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Abstract

Compiler optimization techniques have been applied
to facilitate development and performance tuning of
non-real-time systems. Unfortunately, regular com-
piler optimization can complicate the analysis and de-
stroy timing properties of real-time systems. This pa-
per discusses the di�culties of performing compiler
optimization in distributed real-time systems. An algo-
rithm is presented to apply machine-independent com-
piler optimization safely to distributed real-time sys-
tems. The algorithm uses resources' busy-idle pro-
�les to investigate e�ects of optimizing one process on
other processes. A restricted form of resource con-
tention is assumed to simplify the analysis.

1 Introduction

Real-time systems developers do not have a uniform
view of compiler optimization (and related techniques)
and transformation. Many prefer to disable optimiza-
tion, since, although these techniques have been ap-
plied successfully to non-real-time systems [9], they
can destroy safety guarantees and deadline satisfac-
tion in real-time systems. Others assume that pre-
schedulability optimization of individual processes for
improved average-case performance will not usually
have negative e�ects on feasibility.

However, real-time applications have been growing
substantially in size and complexity in recent years.
As has been seen even in the non-real-time commu-
nity, size and complexity make it ever more di�cult
to write hand-optimized code. On the other hand,
the scale of the application, the increasing use of local
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timing constraints, and the need to use more pow-
erful and less localized transformations make it ever
more likely that standard optimization, particularly if
designed to improve average-case performance with-
out attention to worst-case execution time (WCET),
may result in violations of timing constraints. Since
proper transformation can also sometimes transform
programs which may not meet constraints/deadlines,
or which result in timeouts, into deadline-satisfying
programs, safe optimization should be a priority in
real-time systems.

In addition, safe compiler optimization can bene-
�t even existing and feasible real-time programs. For
these programs, it is often preferable to reduce re-
source usage (time, space, or processors), especially
in multiuser or multiprogramming environments. Not
only do resources then become available to other sys-
tem tasks or users, or for monitoring or debugging,
but this may also make the programs more robust in
the face of faults or unpredictable system overload, as
suggested by the scheduling results of [1].

There has been an increase, during the past few
years, in the use of distributed computation in the im-
plementation of complex real-time applications, such
as patient monitoring, avionics and ight control.
Thus, transformations must consider other compli-
cated issues such as synchronization and shared re-
sources. Although performing safe compiler optimiza-
tion will not extend the deadline of a process, it can
a�ect the timing behavior of other processes. Con-
sider, for example, the code in Figure 1 which consists
of a loop followed by a call to a critical region crit(R).

Moving the invariant code \x := 5;" out of the
loop will make the loop faster. Thus the call to the
critical section (accessing shared resources) will be ex-
ecuted earlier. This may create a contention for a
shared resource, causing an unpredictable delay and
may cause, as a result, another process to miss its
deadline. Assume that before optimization a process
A will make a request to a resource R after other pro-
cesses, say, process B and C have been serviced, as in
Figure 2 (a). After optimization of process A, the call
is reached earlier, so process A will compete with B
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while (i <= 100) do x := 5;

x := 5; while (i <= 100) do

j := f(i+x); j := f(i+x);

i := i+1; i := i+1;

endwhile endwhile

call crit(R); call crit(R);

Figure 1: A real-time optimization

and C and may come ahead of process C in the re-
source queue, Figure 2 (b). Thus process C may wait
longer in the queue, causing it to miss its deadline.

C A B RRBC

(a) (b)

Figure 2: Optimization may disturb access order

In [5, 14], we show, in the absence of resource con-
tention and inter-process dependence, that it is possi-
ble to safely apply optimization and/or parallelization
to single real-time processes, improving WCET, or im-
proving average-case performance without degrading
WCET. In [14], we present a number of such rules,
and prove their safety. Related results by other re-
searchers are presented in [2, 7]. However, in the pres-
ence of resource contention, synchronization, or other
inter-process dependence, it is hard to guarantee that
an optimization in one process will not negatively af-
fect the other processes in the system. Access time
of resources can be easily disturbed, typically because
of a reordering of resource requests, and other pro-
cesses may anticipate extra delays. This motivates our
study of performing safe optimization transformations
for multiprocess real-time systems.

In the next section, we study the complexity of
the problem as well as some simpli�cation approaches.
Section 3 provides a summary of previous work. Sec-
tion 4 discusses our assumptions concerning con-
tention. Performing multiprocess analysis is illus-
trated in Section 5. The optimization algorithm is
discussed in Section 6, followed by a presentation of
simulated results. Finally, we conclude with a sum-
mary and future research.

2 Reducing Problem Complexity

Safety of compiler transformations in a communi-
cating multiprocess real-time systems requires two sets
of tests. First, e�ects internal to the process are to be
studied; the process deadline should not be extended
along the worst execution path. Second, resultant
changes in the execution behavior of other processes
must be analyzed. This analysis checks adherence of
processes to their critical timing constraints under all
possible execution orders compatible with the schedul-
ing discipline in use. Such analysis, commonly referred

to as schedulability analysis [10], must be applied even
in the absence of optimization.

However, �nding precise solutions considering con-
tention and branching is, in general, an NP-complete
problem, and it can add signi�cantly to the cost of
program compilation. The NP-completeness arises, in
particular, from the combinatorial explosion of pos-
sible execution orders in case of communicating pro-
cesses, especially when requests occur in conditionally
executed code. As a result, schedulability analysis
can either be (1) exact and e�cient analysis of sin-
gle process or multiple processes of simple form, or
with highly constrained interactions [7, 8], (2) highly
imprecise though e�cient analysis of multiple process
programs [4], or (3) nearly exact though highly in-
e�cient analysis of some multiple processes [10]. To
combat some sources of combinatorial explosion, there
has been work to reduce the cost of precise schedula-
bility analysis, such as [11, 12].

Detecting shared resource access time is a key dif-
�culty in multiprocess analyses of real-time systems.
The response time depends on the time of the call and
the resource queue size during the call. Every combi-
nation of possible queue orders for requests from var-
ious processes needs to be considered, which makes
the analysis exponential in the number of processes.
Simpli�cation techniques have been developed to per-
form that kind of analysis, either by restricting the
resource access model [11], or by assuming a smart
scheduler [3], as illustrated in Section 4.

Our approach uses the restricted resource con-
tention model of [11] to predict the response time of
resource requests. We rely on extracting busy-idle pro-
�les of shared resources during compilation. Consult-
ing the resource busy-idle pro�le before applying the
code transformations, we can predict e�ects of opti-
mizing a process on other communicating processes.

3 Previous Work

In addition to [3, 5, 11], related work includes work
in real-time optimization, and work on simplifying
schedulability analysis. We consider two categories of
transformations: (1) to improve overall performance
or enhance schedulability of processes, (2) to reduce
the complexity of schedulability analysis.

Code motion is used in [2] to re-organize the code
of a sequential process to meet timing requirements.
Forking new processes to speculatively execute blocks
of the code without destroying timeliness in case of
rollback is discussed in [14]. Basically, they only con-
sider single process transformations; none consider the
e�ect of transformations in a multitask system.

Busy-idle pro�les of resources are used in [3] to ex-
pose the potential for parallelism across tasks to the
scheduler. Here, we use busy-idle pro�les to check
the e�ects of transformations on other processes. We
try to speed up individual processes without a�ecting
others, rather than simply informing the scheduler.

A polynomial-time code transformation to simplify
schedulability analysis of real-time programs is pre-



sented in [11], where a restricted form of shared re-
source contention of processes is assumed to sim-
plify the analysis. E�ects of conditional branches on
complexity can be reduced if by inserting �xed de-
lays in one branch, it can be transformed to a time-
wise replica of the other branch. Conditional linking
has been shown to enable additional transformation
in [12].

4 Calculating Resource Access Time

As discussed in Section 2, a major di�culty in ap-
plying compiler optimization in multiprocess real-time
systems is the prediction of e�ects on shared resource
response time. Precise analysis is time-consuming be-
cause all combinations of shared resources requests
need to be considered for an accurate prediction of
worst-case queue sizes. For example, with N paral-
lel processes making mutually exclusive requests to
a shared resource, the resource queue size can range
from 0 to N � 1. However, not all processes will
make those requests at the same time. An accurate
queue size can be calculated considering all (possi-
bly exponential number) execution paths of the pro-
cesses. Analysis, similar to [4], and transformations,
like [11, 12], can be applied to decrease the number of
paths to be considered.

Our approach to calculate shared resource access
time requires the following two steps:

1. Extract for each process (as precisely as possible)
its access pro�le with respect to every shared re-
source in the system.

2. For every shared resource, combine access pro�les
of all processes to build the resource's busy-idle
pro�le.

For simplicity, assume that resources can be parti-
tioned, so each call uses exactly one of the partition
sets. Resources' processors are independent. More-
over, resource requests are not nested and neither can
be removed by optimization nor contain optimizable
code. Thus, the service time of a resource will not
change due to optimization. We assume a set of pe-
riodic processes which are assigned to di�erent pro-
cessors. Consequently, it is su�cient to study the be-
havior of the processes in the Least Common Multiple
of process periods. In the following subsections, we
discuss how to perform these two steps.

It is relatively simple to extend this to the case
in which resources are not partitioned, provided that
resources are still on independent processors and there
are still no nested calls, and that a call which uses
resources in multiple sets must acquire them all to be
served, and holds them all for the duration of the call.
However, each resource can be released after the call
at the end of its own busy interval.

Also, while in principle di�erent frame lengths for
processes can result in a need to optimize many dis-
tinct versions of a process, we expect this to seldom
be a serious problem in practice. Most often, only
a few such lengths occur in a given example, except

perhaps for a sequence of lengths in which each larger
length is a multiple of the previous, so there will typ-
ically be only a few versions of a process to consider.
Even when there many instances, some may be equiv-
alent relative to resource requests (by all processes) in
their lifetime, and others may occur in low-contention
settings, where optimization is both easy and less im-
portant.

4.1 Access Pro�les for Resources

To extract a processes' access pro�le for every re-
source, the compiler must perform timing analysis of
every process. This timing analysis provides a safe
static estimate of the execution time of programs. In
real-time systems, the important metric is the worst-
case execution time. Timing information is extracted
during semantic analysis. Various techniques, like
loop unwinding and call in-lining, may be used to ob-
tain estimates of the execution time of loops, recur-
sive calls, etc. Architecture-dependent analysis can
be used to tighten those estimates [6]. The output of
this step is a timing pro�le of requests being initiated
from each individual process, as in Figure 3. There
are many algorithms proposed in the literature which
can be used to build such pro�les, for example [3].

0 2 3

Process ‘A’ access profile of ‘R’

1 4

2 4

8 9

10 13

11 14

Resource maximum release time

0 1 7 8 9 10 16

0

0

Resource ‘R’ busy-idle profile

Process ‘C’ access profile of ‘R’

Process ‘B’ access profile of ‘R’

Figure 3: Access pro�les of a shared resource

4.2 The Resource Contention Model

Once we extract resource access pro�les per process,
the next step is to build the resource's busy-idle pro-
�le. Because, at compile-time, we have no clue about
the order of requests from various processes, one of two
assumptions can be used. We may assume a certain
service order, relying on the scheduler to respect that
assumption. Alternatively, we can be conservative, us-
ing a form of restricted resource contention. We adopt
the second approach, restricting shared resources' re-
sponse time, using the following assumptions:

1. Whenever there is a queue, all processes involved
(including the �rst, which claimed the resource
without waiting) are released at the same time.

2. There is a statically-known �xed release time (and
thus, a corresponding queue size) for every re-
source busy interval.



For example in Figure 3, combining the resource
R access pro�le for processes A, B, and C, will result
in the illustrated busy-idle pro�le for R. Notice the
corresponding release times for the various requests.
Even though process B makes the request at time 1,
the release time of all requests fromA, B, and C will be
at 7, reecting the sum of the service time of the three
requests. An algorithm for calculating the resource
access pro�le can be found in [15]. The algorithm
considers Least Common Multiple (LCM) of periods
for a set of periodic processes. If a process contains
unresolved resource requests on multiple branches, the
algorithm assumes that all of them may occur.

5 Multiprocess Safety Analysis

Opportunities for optimization within a single pro-
cess depend on whether we have access requests for
shared resources. In the absence of critical sections,
it is always safe to apply compiler optimization tech-
niques as long as we are not extending the execution
time along worst-case path. We call this property lo-
cal safety. However, in the presence of critical sections,
safety of the transformation depends on not worsening
shared resources' busy-idle pro�les. We refer to that
property by multiprocess safety. Thus, a transforma-
tion is safe if it is locally safe, and multiprocess safe.
Consider the example in Figure 1, in the absence of the
call crit(R), moving the loop invariant out of the loop
is always safe. However, it is not guaranteed that it is
safe in the presence of the call unless we prove that it
is multiprocess safe. Removal of unreachable code is
necessarily multiprocess safe, but essentially no other
transformation is always safe.

Our approach, as we illustrate, is to inject delay
statements in the code rather than actually optimize
during local analysis, to avoid changing the access
pro�les of the process with respect to each resources.
Then, we perform multiprocess analysis to defer and
eventually remove these delay statements without de-
stroying the multiprocess safety property.

The analysis of e�ects of a single process optimiza-
tion on other processes can be performed using shared
resources' busy-idle pro�les. In this section, we discuss
the multiprocess safety property of compiler transfor-
mations. We say a request lands in an idle interval if
its service does not overlap any busy interval; it lands
in a busy interval if it overlaps other services. Trans-
formations may a�ect the resource busy-idle pro�le by
moving a request:
1. out of an idle interval into an idle interval,
2. out of a busy interval into an idle interval,
3. from one busy interval into the same interval,
4. from one busy interval into another busy interval,
5. from an idle interval into a busy interval,
6. causing a merge of two busy intervals.

In cases 1 and 5, "idle interval" should be taken to
mean that the current request is the only one in the
current busy interval.

The �rst is generally safe while cases two and three
can be applied safely with care. Moving a request from
an idle interval to the same or di�erent idle interval

is always multiprocess safe. Such optimization will
not introduce contention. On the other hand, mov-
ing the request within the same busy interval will not
a�ect the release time, according to our model, of all
the processes sharing that busy interval unless the en-
tire interval will be shifted forward. Shifting the busy
interval forward will decrease the release time of all
requests in this busy interval, which may a�ect other
processes. In this situation, the amount of shift can
be compensated by inserting exactly a compensating
amount of delay past the resource request in each of
those processes. The second case is ideal. Moving a re-
quest from a busy interval into an idle one will not only
accelerate the execution of the optimized process, but
also will reduce shared resource contention and speed
up other processes competing for that resource, and
may actually split the busy interval. Consider the ex-
ample in Figure 4 (a), where the resource R busy-idle
pro�le has been produced by combining processes A,
B, C, and D access pro�les. Assume we successfully
have optimized the code of process A, so that its re-
quest at time 8 can be initiated at time 7. This will
split the busy interval (8,15) into two intervals (7,9)
and (10,15), as shown in Figure 4 (b). Now the re-
sponse time for the request from processes A and B

will be faster, due to reduced contention. However,
the decrement in the release time for the other pro-
cesses should (at least temporarily) be compensated
by inserting delay after the request. In our example, a
delay of 6 units should be inserted after the call made
by B, and one of 7 units after the call in A.

The fourth and �fth cases are not in general mul-
tiprocess safe. Moving a request from a busy interval
to another busy interval needs more careful analysis.
This case can increase the contention in the target
busy interval and extend the release time. On the
other hand, it may be bene�cial to reduce contention
in an interval as long as the increase in the release
time of the target busy interval is acceptable. In Fig-
ure 4 (a), if the request after optimization of process
A becomes at time 6, this will extend the release time
of the previous requests to 7 instead of 6, while en-
hancing the response time of the request from B at
time 8. Such cases require checking all the processes
that will su�er and gain from that optimization, which
may lead to exponential analysis. However, there are
obvious unsafe situations, such as linking two busy
intervals (case 6). For example in Figure 4 (a), mov-
ing the request of process C from time 10 to time 6
will link the two busy interval. There are nonethe-
less two safe special cases. First, if all the requests
in the target busy interval were originally in the same
source interval. Second, when all processes participat-
ing in the target busy interval have a delay past the
request large enough to accommodate the extension in
the release time. This subsumes the �rst case, since
shifting previous requests out of the current interval
creates such delays. On the other hand, moving a re-
quest from an idle interval into a busy interval will
introduce new contention while only one process will
gain. Thus, case 5 can be avoided or handled similar
to case 4. Sometimes, it may be highly desirable to



decrease the execution time of a process to meet its
timing constraints, as long as the other processes can
tolerate delays due to increased contention.

Applying multiprocess safe transformations may
split busy intervals. Moving one request from one of
these subintervals to another should not be considered
unsafe; even merging them again should be considered
safe. Therefore, the resource busy intervals should be
identi�ed. Splitting an interval by a safe multiprocess
creates two subintervals with the interval id. This al-
lows application of safe subcases of 4, 5, and 6.
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Figure 4: E�ects of optimization on response time

In the next section, we provide an algorithm to per-
form optimization without destroying either local or
multiprocess safety.

6 The Optimization Algorithm

Our algorithm for applying machine-independent
compiler optimization safely for distributed real-time
systems is composed of two phases. In the �rst phase,
we consider each individual process in isolation. Code
improvement transformations will be applied safely, in
the sense of [5], for individual processes. However, in
all cases gains in performance are compensated by in-
jecting delays to preserve the shared resource access
pro�le. These delay statements are the seeds for delay
propagation in the second phase.

For simplicity, we assume all timing constraints are
absolute max constraints, relative to the start of the
process frame. Timing constraints can be applied to
any statement. In our algorithm, we assume by de-
fault that precisely the set of shared resource requests
and the end of the process are observable. However,
the algorithm can be extended easily to accommodate
other timing constraints. Again, according to our re-
stricted resource contention model, whenever there is a

queue, all processes involved (including the �rst, which
claimed the resource without waiting) are released at
the same time. Multiprocess analysis is performed
in the second phase of the algorithm. Delay state-
ments are pushed toward the end of processes while
consulting the busy-idle pro�les of shared resources.
A cleanup step is performed at the end of this phase
to remove delays reaching the end of processes. How-
ever, we may need to perform di�erent delay shift and
removal optimizations in each instance of every pro-
cess in LCM. Successfully removed delays in the �rst
instance does not necessarily mean it is safe to remove
them in another, due to di�erences in contention for
resources. We may thus need to clone di�erent in-
stances of a process within LCM on the same proces-
sor. Alternatively, a set of directives can be gener-
ated to the scheduler to report the di�erence between
various instances. The algorithm outline is shown in
Figure 5. In the following subsections, we explain the
two phases of the algorithm in more details.

// Algorithm to perform compiler optimization
// Extract process's access pro�les for shared resources
For i = 1 To Number Processes

Extract shared resources access pro�les
EndFor
// Build shared resources busy-idle pro�les
For i = 1 To Number Resources

Combine access pro�les of Resourcei for all processes
EndFor
// Single Process Optimization
For i = 1 To Number Processes

Optimize Processi with injecting delays
EndFor
// Multiprocess safety analysis
apply algorithm Shift delay

// Single Process cloning if necessary
For i = 1 To Number Processes

clone the Processi if necessary on the same processor
or generate directives for the scheduler

EndFor

Figure 5: Safe compiler optimization algorithm

6.1 Single Process Optimization

Most optimization techniques can be viewed as re-
moving unnecessary code, moving code, or replacing
it by faster equivalent computations. The common
goal is to reduce the execution time of programs, and
optimization usually results in performance speedup.
For example, code invariant motion out of a loop re-
duces the loop body for faster execution. Common
subexpression elimination removes useless computa-
tion. So, we argue that optimization can be viewed as
a transformation to wasteful code (or delay), followed
by elimination of that redundancy. Our approach is
based on deferring elimination of delays until the mul-
tiprocess safety property is guaranteed.

In the algorithm (Figure 5), we require that any
time gained by the optimization be compensated by
injecting delays, so as not to a�ect process access pro-
�les with respect to shared resources. After the �rst



phase of the algorithm, the timing behavior and re-
source access of every optimized process remains the
same. The time, relative to the beginning of the pro-
cess, of all access requests for shared resources will not
change; consequently, busy-idle pro�les of resources
will not be a�ected by these transformations. In the
second phase, we try to move and eventually eliminate
injected delays in individual processes without a�ect-
ing the timeliness of the other processes.

This phase generates for every process an array of
points of interests and their times relative to the start.
Points of interest are locations in the code that con-
tains either a delay, a resource request, a split of a
conditional, a merge of a conditional, or the end of a
process. These points will be used by the second phase
to correctly propagate delays towards the end of the
process. We refer to this array as Test Points. Delay
points includes delays which have been introduced by
other transformations, for example [11]. Resource re-
quest points contain the resource busy interval id. We
extend the Test Points list by replicating the points
of the �rst period, a number of times equal to the num-
ber of instances of the process in LCM (LCM/period
size). The idea is to work on this array and clone the
process on the same processor, if necessary, at the end.

6.2 Multiprocess Analysis

delay K

delay K delay K

delay K delay K’

delay K’-Ldelay K-L

delay L =min(K,K’)

delay K

delay L

delay (K + L)

delay K

End

End

(2) (3) (4)(1)

Transformed

Original

Figure 6: Rules for delay propagation (easy cases)

In the multiprocess analysis phase, we try to defer
and then remove delays inserted in the code during
the �rst phase. The idea in this phase is to shift the
delay statement(s) in the process code towards the
end, using a greedy approach. Delays reaching the end
of the process may safely be removed. Shifting a delay
will be performed in steps. Every step we try to move
a delay beyond a call to a shared resource, so that
the call will be made earlier. We consult the resource
busy-idle pro�le(s), for the call. If it is multiprocess
safe to make the request earlier, we shift the delay. We
continue until the end of the process code, removing
delays reaching there. This operation is assisted by
the array Test Points generated by the �rst phase.

Delays can be propagated toward the end using the
rules in Figure 6: (1) In a split point (conditional),
delays can be propagated in both branches. (2) In a
merge, we propagate the minimum of the delays in the
branches. (3) Consecutive delays can be combined.
(4) Delays reaching the end can be safely removed.
Propagating a delay beyond a resource request needs
further multiprocess analysis, checking the busy-idle

pro�le of that resource. If a request appears in a con-
dition, delays that can be shifted successfully beyond
this condition need to be propagated to both branches.

The outline of algorithm of the multiprocess safety
check can be found in [15]. The idea is to set up
a simulated clock that can progress up to the LCM.
The clock advances to the earliest delay point in all
processes, and so on. This delay may be propagated if
it is safe. Note that we work only on the Test Points
generated from the �rst phase. A delay is shifted for-
ward by successfully applying the appropriate rule in
Figure 6. In case of a resource request, the algorithm
tries to remove as much delay as possible from before
the request to a compensating delay after the process.
The algorithm checks the safety of moving one delay
unit at a time by testing the impact on the busy-idle
pro�le of the resource. The test will need to recalcu-
late the busy-idle pro�le of the resource; the algorithm
relies on checking the location of the new request in
the current busy-idle pro�le of the resource. The new
request time and the service time are used to relate
the new location to the current pro�le and predict
the e�ect on the response time of that request as well
as other processes. The classi�cation of the e�ect on
the resource busy-idle pro�le, discussed in Section 5,
is performed according to the table in Figure 7 (some
subcases must be handled with care: case 3 if the start
of the interval shifts, case 4 and 5 when there are cov-
ering delays). Every resource busy interval will have
a ag indicating whether all requests in this interval
were originally located in a single resource busy in-
terval. This ag will be set to mixed when a request
from another interval (interval with di�erent id) is to
be added. Using such ag enables handling safe sub-
cases of 4, 5, and 6 when the target interval is com-
posed of requests previously moved from the current
interval. Ideal release time is the response time in
absence of contention. Note that in cases 4 and 5,
we are not performing an exhaustive analysis for all
processes anticipating extra release time due to con-
tention, which in fact may need exponential time; we
are only detecting simple subcases which are proven to
be safe by simple analysis. For a more detailed discus-
sion of the multiprocess safety analysis algorithm and
analysis of its complexity, the reader can refer to [15].

New Call Time Ideal Release Time Status Case

Same interval do not care Safe 1,3
Idle interval Same interval Safe 2,3
Di�erent interval Same interval Unsafe 6
Di�erent interval Idle interval Investigate 4,5

Figure 7: Multiprocess safety classi�cation

7 Experiments

The success of applying our algorithm is applica-
tion dependent. We may be able to remove all, some,
or in the worst case none of the delays. In the this
section, we examine the applicability of our algorithm



through a preliminary experiment based on simula-
tion. The simulation design is largely based on sam-
ples of real-time programs [12, 14]. Real-time pro-
cesses are assumed to run on multiple processors which
are connected by a backplane bus (e.g. avionics). The
experiment captures the success of our algorithm to
adapt performance gains achieved by single process
optimization. In addition, the experiment tries to
study the impact of the frequency of calls to shared
resources on the applicability of our approach. In this
section, the design of the simulation is explained and
the experiment results are discussed.

7.1 Design of Simulation

The experiment consists of the following steps:

(1) Generating Workloads: A program is a group of
statements selected out of the following; IF, WHILE,
ASSIGNMENT, CALL, BLOCKING CALL, READ,
and WRITE with frequencies 10%, 10%, 35%, 20%,
5%, 20% respectively. These frequencies are assigned
based on experience with real-time programs [12, 14].

Both READ and WRITE use bu�ers and are con-
sidered non-blocking. Calls can be blocking (BLOCK-
ING CALL) to access a shared resource, or non-
blocking (CALL). Loops and if statements are not
primitive statements, in the sense of containing more
than one statement. Loops have an upper bound on
the number of iterations, which will be used in the
next step to compute the worst-case execution time.

(2) Assigning Times to Statements: For a primitive
statement, we assume that the execution time is pro-
portional to the number of variables involved in that
statement. Consequently, the execution time of a
primitive statement can be computed by multiplying
the number of variables involved by a constant whose
value is based on a translation to the Intel 80386 in-
struction set.

(3) Calculation of WCET and deadline: The gener-
ated program control ow graph is analyzed to calcu-
late an upper bound on the execution time. For primi-
tive statements, WCET is the assigned execution time
at the previous step. For conditional statements, the
time of the longest path is used as WCET. The up-
per bound of the loop index is used to calculate the
WCET of the loop.

In this simulation, we assume that the deadline is
exactly WCET. Therefore, we use WCET of processes
to calculate the least common multiple (LCM). Next,
we inject delay statements and adjust the WCET.

(4) Injection of DELAY Statements: We conserva-
tively assume that single-process compiler optimiza-
tion can speed programs up by a percentage up to
10%. We randomly select a speedup percentage S in
the range [0,10]%. DELAY statements are inserted
with a total delay size S * WCET. These DELAY
statements are inserted randomly throughout the pro-
gram. The worst-case execution time, calculated in
the previous step, is adjusted by multiplication to the
a factor of (100 + S)%.

After delay insertion, the program control ow

graph is traversed and the array Test Points of points
of interest is generated, as discussed in Subsection 6.1.

(5) Constructing Resource Access Pro�les: As dis-
cussed in Section 4, to build the resource access pro�le
for each process, �rst we apply the analysis of [11] to
balance access to shared resources along branches of
conditionals. Loops need to be unrolled (which might
be done in the previous step while calculating WCET)
to calculate the call time to the shared resource.

(6) Building The Busy-Idle Pro�le: Combining re-
sources access pro�les of individual processes, we con-
struct busy-idle pro�le of shared resources. The re-
stricted resource contention model, described in Sub-
section 4.2, is used to compute the boundaries of busy
intervals. Note that a busy interval may contain sev-
eral calls from di�erent processes. The start time of
an interval is the start time of the earliest request and
release time is the sum of the start time and service
times of all requests in the that interval.

(7) Multiprocess Analysis: Finally, multiprocess anal-
ysis tries to push delays to the end of programs. Sim-
ulation results are described in the next subsection.

7.2 Evaluation

We run experiments with di�erent number of pro-
cesses and resources. The table in Figure 8 shows
the results sample runs including the number of pro-
cesses, the number of shared resources, the percent-
age of blocking calls in programs, the percentage of
injected delays relative to WCET, and the safe and
unsafe cases found during the multiprocess analysis.

As expected, the increase in the number of pro-
cesses a�ects the number of successful cases. The
busy intervals in resources pro�les become close to
each other. Unsafe subcases of 4 and 5 appear more
frequent. The table also indicates that the increase
in the number of shared resources accesses has the
same e�ect. Case 2 happens with the highest rate,
which indicates the e�ectiveness of our algorithm on
reducing contention in distributed real-time systems.
According to the algorithm, resource waiting time will
be added as a post-access delay which signi�cantly re-
duces WCET (Figures 9 and 10).

Figures 9 and 10 also show that the reduction in
WCET scales with the size of the injected delays (sin-
gle process compiler optimization). WCET decreases
with the increase in the number of requests. However,
the amount of the decrease diminishes and eventually
will saturate because the increase in resources requests
makes boundaries of the resource busy intervals closer
and consequently harder to shift delays. On the other
hand, small number of requests shrinks the e�ect on
WCET, since resources contention is less signi�cant.

8 Conclusion and Future Work

While single process optimization can be performed
safely, it may a�ect other processes by introducing
contention for shared resources. We have developed
an algorithm to apply code improvement optimiza-
tion safely in distributed real-time systems. The algo-



process resource request delay case 1 case 2 case 3 case 4+5 safe case 6 case 4+5 unsafe

10 5 3% 5% 57 79 21 10 167 1 67 68

10 5 5% 5% 92 166 29 48 335 3 67 70

10 5 8% 5% 174 288 47 72 581 5 480 485

20 10 10% 10% 194 150 43 75 462 80 452 532

Figure 8: Summary of safe and unsafe cases
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rithm relies on a model of resource use and on schedul-
ing with a restricted resource contention model. The
approach is based on applying machine-independent
compiler optimization in two phases. In the �rst
phase, we perform the transformations, compensating
the enhancement in performance with delays. In the
second phase, we try to remove delays when this can
be proved to be multiprocess safe. Simulated results
indicate that we can not only enhance the worst-case
execution time of distributed real-time processes, but
also reduce resource contention.

Currently, we are extending our resource model to
allow for resource optimization. We intend to inte-
grate our algorithm in a platform for complex real-
time systems. We plan to test the applicability of
compiler optimization techniques in real applications.
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