|ntroduction to
Neural Networks Computing

CM SC491N/691N, Spring 2001

Notations
units: X,,v.
activation/output: X;, Y;
If X, isaninput unit, X, = input signal

for other unitsy, ,y, = f(y_in))

where f(.) isthe activation function for vy

weights: W;
from unit 1 to unit | (other booksuse W ;;)
@ —\ @

Xi ! YJ'

bias: bj (a constant input)

threshold: q; (for units with step/threshold
activation function)

weight matrix: W={ W;}
I: row index; j: column index

1
4 N
0 S 2 | (Wi) row vectors
N 3 0 4 (W)
1 6 1) (Ws.)
W W, W, column vectors
vectors of weights:
W= (W Wy, e W) weights come into unit |

welghts go out of unit |
W; = (Wil, Wi, "'Wis) J J

Dw; = w;(new)- w;(old) learning/t raning
DW ={Dw, }

S=(S S, ceene S.) training input vector

t=(t,t, ... t) training (or target)out put vector
X = (Xg, Xy e, X.) Input vector(for computatio n)
a . learning rate

a specifies the scale of Dw; usualy small

Review of Matrix Operations

Vector: a sequence of elements (the order is important)

e.g., x=(2, 1) denotes a vector * Y (2. 1)

length = sgrt(2*2+1*1)

orientation angle = a ° >
x=(x1, X2, , Xn), an n dimensional vector

a point on an n dimensional space
column vector: row vector

38129 y=(1258)=x'
X = 25 . (") = X transpose

norms of avector: (magnitude)

_ o n
L, norm X .= aizl‘xi‘
_ 2 \1/2
L , norm x|, = (& .y X))
L, norm X, = max xi‘
I £

vector operations:

rx = (rx,, rX,,.....rx.)' r:ascaer, x:acolumn vector

Inner (dot) product
X,y are column vectors of same dimension n

aeyl &, 0

Cx
yZj—s,xy—(yl,yz Y)g 2=y

g =~ i=l -
eynﬂ exnﬂ

Cross product: X~y

defines another vector orthogonal to the plan
formed by x and y.

m2 llllll mn b

the element on the ith row and jth
a diagonal element

- aweight in aweight matrix W

each row or column is a vector
a_; - Jth column vector
a. . 1throw vector

column

a column vector of dimension m is a matrix of mx1

transpose:

jth column becomes jth row
square matrix: A .
identity matrix:

A0.... 06
|_901 0° _ _11 ifi=]
_g . 7T 10 otherwise

symmetric matrix: m=n
A=A',or"ia =a,6 0" ija =a,
matrix operations:

rA=(ra,...ra)= (raij)

I
—~~
X
[
X
3
—
—~~
Q
=
Q
S
~—r

X' A

m’” n

[
~~
X
_|
@
X
—
QD
S
~—

Theresult i1s arow vector, each element of which is
’ T
an inner product of x *and a column vector a

product of two matrices:

Calculus and Differential Equations

e X, (t), thederivative of X , with respect to time t
o System of differential equations

| Xl.(t) = f (1)

[

f x,(t)y = f, (1)
solution: (x,(t), -+ x (1))

difficult to solve unlessf . (t) are simple

e Multi-variable calculus: Y(t) = f (x,(t),X,(t),.....X, (1))
partial derivative: gives the direction and speed of
change of y, with respect to x.

- (Xp+ X+ X3)

. 2
y=98n(x,)+ X, +e

- cos(x,)- € (X + Xy + Xg)
X,

ﬂ_y = 2x, - o (Xt X2+ Xs)
X,

1y - (Xg+ X, + X3)

the total derivative: Y(t) = f (X (t), X, (t),......x_(1))

qf qf

V(1) = 4= gy Xa(O) 7 g X (1)

Gradient of f ;: Nf = (ﬂ, ﬂ)

X, X,
Chain-rule: yisafunction of X , X. isafunction of t

dynamic system:

— change of X, may potentially affect other x

— all X, continue to change (the system evolves)

— reaches equilibrium when x. = 0" |

— stability/attraction: special equilibrium point
(minimal energy state)

— pattern of (X, X) at astable state often
represents a solution

Chapter 2. Simple Neural Networks
for Pattern Classification

General discussion
_inear separability
Hebb nets
Perceptron
Adaline

General discussion

e Pattern recognition
— Patterns: images, personal records, driving habits, etc.

— Represented as a vector of features (encoded as
Integers or real numbersin NN)
— Pattern classification:
o Classify a pattern to one of the given classes
e Form pattern classes

— Pattern associative recall
e Using a pattern to recall arelated pattern

« Pattern completion: using a partial pattern to recall the
whole pattern

 Pattern recovery: deals with noise, distortion, missing
Information

General architecture
Single layer

net inputtoY: net =b+3 xw,

=1

bias b is treated as the weight from a special unit with
constant output 1.

thresholdq related to Y

_ i1l If net 3 q
output y—f(net)-%_1 if net <g

classify (xl, Xn) Into one of the two classes

>

Decision region/boundary
n=2,b!=0,q=0

b+ x,w, +x,w, =0 or -
W b

— 1
X, =- —=X, - — p

2
W W X

1
2

Isaline, called decision boundary, which partitions the
plane into two decision regions

2

If a point/pattern (X, X,) isin the positive region, then

b+ Xx,w, + X,w, 3 0, and the output is one (belongs to
class one)

Otherwise, b+ x,w, + x,w, <0 , output —1 (belongs to
class two)

n=2,b=0,q!=0would result asimilar partition

—If n = 3 (three input units), then the decision
boundary is atwo dimensional plane in athree
dimensional space

—In general, a decision boundary b+ § inzlxiwi =0 Isa
n-1 dimensional hyper-plane in an n dimensional
space, which partition the space into two decision
regions

— This simple network thus can classify a given pattern
Into one of the two classes, provided one of these two
classes is entirely in one decision region (one side of
the decision boundary) and the other classisin
another region.

— The decision boundary is determined completely by
the weights W and the bias b (or threshold q).

Linear Separability Problem

If two classes of patterns can be separated by a decision boundary,
represented by the linear equation
o N _
b+a _ xw, =0
then they are said to be linearly separable. The simple network can
correctly classify any patterns.

Decision boundary (i.e., W, b or q) of linearly separable classes can
be determined either by some learning procedures or by solving
linear equation systems based on representative patterns of each
classes

If such a decision boundary does not exist, then the two classes are
said to be linearly inseparable.

Linearly inseparable problems cannot be solved by the simple
network , more sophisticated architecture is needed.

« Examples of linearly separable classes

A
- Logical AND function o \\x

patterns (bipolar) decision boundary

| >
X1 X2 vy wl=1 \

-1 -1 -1 w2=1 o I

-1 1 -1 b=-1

L -1 -1 q=0 x: class| (y = 1)

1 1 1 -1+x1+x2=0 o: class Il (y = -1)
- Logical OR function A

X — X

patterns (bipolar) decision boundary\

X1 X2 vy wl=1 -
1 -1 -1 w2 =1 \

-1 1 1 b=1 0 > X
1 -1 q=0 \

1
1 1 1 1+x1+x2=0 X: class | (y = 1)
o: class |l (y =-1)

« Examples of linearly inseparable classes

- Logical XOR (exclusive OR) function %
patterns (bipolar) decision boundary |

x1 x2 vy
-1 -1 -1
-1 1 1
1 -1 1
1 1 -1

0) —1 X

x: class!| (y = 1)
o: class |l (y =-1)

No line can separate these two classes, as can be seen from
the fact that the following linear inequality system has no

solution

ib-w -w,<0 (1 because we have b < 0 from
Ib-w +w,30 (2 (1) + (4), and b >= 0 from
_:,b+ W, - W, 3 0O 3 (2) + (3), which is a
sb+w, +w,<0 (4 contradiction

— XOR can be solved by a more complex network with
hidden units q=1

Hebb Nets

 Hebb, in hisinfluential book The organization of

Behavior (1949), claimed

— Behavior changes are primarily due to the changes of

synaptic strengths (W) between neurons | and |
— W;; increases only when both | and j are “on”: the
Hebbian learning law

— In ANN, Hebbian law can be stated: Wij INCreases
only if the outputs of both units X, and Y; have the
same sign.

— In our simple network (one output and n input units)
Dw; = w; (new)- w;(old) = x;y
or, DW =w; (new)- w;(old) =a X;y

 Hebb net (supervised) learning algorithm (p.49)

Step 0. Initialization: b=0,wi =0,i=1ton
Step 1. For each of the training sample s:t do steps 2 -4
[* sistheinput pattern, t the target output of the sample */

Step 2. Xl :=sl,| =1ton /* set s to input units */

Step 3. y =t /* sety to the target */

Step 4. Wi :=wi +Xi *y,i=1ton /* update weight */
b:=b+xi*y /* update bias */

Notes: 1) a = 1, 2) each training sample is used only once.

 Examples: AND function
— Binary units (1, 0)

(X1, x2, 1) y=t wl w2 b _

(1, 1, 1) 1 1 1 1 An incorrect boundary:
(1, 0, 1) 0 1 1 1 1+x1+x2=0
0, 1, 1) 0 1 1 1 |s learned after using
(0, O, 0 1 1 1

1)'\ each sample once
bias unit

— Bipolar units (1, -1)

(x1, x2, 1) y
(1, 1, 1)
(1, -1, 1)
(-1, 1, 1)
(-1, -1, 1)

t

1 1]
PR
Nk OR S
NER NP S

m O RO

-2

A correct boundary
-1+x1+x2=0
Is successfully learned

— It will fail to learn x1 * x2 * x3, even though the function is

linearly separable.
— Stronger learning methods are needed.

e Error driven: for each sample s:t, computey from s
based on current W and b, then compare y and t

e Use training samples repeatedly, and each time only

change weights slightly (a << 1)

« Learning methods of Perceptron and Adaline are good

examples

Per ceptrons

By Rosenblatt (1962)
— For modeling visual perception (retina)
— Three layers of units: Sensory, Association, and Response

— Learning occurs only on weights from A units to R units
(weights from S unitsto A units are fixed).

— A single R unit receives inputs from n A units (same
architecture as our simple network)

— For agiven training sample s:t, change weights only if the
computed output y is different from the target output t
(thus error driven)

* Perceptron learning algorithm (p.62)

Step O. Initialization: b=0,wi =0,i =1ton

Step 1. While stop condition is false do steps 2-5

Step 2. For each of the training sample s:t do steps 3 -5

Step 3. Xl :=sl,i=1ton

Step 4. computey

Step 5. Ifyl=t
wi:=wi+a*xi*t,i=1ton
b:=b+a*t

Notes:

- Learning occurs only when asample hasy =t

- Two loops, a completion of the inner loop (each sample
IS used once) is called an epoch

Stop condition

- When no weight is changed in the current epoch, or

- When pre-determined number of epochs is reached

Informal justification: Considery =1 andt=-1

— To movey toward t, wlshould reduce net_y

— Ifxi=1,xi *t<0, need to reduce wl (xi*wl isreduced)
— If xi =-1, xi * t >0 need to increase wl (xi*wl isreduced)

See book (pp. 62-68) for an example of execution

» Perceptron learning rule convergence theorem

— Informal: any problem that can be represented by a
perceptron can be learned by the learning rule

— Theorem: If thereisaw *such that f (x(p) W ") = t(p)for
all P training sample patterns{ x(p), t(p)} , then for any
start weight vector W °, the perceptron learning rule will
converge to a weight vector W~ such that

f (x(p) W) =t(p) foralp. (W andy ! may not be the
same.)

— Proof: reading for grad students (pp. 77-79

Adaline

« By Widrow and Hoff (1960)

— Adaptive Linear Neuron for signal processing
— The same architecture of our simple network

— Learning method: delta rule (another way of error driven),
also called Widrow-Hoff learning rule

— Thedelta:t—y iIn
* NOT t—ybecausey =1f(y_ in)isnot differentiable

— Learning algorithm: same as Perceptron learning except in
Step S:
b:=b+a* (t—y_in)
Wi :=wi+a*Xxi*(t—y.n)

 Derivation of the deltarule
— Error for al P salF:anes: mean square error

£ :%é (t(p)- y_in(p))?

p=1
« Eisafunction of W = {w1l, ... wn}

— Learning takes gradient descent approach to reduce E by

modify W ME qE
e the gradient of E: NE = (—, —)
ME Tw, Tw,
« DW, g - —
Tw,
qE 2 o . T :
. =[—a (t(p)- y_in(p))] —((p)- y_in(p)
T[Wi P p=1 1-[Wi
2 o .
=-[—a {t(p)- y_in(p)Ix
P s
1E 2 o

« Therefor DW, p - — =[—g§ (t(p)- y_in(p)]x,
w, P

« How to apply the deltarule

— Method 1 (sequential mode): change wi after each
training pattern by a (t(p)- y_in(p))X,
— Method 2 (batch mode): change wi at the end of each

epoch. Within an epoch, cumulatea (t(p)- y_in(p))X.
for every pattern (x(p), t(p))

— Method 2 is slower but may provide slightly better results
(because Method 1 may be sensitive to the sample
ordering)

e Notes:

— E monotonically decreases until the system reaches a state
with (local) minimum E (a small change of any wi will
cause E to increase).

— At alocal minimum E state, qE [Iw, =0 " i, but E is not
guaranteed to be zero

Summary of these simple networks

Single layer nets have limited representation power
(linear separability problem)

Error drive seems a good way to train a net

Multi-layer nets (or nets with non-linear hidden
units) may overcome linear inseparability problem,
|earning methods for such nets are needed

Threshold/step output functions hinders the effort to
develop learning methods for multi-layered nets

Why hidden units must be non-linear ?

« Multi-layer net with linear hidden layers is equivalent to a
single layer net

— Because z1 and z2 are linear unit
z1l = al* (x1*v1l + x2*v2l) + bl
z1 = a2* (x1*v12 + x2*v22) + b2

—y in=2z1*wl + z2*w2
= x1*ul + x2*u2 + bl+b2 where
ul = (al*v1l+ a2*v12)wl, u2 = (al*v21 + a2*v22)*w2
y inisstill alinear combination of x1 and x2.

