
Integrating Redundancy Management and Real-time Services for Ultra
Reliable Control Systems

Mohamed F. Younis Billy He
Honeywell International Inc.

 Advanced Systems Technology Group
7000 Columbia Gateway Drive
 Columbia, MD 21046, USA

Abstract
Integration of multiple real-time control modules has
gained increased acceptance as a new trend in the
industry during the past few years. For example, the
avionics industry is embracing a new design approach
referred to as Integrated Modular Avionics (IMA). The
IMA approach encourages the use of general-purpose
basic components and sharing of common resources to
minimize the development and maintenance costs of
avionics. However, the integration complicates the design
and validation of these systems since sharing resources
makes the behavior of the integrated application hard to
predict and guarantee and therefore ensuring the
fulfillment of timing constraints and maintaining fault-
tolerance becomes a challenge. In this paper, we describe
our experience with integrating redundancy management
and real-time services in an IMA setup. The redundancy
management system (RMS) masks faults through voting on
the computation results from multiple redundant
computing nodes and ensures synchronization among
replicas. RMS is set to share the same CPU with real-time
applications managed by a real-time operating system
(RTOS). We discuss the issues related to that integration
and our approach for addressing them. We describe
validation efforts and summarize lessons learned.

1. Introduction
In recent years there has been a significant increase in the
use of computers in embedded real-time control systems.
Real-time applications such as factory automation, avionics
and remote sensing are distinguished by the fact that their
functional semantic is coupled with temporal correctness.
Not only the embedded computer needs to perform the right
control algorithm but it also needs to meet all the timing
constraints associated with that algorithm. Some of the
real-time applications are also safety-critical and require
high level of reliability and fault-tolerance to ensure
uninterrupted service that might risk the safety of the
system. Avionics systems and nuclear reactors are good
examples of such applications. Fault tolerance is usually
achieved in such applications by the use of redundant
components that are typically managed at the system level.
Integration of multiple real-time control modules has
recently gained momentum in the industry. For example,

the avionics industry is adopting a new design approach
called Integrated Modular Avionics (IMA). The IMA
approach encourages the use of general-purpose basic
components and sharing of common resources to reduce
development and maintenance costs of avionics. Resource
sharing gives the control unit many benefits, such as
reduced size and weight, and thus decreasing running costs
of aircraft and space vehicles.

The Integrated Hazard Avoidance System (IHAS) and
the Integrated Environmental Control System (IECS) are
examples of IMA projects at Honeywell. The IHAS system
integrates flight safety avionics such as Traffic Collision
Avoidance System (TCAS), Enhanced Ground Proximity
Warning System (EGPWS) and Weather Radar. The IECS
system controls the operating environment to ensure safe
use of the equipment on the aircraft and the comfort of
passengers. For example, the IECS system adjusts (by
cooling or heating) the operating temperature of hydraulic,
electrical and mechanical power devices and equipment,
de-ices and defogs windshield and controls cabin pressure
and passengers’ air-condition. The IHAS and IECS systems
achieve substantial reduction in the very expensive flight-
worthy hardware, in the weight and volume of avionics and
in power consumption. Such reduction lowers development
costs and increases the efficiency of aircraft operation.

However, the integration complicates the design and
validation of these systems since sharing resources makes
the behavior of the integrated application hard to predict
and guarantee, and therefore ensuring the fulfillment of
timing constraints and maintaining fault-tolerance becomes
a challenge. For safety-critical real-time applications, it is
necessary to be able to show, with a very high level of
assurance, that a problem or failure in one application can
be tolerated without disrupting the application. Thus, the
IMA approach inherently requires strong partitioning
among the different modules coexisting within the same
system. Strong partitioning calls for well-defined
boundaries among modules to ensure the continuity of
operation in the presence of partial failure [1]. Containing
effects of faults is crucial for the integrated environment to
guarantee that a faulty component may not cause other
components to fail and risk a total system failure.

In this paper, we describe our experience with
integrating redundancy management with real-time services
in an IMA setup. The redundancy management system

Fig

(RMS) masks faults through voting on the computation
results from multiple redundant computing nodes and
ensures synchronization among replicas. RMS is set to
share the same CPU with real-time applications managed
by a real-time operating system (RTOS). In the balance of
this section, we introduce the fault tolerant architecture and
its current implementation, integration issues and related
work. In section 2, we discuss our approach for addressing
the integration issues. We describe the implementation and
performance measurements in section 3. Section 4
concludes the paper and summarizes the lessons learned.

1.1 System Architecture
Our IMA system is based on the Multi-computer
Architecture for Fault-Tolerance (MAFT) [2], which is
designed to provide extremely reliable computation in real-
time control systems. The basic concept of MAFT, as
depicted in figure 1, is to mask faults through voting on the
computation results from multiple redundant computing
nodes. The Redundancy Management System (RMS) is to
detect, contain and tolerate the erroneous behavior resulting
of a hardware or software fault regardless of the malice
(benign or malicious), symmetry (symmetric or anti-
symmetric) and the duration (permanent, transient or
intermittent) of that fault. However, RMS does not cover
generic faults in the application and in RMS' development.
A mixed software and hardware implementation of RMS is
used on the NASA X-33 prototype of the Venture-Star
Reusable Launch Vehicle (RLV).

ex
(fo
ap
co
to
RM
sy
Sy
dis

connected communication network for all RMS units. Each
RMS has its own clock and the system synchronization is
achieved by exchanging the local time among all lanes and
correcting the local clock according to the cardinality of
clocks from all healthy RMS units. A distributed
agreement mechanism is used to prevent any single point of
failure and to protect the global system clock against any
type of faults including Byzantine types.
Voting: Every application function will periodically send
data to the associated RMS module via the direct
communication links. Every RMS module will then send
that data to all other RMS nodes through dedicated
communication links, called Cross Channel Data Link
(CCDL). After receiving all data copies, every RMS
module will perform voting and send back the voted data
values that will be used by the application for further
computation. The voted data is used to mask the error
generated by a faulty application node and allows
maintaining consistency between the AP nodes. In addition,
it assists in recovering from transient and intermittent faults
by replacing any corrupted application data with voted
values. Moreover, RMS votes on its internal state and error
reports to maintain a consistent system-wide view of the
system's health status.
Fault Tolerance: The ultimate goal of RMS is to prevent a
system failure during a critical mission as a result of some
error manifested by a fault on one node. The level of
redundancy determines the fault-tolerance capability of
RMS. A minimum of four nodes is needed to tolerate one
Byzantine fault. By comparing the voted data values with
the data submitted by the node, RMS detects errors and
penalizes the faulty node. Nodes that exceed a certain
penalty threshold will be excluded from voting, however
voted data will continue to be send to the faulty node. Since
all nodes will be using the voted data values, errors can be
tolerated and the faulty node will get a chance to recover by
using the voted data and hopefully can be re-admitted.

Current implementation of RMS consists of two parts:
Fault-Tolerant Executive (FTE) implemented in software,
and Cross-Channel Data Link (CCDL) for communication
of voted data across multiple boards, implemented in
hardware. On the X-33 vehicle, RMS is to run on a devoted
CPU board and the application software is assigned to
different CPU boards. Data are to be provided by the
application software to the RMS for voting.
RMS RMS RMSRMS

Application
Processor

Application
Processor

Application
Processor

Application
Processor

I/O I/OI/OI/O

Fault Tolerant

Bus

Cross Channel Data Link

ure 1: RMS coordinates among replicas in MAFT architecture
Using this architecture, every application module is
ecuted multiple times simultaneously on different nodes
ur in this example). RMS basically masks faults in the
plication data by excluding erroneous data and
nsistently providing correct data, from system-wide view,
replicated applications allowing faulty nodes to recover.
S is available to the application processor (AP) as

stem service. The following are the main RMS functions:
stem Synchronization: The computing platform is a
tributed, loosely synchronized system with a fully

Communication between the application boards and RMS
is via VME backplane bus. The cross-channel
communication links are electrically isolated so that one
RMS node would not be affected with electrical faults on
the another node. The use of dedicated board for RMS
provides physical isolation from software application
modules and thus ensures strong partitioning, yet in a costly
way. With the increasing processing capacity of recent
microprocessors and cost advantage of the integration,
RMS is thought to share the processor and memory with the
application module as we discuss next.

1.2 Integration Issues
The standalone RMS configuration can be expensive and
inefficient, especially with the increased processing
capabilities of modern technologies. An integration setup,
figure 2, is thought in order to enhance resource utilization
and reduce size and weight of RMS-based systems. The
integration mainly avoids dedication of hardware resources
for RMS. Instead, RMS would share these resources with
the applications. Resource sharing between RMS and
application software module challenges the system
partitioning and triggers the following additional design
issues related to system dependability and performance:

Application 3

Application 2

Application 1

Redundancy Management
System CCDL

Ba
ck

pl
an

e

App 1 App 3App 2

FTE CCDL

4 boards in a chassis

Only 1 board

Application
software shares
the same CPU
with RMS

Inter-board
interaction
becomes inter-
task comm.

Figure 2: The integrated environment encourages resources
sharing among RMS and application modules

Interaction with Application Software Environment:
Running on RMS on a dedicated board provides RMS with
autonomy of control of the hardware and prevents any
conflict in permission to privilege operations. In the
integrated setup privileged hardware access has to be
assigned to either RMS or the real-time operating system,
on which the development of application tasks is based.
Avoiding Thrashing Conditions: The present
implementation of RMS is focused on functionality more
than performance and throughput. By providing abundant
resource capacities it is easier to validate RMS
implementation compared to the integrated setup. In the
integrated environment RMS shares the CPU with
applications and thus CPU utilization is an issue. Therefore
it is important to optimize RMS implementation in order to
minimize the frequency of context switching and thus
prevent any potential CPU thrashing.
Spatial Partitioning: Applications software would be
allowed to share the same memory with the FTE
component of RMS. Boundaries need to be enforced among
the application modules and the FTE to ensure that the FTE
memory space is protected against any application fault.
Temporal Partitioning: The CPU is interleaved among the
FTE and application tasks. A robust scheduling mechanism
needs to be deployed to protect the FTE shares of the CPU
from application overrun or potential blocking conditions.
Clock synchronization: Since RMS is responsible for clock
synchronization among replicas, task scheduling and other

operating system services has to be aware of any potential
clock adjustment. For example the application software
environment has to use RMS reference clock to ensure
consistency of time among the application and RMS tasks.
Handling of Voting Data: Application tasks submit data to
RMS for voting and receive back reliable voted data
consistent with other replicas in the system. In X-33 RMS
implementation communication with RMS is possible only
over a backplane bus. In the integrated environment, the
application tasks and RMS reside on the same board and
thus communication between them is local using typical
inter-task communication (ITC) primitives. However, the
integration would demand a reliable ITC mechanism that
avoids blocking the progress of the FTE because of any
application task.

In addition to the above technical issues, the
integration approach has to have limited or even no impact
on legacy RMS-based applications and their runtime
environment. For example, it is not desirable to require
changing the nature or the provider of real-time services to
accommodate RMS in the integrated setup because it would
necessitate a large scale revalidation for the application
code, an effort that is very expensive in ultra reliable
systems such as avionics. On the other hand it is imperative
to minimize the changes to be made to RMS in order to
limit the scope of testing and validation. Our approach for
addressing the above issues is discussed in section 2.
Prototype implementation and performance measurements
are described in section 3.

1.3 Related Work
Many fault tolerant architectures have been developed since
the early use of digital computers. The design approach
varies based on the dependability and fault coverage
requirements. A Historical perspective of the evolution of
the fault tolerant architecture can be found in [3].
Architectures for mission-critical real-time applications
were the focus of multiple research efforts, such as MARS
[4], SIFT [5], MAFT [2], FTMP [6]. Most of these work
address methodology and interface for the fault tolerance
services, rather than integration issues with the application.

The Airplane Information Management System
(AIMS) on the Boeing 777 commercial airplane is among
the few examples of IMA based systems [7]. Although, the
AIMS and other currently used IMA setup offer strong
partitioning, they use special hardware and software
environment and thus most of the integration issues we
outlined were not faced.

2. Integration Approach
Multiple constraints had to be considered when addressing
the integration issues mentioned in section 1. While it is
expected to make changes to the implementation of RMS to
fit the integrated environment, it is not acceptable to
introduce new requirements or mandate the addition of new

A p p lic a t io n T a s k sR M S R M S

M in o r F r a m e

T a s k n

T a s k 3

T a s k 2

T a s k 1

R M S

R e a l-T im e O p e ra t in g S y s te m

Figure 3: Integrated software environment

features to the application software environment. Most of
the application tasks are generally either developed using
commercially available tools that are radically expensive to
modify, or supplied by third party vendors who might not
agree on adding new features. In addition it is desirable to
minimize the scope of the changes made to RMS in order to
limit the cost of revalidation. The following subsections
describe how the integration issues were handled.

2.1 Software Architecture
A real-time operating system (RTOS) is typically used to
schedule and manage application tasks. The RTOS has
privileged access to hardware resources and all application-
level tasks run in a non-privileged mode. On the other hand
autonomous implementation of RMS on a dedicated board
provides RMS with direct access and exclusive control of
the hardware and thus prevents any conflict in permission
to privilege operations. In the integrated setup privileged
hardware access has to be assigned to either RMS or the
RTOS, on which development of application tasks is based.

Interaction with Application Software Environment:
Allowing RMS to maintain the privilege status requires
RMS to manage application tasks and to provide RTOS
typical services. Augmenting RMS features to act as a
RTOS would complicate RMS design beyond acceptable
level specially when considering legacy applications.
Requiring particular real-time services to be provided by
RMS would be viewed by application developer as a
constraint that limits the usability of RMS, specially as the
industry is moving away from proprietary software
environments. In addition it is not cost-effective to compete
with commercially available real-time operating systems.

Our approach, as depicted in figure 3, keeps the RTOS
in the supervisor mode and runs the fault-tolerant executive
of RMS as a service (daemon) task under the RTOS'
control. Such approach would enable the integration of
RMS with wide variety of real-time operating systems. The
FTE can be defined as a system task if allowed by the
RTOS or as a high priority user-level task. If the FTE is to
be integrated as a high priority user-level task, it is very
important to ensure that the FTE gets a priority higher than
any other task. Since an application task can cause a
priority inversion when it blocks while locking a shared
device or data needed by a higher-priority task [8], the
RTOS typically apply priority inherence protocol and
temporarily elevate the priority of an application task. It is
essential to ensure that no other task will compete with the
FTE when it must run or preempt its execution.

This approach requires RMS to rely on the RTOS for
the handling of the CCDL-related interrupts used to
schedule internal RMS activities, and thus might delay the
FTE invocation with the worst-case interrupt latency for
that particular RTOS. Therefore, the FTE reactivation has
to consider the worst-case interrupt latency. In order ensure

the FTE would be scheduled correctly, a timer has been
added to the CCDL to track the idle duration between
consecutive FTE operations. By programming the timer
appropriately it is possible to ensure the activation of the
FTE while accommodating for any RTOS latency in
responding to the interrupt. The FTE code has been
slightly modified to allow for a short duration of idle time
in case of early activation.

Generally the use of interrupt in safety-critical hard
real-time systems is totally avoided since it can jeopardize
the system predictability. Typically the RTOS in such
systems masks all hardware interrupts other than a clock-
tick timer it use for tracking time for application tasks.
Since it is not practical to stop the RTOS, specially a
commercial one, from using the clock-tick timer during the
FTE execution, the worst-case execution for clock-tick
handling has to be considered while allocating time for the
FTE. However it is not possible to allow clock-tick
interrupts to take place while RMS is performing the clock
synchronization among the replicas. Therefore, the non-
interruptible portion of the RMS clock synchronizer
module is extracted and invoked from the interrupt service
routine to ensure that the clock-tick timer will not interrupt
it. In our implementation, as described in section 3, we
found that the CCDL-timer interrupt service routine takes
less execution time than the worst-case interrupt latency of
VxWorks and thus should not negatively impact the
application timeliness.

Because in the federated setup RMS and application
tasks communicate over an external communication device,
buffering and communication delays limited the voting
throughput. The integrated approach facilitates the
communication of voted data between RMS and the
application tasks. RTOS' inter-task communication
primitives are to be used as later explained.

Avoiding Thrashing Conditions: In the stand-alone
implementation, RMS has exclusive access to resources and
thus correctness of the operation was the main focus while
resource utilization, response time and throughput were

secondary issues. In the integrated environment RMS
shares the CPU with applications and thus RMS' profile for
CPU usage is an issue. Since using the CPU too often for
short duration leads to excessive context switching and thus
causing thrashing, it is important to optimize RMS'
implementation by re-organizing its activities in order to
increase the width of the periods in which RMS is idle and
the application tasks seize the CPU.

After investigating the FTE operation, activities were
classified into time-critical and flexible activities. For
example, the fault-tolerant clock synchronization is time-
critical and has to be performed at a specific slot in the
frame to ensure that the system stays within the allowed
clock jitter. Error logging and data voting are flexible as
long as the application tasks do not miss their deadlines.
Flexible activities were consolidated with time critical
activities so that RMS does not have to run for many time-
slots within the frame. In addition the integration allowed
the elimination of double buffering the voted data since
communication between RMS and application tasks is
local. Section 3 reports the performance measurements.

2.2 Ensuring Strong Parti tioning
In a federated RMS-application setup strong partitioning
comes natural, although at a high cost. When RMS shares
the same resources with the applications the system can be
prone to wide failure if a task overruns its resource quota.
Memory, CPU and CCDL are the only resources RMS use.
The CCDL is designed to be memory-mapped and can be
viewed as part of the RMS space. Therefore it is sufficient
to enforce spatial and temporal partitioning in order to
ensure the protection of RMS in the integrated setup.

Spatial Partitioning: Since applications code would be
allowed to share the same memory with the FTE
component of RMS, boundaries need to be enforced among
the software modules and the FTE modules to ensure that
the FTE memory space is protected against any software
fault in the application software. Our approach relies on the
memory management unit, commonly available on modern
processors, to enforce memory partitions and protect the
FTE space from faulty access by the application tasks.

To support the exchange of voting data between RMS
and the application tasks special shared memory areas are
to be allocated for the FTE. For each application task an
outgoing buffer will be allocated in the task's address space
with read-only access to other tasks including the FTE. In
addition the FTE designates a per-task buffer for voted data
in a shared memory area readable to the particular task. A
lock-free approach is used to synchronize the execution of
the FTE and application tasks, as later discussed.

Temporal Partitioning: Since the CPU is interleaved among
the FTE and application tasks, a robust scheduling
mechanism needs to be deployed to protect the FTE shares

of the CPU from application overrun or potential blocking
conditions. A timer is added to the CCDL to generate
interrupts to the CPU urging the need to preempt the
running application task and resume of RMS activities.
Once the FTE finished the scheduled work it reprogram the
timer and block waiting for a semaphore. The interrupt
service routine would give the semaphore making the FTE
ready to resume. Since most RTOS invokes the scheduler
after serving an interrupt, assigning a high priority to the
FTE would ensure on-time resumption. It should be noted
that the strategy and algorithm for scheduling RMS and the
application task is not discussed in this paper and the reader
is referred to [9] for detailed the scheduling approach.

2.3 RMS-Application Synchronization
Data voting and clock synchronization among the replicas,
are two of the main services RMS provides. Both services
impact the scheduling of application tasks. Application
tasks might block for the availability of the voted data. In
addition RMS can introduce adjustments to the clock that
can affect application-level events. Integrating RMS with
the application introduces new issues related to scheduling
tasks and the RTOS management of time, as we explain.

Clock synchronization: RMS performs frame-based clock
synchronization among the replica [10]. Current clock
values are exchanged and voted on. Each node adjusts
either increments or decrements, its own clock to the voted
clock in order to stay in sync with other replicas. Since
RMS is responsible for clock synchronization among
replicas, task scheduling and other operating system
services has to be aware of any potential clock adjustment.
Having different views of the frame boundaries would
disturb the scheduling of RMS activities and hinders RMS'
ability in maintaining clock synchrony. Therefore the
software environment has to use RMS reference clock to
ensure consistency of time between RMS and application.

Given that RMS does not run in privileged mode, the
RTOS has to be informed about the adjustment in order to
update the appropriate on-board hardware timer. Involving
the RTOS in system's time adjustment complicates the
integration and makes it more RTOS-dependent. Instead a
64-bit timer is added to the CCDL logic and used to derive
the application scheduler. Because the timer is on the
CCDL, it uses adjusted voted clock. By manipulating the
RMS-application schedule in the CCDL-timer interrupt
service routine, it is possible to enforce frame boundaries
and ensure temporal partitioning between RMS and
application tasks. In addition this approach can be easily
applied to different real-time operating systems. The
CCDL-timer is designed as memory-mapped device. At
integration the address of the CCDL-timer is to be mapped
for read-only access to all application tasks so that they can
use RMS time as a reference. It is worth noting that the
CCDL logic is implemented on a field programmable gate

array (FPGA) and thus introducing the timer did not require
any changes to the CCDL schematics and layout.

Handling of Voting Data: Application tasks submit data to
RMS for voting and receive back reliable voted data
consistent with other replicas in the system. In autonomous
RMS implementation communication with RMS is possible
only over a bus and requires the data to be buffered twice at
both ends. In the integrated environment, application tasks
and RMS reside on the same board and thus they can
interact locally using inter-task communication (ITC)
primitives. While the integration provides an opportunity to
optimize the voting performance, it can couple RMS with
the application tasks and might require the revalidation of
RMS when the application tasks are modified. Therefore,
the integration would demand a reliable inter-task
communication mechanism that avoids blocking the
progress of the FTE because of any application task and
makes the interface independent from ITC management.

Exchange of voting data between RMS and the
application tasks would follow a protocol that never locks
the FTE [11]. Each task that would submit data for voting
has to request a shared memory area and demand the RTOS
to make it readable to the FTE. A lock-free protocol is used
to ensure that the FTE would be temporarily protected and
would not block because of an application task. Avoidance
of blocking the FTE ensures that RMS will continually
provide its service on time even if some application tasks
overrun. A task submitting data for voting will insert a
time-stamp (T1) at the beginning of the data and another
time-stamp (T2) at the end of the data. The time-stamp is
simply the current frame number as read from the reference
CCDL-timer. Given that the minor frame size is extremely
larger than any clock adjustment made by RMS and that the
64-bit CCDL-timer will not reset to zero for millions of
years, the time-stamp T2 will always be larger than or equal
the time-stamp T1. Therefore in a race free condition if
RMS read the data from the end to the beginning it will
always find T2 ≥ T1. If RMS access that data before the
task finishes writing it, T2 will be less than T1 and RMS
will ignore that data. The correctness of the semantics of
such protocol is proved in [11]. Given such lock free
mechanism the FTE has to check all tasks' voting data
areas. In order to avoid voting on the same data multiple
time in case the task is running at a slow rate, RMS would
maintain the value of the time-stamp T2 of the most recent
data voted for a particular shared area. In order for RMS to
vote on a particular data, the value of the time-stamp T2
stored in the corresponding shared memory has to exceed
the recent value that RMS has served.

On the other hand, the FTE would define a per-task
shared data area, to which the RTOS will give the particular
task read access. The FTE will include the voted data into
that area for task to read. After a task submits some data for
voting it can block for a semaphore (voted_data_ready),
which the FTE gives upon completion of data voting. The

application developer might decide to submit data for
voting in batches so that the task does not have to block for
long time. In this case multiple shared area per task will be
used both by the task and the FTE. It should be noted that
the FTE interface requires the size and format of the data to
be defined at initialization time and to stay unchanged
during the system operation.

3. Implementation Validation
To validate the integration approach a prototype has been
built using commercially available components, as shown
in figure 4. The prototype includes 3 VME backplanes that
host six (two per backplane) PowerPC� 80 MHz processor
modules. The software environment includes VxWorks�, a
real-time operating system from WindRiver Systems Inc.,
and some of the application tasks from the X-33 vehicle
management system. A version of RMS with the suggested
changes has integrated within VxWorks.
Primar
Power
Supply

Power
Rails

V
M
E

1

Application processor #1 + RMS

Application processor #2 + RMS

V
M
E

2

Application processor #1 + RMS

Application processor #2 + RMS

V
M
E

3

Application processor #1 + RMS

Application processor #2 + RMS

RMS-CCDL

2-3 Slot
VME

Backplane

 Figure 4: The Architecture for the Validation Prototype
A profiling tool called WindView�, supplied by
WindRiver Inc., was used to monitor the performance of the
integrated setup. This tool enabled us to mark certain
points in the source code as software events. As the test
application was running on the target modules, each one of
these events was time stamped with a resolution of 1
microsecond, and the readings were saved in a RAM file.
The readings were later downloaded off-line to the host
computer for analysis. The instrumentation of each event
was associated with a 5-microsecond overhead that was
taken into consideration while interpreting the results.
Highly critical operations were not instrumented to avoid
intrusion, instead time-stamps were taken before and after
the operations. Three sets of voting data were considered,
with the third set being the largest. Tables 1 and 2
summarize the time measurements for RMS activities in the
stand-alone and integrated setup, respectively.

The integration allowed local communication between
RMS and application tasks and thus enabled the removal of
the data collection portion, which accounts for about 30%-
60% of RMS execution time depending on the data size
(large sizes usually take less bus transfer time per byte). In
addition grouping multiple activities saved on the execution
time, mainly due context switching. For example grouping
the creation of error reports and the clearing the CCDL
buffers saved about 35 µs, which represent about 15%
reduction of the combined execution time of both actions. It
should be noted that some activities were not affected.

Table 1: Performance of stand-alone RMS configuration

RMS activities Data
set #1

Data
set #2

Data
set #3

Frame Boundary Action 106 105 103
Clock Sync End Action 235 229 235
Application Synchronization 294 378 478
Error transmission & voting 241 242 243
Data collection & Transmission 2504 2537 2565
Data Voting 321 576 818
Create Error Report Action 159 156 157
Clear CCDL Action 63 62 61
Clock Sync Start Action 68 68 65
Total Exec Time in µµµµs 3991 4353 4725

Table 2: RMS performance in the integrated setup

Combined RMS activities Data
set #1

Data
set #2

Data
set #3

Frame Boundary Action 107 103 104
Clock Sync End Action 235 229 235
App. synchronization, data
transmission & Data Voting 1315 1950 2539

Error Report & Clear CCDL 186 184 189
Clock Sync Start Action 66 66 66
Total Exec Time in µµµµs 1909 2532 3133

4. Conclusion
Although integration of safety-critical control has
significant economic advantages, it raises many technical
issues especially with redundancy management. In this
paper we described an approach to combine real-time
services with redundancy management for ultra-reliable
systems. The integration enhanced resource utilization and
increased voting throughput. The approach still maintains
strong partitioning among the integrated applications and
ensures the timeliness of critical redundancy management
services. While few changes were introduced to RMS
implementation, the impact on the application was minimal.

The approach is validated through prototype
implementation using commercially available components.
The implementation highlighted the need for better tools to
help the developed tackle the complexity of testing fault-
tolerant systems. In addition the internal design of the
RTOS is found to have high impact on the complexity of
the integration. RTOS' design centered on strong
partitioning simplifies system's integration and validation.

References
[1] J. Rushby, “Partitioning in Avionics Architecture:

Requirements, Mechanisms and Assurance,” Technical
Report CR-1999-209347, NASA, 1999.

[2] R. Kieckhafer, et. al., “The MAFT Architecture for
Distributed Fault Tolerance,” IEEE Transactions on
Computers, Vol. 37, No. 4, pp. 398-405, April 1988.

[3] D. Siewiorek, "Architecture of Fault-Tolerant
Computers: A Historical Perspective", Proceedings of
the IEEE, Vol. 79, No. 12, December 1991.

[4] H. Kopetz, et. al. “Distributed fault-tolerant real-time
systems: The MARS Approach,” IEEE Micro, Vol. 9,
No.1, pp. 25-40, February 1989.

[5] J. Wensley, et. al., “SIFT: Design and Analysis of a
Fault-Tolerant Computer for Aircraft Control”, Proc. of
the IEEE, Vol. 66, No. 10, pp. 1240-1255, Oct. 1978.

[6] A. Hopkins, Jr., T. Smith, III, J. Lala, "FTMP--A Highly
Reliable Fault-Tolerant Multiprocessor for Aircraft,"
Proc. of the IEEE, Vol. 66, pp. 1240-1255, Oct. 1978.

[7] M. Johnson, “Boeing 777 Airplane Information
Management System – Philosophy and Displays”, in the
Proceedings of the Royal Aeronautical Society’s
Advanced Avionics Conference on Aq330/A340 and the
Boeing 777 aircraft, London, UK, November 1993.

[8] L. Sha, R. Rajkumar, and J. P. Lehoczky, "Priority
inheritance protocols: An approach to real-time
synchronisation," IEEE Transactions on Computers,
pages 1175-1185, September 1990.

[9] Y.H. Lee, M. Younis, J. Zhou, “An Integrated
Scheduling Mechanism for Fault Tolerant Modular
Avionics Systems”, Proc. of the IEEE Aerospace
Conference, Aspen, Colorado, March 1998.

[10] P. Thambidurai, et al, "Clock synchronization in
MAFT," Proc. IEEE 19th International Symposium on
Fault-Tolerant Computing, 1989, pp 142-149.

[11] Maurice Herlihy. Wait-free synchronization. ACM
Transactions on Programming Languages and
Systems, Vol. 11, No. 1, pp. 124--149, January 1991.

	Introduction
	System Architecture
	Integration Issues
	Related Work

	Integration Approach
	Software Architecture
	Ensuring Strong Partitioning
	RMS-Application Synchronization

	Implementation Validation
	Conclusion

