from

(1) + (4), and b >= 0 from

(2) + (3), which is a

contradiction

o

xo

x

x: class I (y = 1)
o: class II (y = -1)









<++
≥−+
≥+−
<−−

(4)

(3)

(2)

(1)

 0
 0
 0
 0

21

21

21

21

wwb
wwb
wwb
wwb

– XOR can be solved by a more complex network with
hidden units

Y

z2

z1x1

x2

2

2

2

2

-2

-2

θ = 1

θ = 0

(-1, -1) (-1, -1) -1
(-1, 1) (-1, 1) 1
(1, -1) (1, -1) 1
(1, 1) (1, 1) -1

Hebb Nets

• Hebb, in his influential book The organization of
Behavior (1949), claimed

– Behavior changes are primarily due to the changes of
synaptic strengths () between neurons I and j

– increases only when both I and j are “on”: the
Hebbian learning law

– In ANN, Hebbian law can be stated: increases
only if the outputs of both units and have the
same sign.

– In our simple network (one output and n input units)

ijw

ijw

ijw

ix jy

yxoldwnewww iijijij =−=∆)()(

yxoldwnewww iijijij)()(or, αα=−=∆

• Hebb net (supervised) learning algorithm (p.49)
Step 0. Initialization: b = 0, wi = 0, i = 1 to n
Step 1. For each of the training sample s:t do steps 2 -4

/* s is the input pattern, t the target output of the sample */

Step 2. xi := si, I = 1 to n /* set s to input units */

Step 3. y := t /* set y to the target */

Step 4. wi := wi + xi * y, i = 1 to n /* update weight */

b := b + xi * y /* update bias */

Notes: 1) α = 1, 2) each training sample is used only once.

• Examples: AND function
– Binary units (1, 0)

(x1, x2, 1) y=t w1 w2 b
(1, 1, 1) 1 1 1 1
(1, 0, 1) 0 1 1 1
(0, 1, 1) 0 1 1 1
(0, 0, 1) 0 1 1 1

An incorrect boundary:
1 + x1 + x2 = 0

Is learned after using
each sample once

bias unit

– Bipolar units (1, -1)

– It will fail to learn x1 ^ x2 ^ x3, even though the function is
linearly separable.

– Stronger learning methods are needed.

• Error driven: for each sample s:t, compute y from s
based on current W and b, then compare y and t

• Use training samples repeatedly, and each time only
change weights slightly (α << 1)

• Learning methods of Perceptron and Adaline are good
examples

(x1, x2, 1) y=t w1 w2 b
(1, 1, 1) 1 1 1 1
(1, -1, 1) -1 0 2 0
(-1, 1, 1) -1 1 1 -1
(-1, -1, 1) -1 2 2 -2

A correct boundary
-1 + x1 + x2 = 0

is successfully learned

Perceptrons

• By Rosenblatt (1962)

– For modeling visual perception (retina)

– Three layers of units: Sensory, Association, and Response

– Learning occurs only on weights from A units to R units
(weights from S units to A units are fixed).

– A single R unit receives inputs from n A units (same
architecture as our simple network)

– For a given training sample s:t, change weights only if the
computed output y is different from the target output t
(thus error driven)

• Perceptron learning algorithm (p.62)
Step 0. Initialization: b = 0, wi = 0, i = 1 to n
Step 1. While stop condition is false do steps 2-5
Step 2. For each of the training sample s:t do steps 3 -5
Step 3. xi := si, i = 1 to n
Step 4. compute y
Step 5. If y != t

wi := wi + α ∗ xi * t, i = 1 to n
b := b + α * t

Notes:
- Learning occurs only when a sample has y != t
- Two loops, a completion of the inner loop (each sample

is used once) is called an epoch
Stop condition
- When no weight is changed in the current epoch, or
- When pre-determined number of epochs is reached

Informal justification: Consider y = 1 and t = -1
– To move y toward t, w1should reduce net_y
– If xi = 1, xi * t < 0, need to reduce w1 (xi*w1 is reduced)
– If xi = -1, xi * t >0 need to increase w1 (xi*w1 is reduced)

See book (pp. 62-68) for an example of execution

• Perceptron learning rule convergence theorem
– Informal: any problem that can be represented by a

perceptron can be learned by the learning rule

– Theorem: If there is a such that for

all P training sample patterns , then for any

start weight vector , the perceptron learning rule will

converge to a weight vector such that

for all p. (and may not be the

same.)

– Proof: reading for grad students (pp. 77-79

1W)())((1 ptWpxf =⋅

)}(),({ ptpx
0W

*W

)())((* ptWpxf =⋅ 1W*W

Adaline

• By Widrow and Hoff (1960)

– Adaptive Linear Neuron for signal processing

– The same architecture of our simple network

– Learning method: delta rule (another way of error driven),
also called Widrow-Hoff learning rule

– The delta: t – y_in

• NOT t – y because y = f(y_in) is not differentiable

– Learning algorithm: same as Perceptron learning except in
Step 5:

b := b + α ∗ α ∗ (t – y_in)

wi := wi + α ∗ α ∗ xi * (t – y_in)

• Derivation of the delta rule
– Error for all P samples: mean square error

• E is a function of W = {w1, ... wn}

– Learning takes gradient descent approach to reduce E by
modify W

• the gradient of E:

•

•

• There for

∑
=

−=
P

p

pinypt
P

E
1

2))(_)((
1

)......,(
1 nw

E

w

E
E

∂

∂

∂

∂
=∇

i

i
w

E
w

∂

∂
−∝∆

i

P

p

P

p ii

xpinypt
P

pinypt
w

pinypt
Pw

E

]))(_)((
2

[

)(_)(())](_)((
2

[

1

1

∑

∑

=

=

−−=

−
∂

∂
−=

∂

∂

i

i
w

E
w

∂

∂
−∝∆ i

P

xpinypt
P

]))(_)((
2

[
1

∑ −=

• How to apply the delta rule
– Method 1 (sequential mode): change wi after each

training pattern by

– Method 2 (batch mode): change wi at the end of each
epoch. Within an epoch, cumulate
for every pattern (x(p), t(p))

– Method 2 is slower but may provide slightly better results
(because Method 1 may be sensitive to the sample
ordering)

• Notes:
– E monotonically decreases until the system reaches a state

with (local) minimum E (a small change of any wi will
cause E to increase).

– At a local minimum E state, , but E is not
guaranteed to be zero

ixpinypt))(_)((−αα

iwE i ∀=∂∂ 0/

ixpinypt))(_)((−αα

Summary of these simple networks

• Single layer nets have limited representation power
(linear separability problem)

• Error drive seems a good way to train a net

• Multi-layer nets (or nets with non-linear hidden
units) may overcome linear inseparability problem,
learning methods for such nets are needed

• Threshold/step output functions hinders the effort to
develop learning methods for multi-layered nets

Why hidden units must be non-linear?

• Multi-layer net with linear hidden layers is equivalent to a
single layer net

– Because z1 and z2 are linear unit
z1 = a1* (x1*v11 + x2*v21) + b1
z1 = a2* (x1*v12 + x2*v22) + b2

– y_in = z1*w1 + z2*w2

= x1*u1 + x2*u2 + b1+b2 where

u1 = (a1*v11+ a2*v12)w1, u2 = (a1*v21 + a2*v22)*w2

y_in is still a linear combination of x1 and x2.

Y

z2

z1x1

x2

w1

w2

v11

v22

v12

v21

θ = 0

