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Abstract

Achieving fault-tolerance using a primary-backup
approach involves overhead of recovery such as acti-
vating the backup and propagating execution states,
which may a�ect the timeliness properties of real-time
systems. We propose a semi-passive architecture for
fault-tolerance and show that speculative execution can
enhance overall performance and hence shorten the re-
covery time in the presence of failure. The Compiler
is used to detect speculative execution, to insert check-
points and to construct the updated messages. Simu-
lation results are reported to show the contribution of
speculative execution under the proposed architecture.

1 Introduction

There has been an increase, during the past few
years, in the use of distributed computer systems in
complex real-time applications, such as patient mon-
itoring, avionics, remote sensing and air-tra�c con-
trol. These real-time systems must function correctly
and meet timing constraints, which requires fault-
tolerance capabilities.

In real-time computing, fault-tolerance is usually
achieved with some sort of redundancy. Such redun-
dancy uses replicas to supply the same functionality in
case of failure. However, keeping consistency between
the replica and the primary service provider incurs
overhead. To achieve fault-tolerance, both the over-
head and recovery time should be predictable.

Tolerance to faults, typically, can be realized in four
steps [16]: error detection, diagnosis to recognize the
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if (exp) Propagate updates

code_block1 if (exp)

else code_block1

code_block2 else

code_block2

/* meets deadline /* may miss deadline by

on both branches */ the time of updates */

Figure 1: Checkpoints propagation can result in
missed deadlines.

causes, invocation of an appropriate recovery proce-
dure, (which may require monitoring the execution
progress.) and �nally, software recon�guration if nec-
essary. This submission focuses on enabling recovery
from hardware faults.

In distributed real-time systems, two schemes, pas-
sive and active replication, are commonly used to
replicate servers that fail independently. Active repli-
cation relies on voting algorithms to select the most
reliable responses from the servers [4, 18, 19]. This
scheme tends to have larger response time due to the
overhead of the voting algorithm. Passive replica-
tion [6, 7, 24], also known as primary-backup, relies
on one or more backup units. The primary server
propagates checkpoints (execution states) to the back-
ups. If the primary fails, one of the backups will take
over. The problem of this scheme is the high overhead
of propagating the state and rolling back computa-
tion (backward recovery). That overhead may lead to
misses of deadlines. Considering the example in Fig-
ure 1, assume that code block1 takes 20 units of time,
code block2 takes 10 units, and the updates propaga-
tion takes 2 units. The true branch is a member of
the worst-case execution path. If the exp is true, the
program may miss its deadline due to the propagation
of updates (2 units).

In [29], we use compile-time analysis to detect both
safe and pro�table speculative execution in real-time
systems. We rely on intensive static time analysis to



investigate the e�ect of rollback on the worst-case ex-
ecution. We developed compiler transformations rules
to fork processes to execute parts of the codes specula-
tively on a shadow replica. Initial values will be copied
to the shadow from the primary processor, as shown
in Figure 2. The shadow eventually will send back the
results of the computation which may be committed
or discarded by the primary. Using the backups in
the passive replica model as a shadow for the primary
server we can enhance the overall performance. The
saving in execution time can be used to absorb the
state update overhead without a�ecting the service
deadline.

Primary Shadow

Copy Initial Values

Copy Results

Figure 2: Speculative execution on a shadow replica

Speculative execution can be successful in computa-
tion-intensive complex systems, such as real-time
imaging and multimedia. Although such applications
have potential for parallelism, there are also many
opportunities for speculative execution. Image �ltra-
tion, for example, usually involves a lot of computa-
tion, while testing the quality of an image is time-
consuming as well [5]. An image can be �ltered spec-
ulatively on a shadow while quality tests are running.
The same argument holds for edge detection. More-
over, morphological image processing [12] has a lot of
potential for speculative execution. Construction of
a structural element can be done speculatively while
another element is being tried. Another application
is image retrieval, according to certain input or the
occurrence of an event. The most complicated image
can be retrieved and �ltered speculatively on a shadow
to shorten the worst-case execution.

In this paper, we use a variant of the passive replica
model in which some backup nodes will be semi-
passive. Passive backup nodes are provided with an
exact copy of process code, while semi-passive back-
ups will have a transformed copy of the code. In ordi-
nary serial execution, checkpoints will be propagated
to all backups. The compiler will generate processes
for code that can be speculatively executed on semi-
passive replicas. For example, in Figure 1 transformed
version of the code of Figure 1 assume exp involves a
call that takes 30 units of time. When the primary
is evaluating the condition, block1 can simultaneously
be executed on the semi-passive replica (shadow). An
activation message will be sent to the shadow to acti-
vate the execution of block1. The code executed on the
shadow will be a new process sharing the same data
with the original idle process replica. The latest state
can be sent to the shadow before the activation mes-
sage. The shadow will send back the updated state to
the primary which will be committed if exp is true.

The technique we are proposing can manage state
update overhead and make it possible to provide sup-

port for real-time fault-tolerance. Moreover, it can
shorten the time for recovery. In the above example,
if the primary fails after the conclusion of the call to
evaluate exp and exp happens to be true, then the
semi-passive (shadow) backup can perform forward
recovery (if exp is false, we rely on another passive
backup, as shown in Section 7). In addition, it can
enhance overall performance and resource utilization
through the proposed redundancy.

Opportunities for speculative execution can be de-
tected not only in conditions, but also in other types
of control ow such as loops. However, for ease of dis-
cussion, we use only conditions throughout this sub-
mission.

The paper is organized as follows; in the next sec-
tion, we state our model including some assumptions
about the detection of errors. In Section 3, we compare
with related work. We consider the advantage of using
a replica as a shadow node in Section 4. We discuss
compiler support in Section 5, followed by analysis of
the communication costs in Section 6. In the follow-
ing section, we discuss recovery from various failure
scenarios. An extension of our proposed model using
four replicas is explained in Section 8. Experimental
results are presented in Section 9. Finally, we conclude
with future directions.

2 Model and Assumptions

A distributed real-time application consists of a set
of communicating processes or objects allocated to dif-
ferent execution nodes. In a fault-tolerant environ-
ment, the term computing station is used to refer to an
execution node and its associated redundancies (repli-
cas), see for example [18, 19]. We use primary-backup
model of fault tolerant architecture with three nodes
per computing station (Figure 4). Nodes within the
computing station are fully connected by communi-
cation links. Messages can ow in either direction.
We assume a reliable communication protocol with an
upper bound on message delivery delay.

ShadowBackup
(semi-passive) (passive)

Primary

Figure 4: Three Nodes Fault-Tolerant Computing Sta-
tion

The processor of every node satis�es the fail-stop
assumption: that is, it halts upon failure without pro-
ducing incorrect output [25]. We assume that any er-
ror will be detected internally within the computing
station using special hardware or through timing out
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if (exp) Activate backup fork block1

block1 if (exp) if (exp)

else get updates for send updates for

block1 block1 from shadow block1 to primary

else else

block2 block2

/* Original code */ /* Transformed code on /* Transformed code on the

the primary server */ semi-passive backup */

Figure 3: Speculative execution for parts of the code on the semi-passive backup.

the delivery of messages, as assumed in [24]. Commu-
nication between processes is in the form of local or
remote calls.

3 Related Work

Fault-tolerant systems usually fall into two classes,
active and passive replication. Active replication has
been used in some experimental real-time systems
projects, including MARS [19] and Delta-4 XPA [28].
Previous work on passive replica largely entails roll-
back recovery while minimizing overhead due to check-
pointing.

The passive replica model relies on saving the state
of each process during failure-free execution. After
failure, if a consistent system state can be formed
using individual process states previously saved, the
fault can be recovered [8]. There are two approaches
for rollback recovery. The �rst uses consistent check-
pointing [9, 10, 17], with a coordinator to synchronize
writing updates of every process to stable storage. To
recover from failure, a global system consistent state
reecting a consistent state for every individual pro-
cess, is built; some processes may have to be rolled
back to an earlier state from their most recent check-
points. A new consistent checkpoint must be recorded
before committing any output. This makes the fre-
quency of checkpointing high and consequently in-
creases the overhead. On the other hand, rollback
recovery can be implemented using optimistic mes-
sage logging as in [15, 27]. Optimistic message log-
ging avoids frequent checkpointing by asynchronously
bu�ering messages received by processes. Recovery re-
plays the messages in the bu�er. Processes still need
to save state, but not as frequently and without coor-
dination. In our model, we use a variant of consistent
checkpointing, that is, we use backups for saving state.
Recovery is initiated within the computing station it-
self. We do not rely on the existence of a coordinator,
but use compiler analysis to insert checkpoints.

The performance penalty largely from consistent
checkpointing in fault-tolerant distributed systems has
been measured in [10]. The experiments reported
show that the execution time increases by 1-5.8%,
where fast hard drives were used as stable storage.
These results are based on long-running distributed
applications. Although they did not address real-time

issues, this conclusion is very encouraging. We expect
to get less of a performance penalty because we are
not using permanent storage for checkpointing.

The idea of window-consistent replication service
is evaluated in [24]. This minimizes the frequency
of updates by relaxing the consistency constraints of
the replicated data. Consistency requirements for the
data are provided by the application in terms of a time
window. In case of failure, it is possible to rely on the
most recent data to recover. This approach to mini-
mizing the overhead can be combined with our work;
using a time-window during compilation can relax the
update frequency.

Speculative execution has been addressed on di�er-
ent levels. The lowest level is the machine instruc-
tion level in super-scalar and VLIW machines, as for
example [2]. Statement level speculative execution
through safe code motion, using data ow analysis
techniques, has been used to enhance schedulability
of real-time processes in [11, 13]. Forking new pro-
cesses to speculatively execute blocks of the code with-
out destroying timeliness during rollback is presented
in [29]. Compile-time analysis is used to detect safe
opportunities for speculative execution and transform
the code to fork such new processes. A semi-static
approach to speculative execution is presented in [20].
The approach is to use pro�ling to collect information
about the correlation between branch conditions and
replicate the code of the most probable branches. In
addition, speculative execution has been successfully
used to achieve timeliness in real-time databases [3].

4 Semi-passive Replica

The computing station in our model consists of
three nodes, Figure 4. One node acts as a primary
server. During fault-free execution, the primary server
reacts to client requests and sends update messages
(checkpoints) to other nodes within the same comput-
ing station. The frequency of checkpoints will be de-
termined by the compiler, as elaborated in Section 5.
The other two nodes are the semi-passive shadow and
the passive backup.

The passive backup does not execute any code dur-
ing normal execution; it just receives update messages
from the primary server. The backup acts as a storage



device keeping a copy of the data from the primary; it
also has a copy of the code loaded. All updates from
the primary will be used to upgrade backup copy of
the data region. One of the attractive features in our
model is the use of dynamic memory instead of �xed
disks to store checkpoints, signi�cantly reducing the
overhead of checkpointing.

The shadow server is used for performing specula-
tive execution as directed by the primary node. It
acts as a second passive node when there is no code to
be executed speculatively. When the primary server
sends an activation message to the shadow, it forks a
process sharing the same data region with the orig-
inal non-running replica of the process on the pri-
mary. The new process starts executing a block of
code. Upon conclusion, the shadow sends the state
update back to the primary node. The primary server
may commit the results or simply ignore the message if
the speculatively executed code would not in fact have
been executed. The state of the shadow will not be
up-to-date until the next checkpoint from the primary.
In addition, if the primary fails while the shadow is
executing, we can not trust the shadow state to per-
form the recovery. These situations motivate the need
for another passive backup in our proposed computing
station.

Compiler techniques are used to identify locations
in the code when update messages are to be sent, as
discussed in the next section.

5 Compiler Support

We rely intensely on compiler support to investi-
gate opportunities for speculative execution as well as
minimizing checkpointing overhead. Various compiler
optimization techniques can be applied. Moreover, we
use compile-time analysis to mark points in the code
suitable for sending update messages to other replicas
in the computing station. In this section, we address
these issues.

During compilation, pro�table and safe opportuni-
ties for speculative execution are detected. Specula-
tive execution is an optimistic execution of part of the
code based on assumptions that have not yet been val-
idated. For example, we can speculatively execute the
largest or most probable branch in a conditional be-
fore the evaluation of the condition. Moreover, we can
speculatively run the next loop iteration while the ex-
ecution of the current iteration is still in progress. We
have addressed the compile-time prediction of safe and
pro�table speculative execution and developed com-
piler transformation rules in [29].

Using the shadow node for running some code spec-
ulatively a�ects checkpointing. Before speculatively
executing part of the code on the shadow, its state
should be veri�ed to be su�cient for starting the exe-
cution properly. Various data ow techniques can be
used to check whether the data values to be referenced
in the speculative code are the most recent. In Fig-
ure 1, for example, in the primary copy, we need to
send an update message to the shadow before activat-
ing it to upgrade the data used in block1 to the most

ORIGINAL PRIMARY COPY

x = x + 1; x = x + 1;

y = y * z; y = y * z;

if (f(x,y)) send_shadow(x,y);

j = q(x,y,z); activate_shadow(p1);

t = g(y,r,n); if (f(x,y))

else receive_shadow(j,t);

j = x * y * z; else

j = x * y * z;

send_shadow(x,y);

Figure 5: Compiler inserted checkpointing to support
speculative execution.

recent version computed on the primary. The spec-
ulative transformation rules make sure that the code
to be run on the shadow node does not require values
being computed by the primary server. For example,
if the primary is executing a function, the code that
is speculatively executed by the shadow should use
neither the return value nor other values modi�ed by
that function. If some values need to be updated, the
primary must send them before activation of the spec-
ulative process on the shadow. Considering the code
in Figure 5, data ow analysis techniques can be used
to detect that x and y have been modi�ed since the
last update, and therefore they need to be included in
the next checkpointing message. Using interprocedu-
ral analysis techniques, we make sure that both x and
y are not going to be modi�ed in the function f(). The
compiler will insert a checkpoint before the conditional
by sending an update message to the shadow with the
latest values of x and y and send an activation for
a process which corresponds to the then-clause. The
calls to the functions q() and g() are replaced by re-
ceiving the result message. Again the compiler will
detect which values are modi�ed and include them in
the message. If f(x; y) is determined to be false, the
compiler will include both j and t in the next update
message to the shadow. Because the else-clause is not
part of the worst-case execution path (since it was not
selected for speculative execution), the deadline will
not be missed. Then the compiler will evaluate the
tradeo�s and transform only if it is not extending the
deadline.

An important issue is to avoid blocking the primary
waiting for a shadow to commit. This may occur when
performing more time consuming computation on the
shadow than that required by primary to conclude the
condition. If the shadow computation fails, the pri-
mary will spend time waiting for the results, which
will extend the worst-case path. To avoid such an
unsafe scenario, compile-time checks need to be per-
formed. A shadow should be activated early enough
so that it will �nish before the primary �nishes eval-
uating the condition. If this is not possible, due to
data dependence, the primary should start executing
the branch up to a time equivalent to the delay ex-
pected for the results to be available. If the shadow
fails, the primary can safely continue.



Additional checkpoints may be required for consis-
tency. Checkpointing is performed before committing
output to the outside world (external to the comput-
ing station), as in [10]. However, this is not e�ective
for real-time systems, as recovery from failure may
need a long rollback, which may destroy the timing
requirements. Another possible alternative is to use
a time-window to determine the frequency of the up-
dates. That window can be drawn from the consis-
tency semantics of the system, in the sense of [24].
However, this approach schedules a periodic process
to perform checkpointing without using incremental
update. To keep the data window-consistent, we con-
sult a tool for static-time prediction of the execution
time of the system to insert checkpoints in the code
during compilation.

Further optimization techniques can be used to de-
crease the overhead and enhance the schedulability of
updates. Incremental update of the internal state can
be used instead of sending the whole state. The com-
piler detects the modi�ed values and includes them
only in the next update message. Hardware sup-
port can accelerate this process through dirty bits and
copy-on-write mechanisms [22]. It is shown in [10] that
incremental checkpointing can decrease the overhead
substantially for a wide range of applications. In ad-
dition, safe application of code motion compiler tech-
niques, as discussed in [11, 13], can be used to insert
checkpoints safely.

Moreover, the compiler can detect busy-idle pro-
�les, as discussed in [14], to interleave the sending
of updates to both replicas. For example, if the pri-
mary is making a remote call to another computing
station, it can update the replicas while waiting for
the results. In addition, the primary can also inter-
leave message sending to the passive backup with the
speculative execution of a long block by the shadow.
In the example in Figure 1, assume that block1 exe-
cuted by the shadow takes longer time than evaluating
the condition by the primary. If the primary is going
to commit a result which is not yet available from
the shadow, the primary can meanwhile update the
passive backup. The compiler consults the execution
time prediction tool as well as the timing constraint
to avoid extending any deadline.

Thus, using compiler inserted checkpoints in com-
bination with compiler optimization techniques can
be used to minimize overhead. In addition, opportu-
nities for pro�table speculative execution can be ex-
tracted, enhancing performance and absorbing the up-
date overhead.

6 Communication Costs

We assume a direct communication link between all
nodes within the computing station. There are two
kinds of messages: data and control messages. Data
(checkpointing) messages ow from the primary server
to the shadow and backup. In addition, the shadow
can send the results of the speculative execution back
to the primary. Control messages are used to acti-
vate the shadow to execute part of the code. The

compiler generates processes for every block of code
subject to speculative execution. The activation mes-
sage will refer to the appropriate process as opposed
to the primary. In the code in Figure 5, the primary
sends an incremental update to the shadow (values of
x and y), followed by a control message. The acti-
vation message refers to a process which reects the
code in the then-clause. The shadow sends the state
changes back to the primary upon completion of the
speculative execution.

In case of failure of the primary, either the shadow
or the backup will take over according to the failure
scenario as discussed in the next section. If the shadow
takes over after primary failure, update messages still
ow to the backup; similarly, if the backup is used,
messages will be sent to the shadow. The backup
does not send messages to the primary except for ac-
knowledging receipt of the checkpoint, if necessary, to
guarantee reliable delivery of update messages.

Having direct and dedicated communication links
makes transmission of messages fast and avoids con-
tention and routing delays. In addition, special hard-
ware (communication coprocessor) can be used. Our
basic assumption is that the communication time is
predictable (which is required anyway for schedulabil-
ity analysis) and reasonably fast to enable additional
feasible speculative execution opportunities.

7 Recovery from Failure

As stated in Section 2, we assume faults can be de-
tected internally within the computing station. Dur-
ing execution, we can anticipate the following failure
scenarios: primary fails while the shadow is not exe-
cuting, primary fails while the shadow is speculatively
executing a block of code, shadow fails while execut-
ing, shadow fails while being passive, and backup fails.
We address recovery mechanisms for each scenario ac-
cording to the location of the fault.

Recovery from Primary Failure: If the primary
node fails, service should be resumed on one of the
replicas. Recovery from fault will be initiated accord-
ing to the state of the shadow node. If the shadow
node was idle before failure, execution can be resumed
on either node, shadow or passive backup. However,
the shadow node may be preferred, as failure may have
occurred just after committing the results of specula-
tive execution. Thus the shadow will be in a forward
state in terms of execution progress, and there will be
additional time to adapt the recovery procedure with-
out missing deadline. Regardless, until the primary
recovers, the original code should be used, rather than
the transformed speculative code, to provide contin-
ued fault tolerance. On the other hand, if the shadow
node was speculatively executing some code, service
can not resume on it. Here the execution state of
the shadow will be unreliable, as it is based on as-
sumptions which have not been validated before the
failure. Considering example in Figure 1; if the pri-
mary fails while evaluating the exp, there is no way
to predict whether to commit or reject the results of
the shadow execution. In this scenario, the passive



backup node should be used to recover. However, the
passive backup can still bene�t from the shadow exe-
cution performed. As we discussed in Section 5, state
updates will be sent before executing the if-statement,
so even in that worst case of recovery the backup does
not have to roll back from an old state.

Recovery from Shadow Failure: The primary
node is the main provider of service. If the shadow
node fails, service can still be o�ered, but without
speculative execution. The original copy of the code
should be used instead of the transformed copy on the
primary node. In this situation, the primary will keep
updating only the passive backup. An interesting sce-
nario is when the shadow node fails while executing
some speculative code. As we discussed in 5, the com-
piler will try to start the shadow early enough to �nish
before the conclusion of the condition. On the other
hand, if it is not possible to start the shadow early, the
primary will execute the branch without being blocked
for the results. Thus, the primary will continue with-
out delay executing the code and continue in a serial
manner. Because the primary was busy during the
speculative execution before the shadow fails, there
will be minimal performance degradation if any.

Recovery from Backup Failure: Similar to shadow
failure: if the passive backup node fails, the primary
node can still provide service. However, all speculative
execution should be disabled and the shadow then acts
as a passive backup.

8 Four Processor extension

In this section we discuss the bene�t of comput-
ing station of four nodes, Figure 6. As for the three-
node computing station, nodes are directly connected
through bidirectional links. The extra node is used
as an additional shadow server. We show not only
that reliability increases due to the higher redundancy,
but also that performance can be enhanced for both
average-case and worst-case execution.

Primary

Shadow
(semi-passive)

Shadow
(semi-passive)

Backup

 (passive)

Figure 6: Four Nodes Fault-Tolerant Computing Sta-
tion

With additional shadow nodes, it is possible to
speculatively execute both branches of a conditional;
the then-clause can be executed on one shadow and
the else-clause on the other shadow. The primary
will commit the results from one of the shadows. Us-
ing this mechanism, worst-case performance will be
enhanced due to parallel execution of the branches.

With while loops, we can execute three iterations in
parallel (given that no data dependence). Moreover,
the shadow which has the committed results can be
used to propagate updates to the other two replicas,
releasing the primary from that overhead.

In addition, the extra node can make recovery from
failure more e�cient. If the primary fails, the three
other nodes can still be used as a three-node comput-
ing station. Moreover, most of the time we will be
performing forward recovery, since when the primary
fails while the shadow is executing some code specu-
latively, the backup can take over and re-evaluate the
condition of the if-statement and still commit the re-
sults from one of the shadows. This error scenario
required backward recovery in case of three-node sta-
tion, as shown in Section 7.

9 Experimental Results

In this section, we examine the performance of spec-
ulative execution using the three-node computing sta-
tion. The experiment consists of four stages. First, we
generate input programs using a workload generator.
Each program consists of statements selected out of
seven types, assignment, if, read, write, while, block-
ing call and non-blocking call. Two sets of variables
are associated with each statement: referenced vari-
ables, and modi�ed variables. Second, execution time
is attached to each statement in a program. Third, we
run the programs and classify them into 4 groups.

Group 0: programs which miss deadlines with and
without speculative execution.

Group 1: programs which meet deadlines with
and without speculative execution.

Group 2: programs which meet deadlines using
speculative execution but miss dead-
lines without it.

Group 3: programs which miss deadlines using
speculative execution but meet dead-
lines without, or in which no speculative
execution can be performed.

In the fourth step, programs of group 1 and group
2 are run and faults are randomly injected into pro-
grams to see how much speculative execution can help
in reducing the percentage of missing deadlines. The
programs of group 0 are of no interest; if the pro-
gram cannot meet its deadline even with speculative
execution, there may be a problem in the design. No
programs belong to group 3 since no code will be spec-
ulatively executed in the shadow if it is not safe or
pro�table according to the analysis performed by the
compiler.

The workload generator generates 1000 programs
and each runs for 10 times. The worst-case execution
time (WCET) of a program is determined from static
timing estimate on its ow graph. The selection of
deadlines a�ects the size of each group. For instance,
there are 55%, 0%, 45% and 0% of groups 0, 1, 2,
3, respectively, where the deadline is in the range of



[:6; :8]�WCET. However, there are 4%, 38%, 58% and
0% of groups 0, 1, 2, 3, respectively, provided that
the deadline is in the range of [:8; 1:1] �WCET. The
reported results in Figure 7 are based on selecting the
deadline randomly in the range of [0:75; 1:0]�WCET.
So among the 1000 programs there are 3% of group 0,
37% of group 1 and 60% of group 2.

Based on our experience with real-time pro-
grams [26], we decided to use a frequency of 6% to 10%
of if statements per generated program. Although a
fault may occur in primary, shadow or backup, we as-
sume that faults will not propagate from one node to
another. Little penalty is anticipated if a fault oc-
curs either on the backup node, or on the shadow
node while no speculative execution is running. If a
program meets the deadline both with and without
speculative execution, it will probably meet that dead-
line after injecting a single fault, since, in our current
model, the time cost of a single fault is not signi�cant.
We therefore decided not to report group 1, although
we still see small gains with the use of speculative ex-
ecution. Figure 7 summarizes the results of group 2
injecting a single fault. We anticipate that much more
signi�cant gains would result with the use of specula-
tive execution either by allowing a series of isolated
faults, or by increasing the possible cost of a single
fault. The following are clari�cation of the notation
used in the table in Figure 7.

1. Pgm Size: the number of statements per program.

2. Avg if blk Size: the average size of an if-block.

3. # missing w/SE: using speculative execution, the
number of programs missing deadline over the
total number of group 2. For example, on the
second row the number 5019/5739 denotes that
among 5739 of group 2 there are 5019 cases miss-
ing deadlines after injecting faults.

4. # missing w/o SE: with no speculative execution,
the number of programs missing deadlines over
the total number of group 2. For instance, on the
second row the number 5739/5739 denotes that
without speculative execution all the programs
(5739) of group 2 miss deadlines after injections
of faults.

5. Speedup: the percentage of 1 � TSE

TNSE
where TSE

and TNSE denote the execution time of a pro-
gram with and without speculative execution re-
spectively.

6. Imprv: is the reduction in the percentage of
missed deadlines by speculative execution.

>From the above, we conclude that on the average
speculative execution of if-blocks reduces about 19%
of missing deadlines and speeds up the execution of
programs by 27%. The sizes of if-blocks determine
the opportunities of speculative execution. In this im-
plementation the opportunities are about 90% of the
6% to 10% of if statements. The shadow utilization

is about 30% which indicates that a shadow node is
under-utilized and can serve multiple primary nodes.
We have made other runs with the same number of
statements and di�erent if-block sizes, the results in
average are not signi�cantly di�erent. For a detailed
discussion about various factors a�ecting the applica-
bility of speculative execution to real-time programs,
the reader can refer to [30].

While speculative execution trades resources for
average-case performance, we have shown that, at
least in a limited model, it can also improve both
WCET and likelihood of deadline satisfaction in the
presence of faults. Although we cannot in general
guarantee timeliness, we can reduce both the incidence
and cost.

10 Conclusion and Future Work

We have shown that compiler assisted speculative
execution can be used to achieve fault-tolerance in
real-time systems. We proposed a computing sta-
tion based on passive and semi-passive replicas. We
argued that using speculative execution can enhance
the average-case performance and sometimes even the
worst-case performance. That enhancement in per-
formance can be used to absorb the overhead due to
checkpointing. Moreover, we minimized the time re-
quired for checkpointing by using the replica's main
memory instead of �xed disk storage. We showed that
we can achieve forward recovery most of the time (all
the time if we have four replica).

In this paper, we assume that faults are unrelated
and independent. In the future, we plan to handle
linked failure and multiple faults. We also intend to
apply the analysis of [23] to implement recovery as
exception handling. In addition, we will try to apply
some dependability evaluation methods, such as [1],
to formally evaluate our ideas. Combining these two
analyses, we expect to be able to guarantee an upper
bound on the likelihood of a catastrophic process fault,
that is, one in which the system keeps running, but
deadlines are missed. Finally, we will investigate the
possibility of using the same shadow node for multiple
primary processors.

References

[1] J. Arlat, et al., \Fault Injection and Dependability Eval-
uation of Fault-Tolerant Systems," IEEE Transactions on
Computers, Vol. 42, No. 8, pp. 913{923, August 1993.

[2] N. Alewine, W. Fuchs and W. Hwu, \Application of
compiler-assisted rollback recovery to speculative execu-
tion repair," Proceedings of the Conf. on Hardware and
Software Architectures for Fault Tolerance Experiences
and Perspectives, Le Mont Saint Michel, France, 1993.

[3] A. Bestavros and S. Braoudakis, \Timeliness via Specula-
tion for Real-Time Databases," Proceedings of 15th IEEE
Real-Time Systems Symposium, San Juan PR, 1994.

[4] K. Birman, \The process group approach to reliable dis-
tributed computing," Communications of the ACM, Vol.
36, No. 12, pp. 37{53, December 1993.



Pgm Size Avg if blk # missing w/ SE # missing w/o SE Speedup Imprv
1500 21 5019/5739 5739/5739 17.14% 12.5%
1500 32 5505/6556 6556/6556 23.07% 16.0%
2000 32 5451/6543 6543/6543 23.16% 16.7%
2000 58 3698/5737 5737/5737 31.48% 35.4%
5000 32 5821/6653 6653/6653 22.98% 12.5%
5000 58 4012/5279 5279/5279 34.40% 24.0%
8000 60 3604/4822 4822/4822 37.84% 25.3%

Figure 7: Summary of Experimentation Results

[5] A. Broggi, \A Novel Approach to Lossy Real-Time Im-
age Compression: Hierarchical Data Reorganization on
a Low-cost Massively Parallel System," Journal of Real-
Time Imaging, Academic Press, (to appear).

[6] K. Birman, T. Joseph, T. Raeuchle, and A. Abbadi,
\ImplementingFault-TolerantDistributedObjects," IEEE
Trans. on Software Engineering, Vol. SE-11, No. 6, 1985.

[7] N. Budhiraja, K. Marzullo, F. Schneider, and S. Toueg,
\Primary-backup protocols: Lower bounds and optimal
implementations," Proceedings of IFIP Working Confer-
ence on Dependable Computing, pp. 187{198, 1992.

[8] K. Chandy and L. Lamport, \Distributed Snapshots: De-
termining Global States of Distributed systems," ACM
Trans. on Computer Systems, Vol. 3 no. 1, pp. 63{75, 1985.

[9] F. Cristian and F. Jahanian, \A timestamp-based check-
pointing protocol for long-lived distributed computations,"
Proceedings of the 10th Symposium on Reliable Distributed
Systems, pp. 12{20, September 1991.

[10] E. Elnozahy, D. Johnson and W. Zwaepepoel, \The Per-
formance of Consistent Checkpointing," Proc. of the 11th

IEEE Symposium on Reliable Distributed Systems, 1992.

[11] R. Gerber and S. Hong, \Compiling Real-Time Programs
with Timing Constraints Re�nement and Structural Code
Motion," IEEE Transactions of Software Engineering,
Vol. 21, No. 5, May 1995.

[12] C. Giardina and E. Dougherty, Morphological Methods in
Image and Signal Processing. Prentice Hall, Englewood
Cli�es NJ 1988.

[13] P. Gopinath and R. Gupta, \Applying Compiler Tech-
niques to Scheduling in Real time Systems,"Proceedings of
the 11th IEEE Real-Time Systems Symposium, pp. 247{
256, Orlando, Florida, December 1990.

[14] R. Gupta and M. Spezialetti, \Busy-Idle Pro�les and Com-
pact Task Graphs: Compile-time Support for Interleaved
and Overlapped Scheduling of Real-Time Tasks," Proc. of
the 15th IEEE Real-Time Systems Symposium, 1994.

[15] D. Johnson, \E�cient Transparent Optimistic Rollback
Recovery for Distributed Application Programs," Proceed-
ings of the 12th IEEE Symposium on Reliable Distributed
Systems, October 1993.

[16] K. Kim, \Design of Real-Time Fault-Tolerant Computing
Stations," Proceedings of the NATO Advanced Study In-
stitute of Real Time Computing, Sint Maarten, Dutch An-
tilles, October 1992.

[17] J. Kim and T. Park, \An E�cient Protocol for Checkpoint-
ing Recovery in Distributed Systems," IEEE Transactions
on Parallel and Distributed Systems, Vol. 4, No. 8, pp.
955-960, August 1993.

[18] K. Kim and H. Welch, \Distributed Execution of Recovery
Blocks: An Approach for Uniform Treatment of Hardware
and Software Faults in Real-Time Applications," IEEE
Transactions on Computers, pp. 626{636, May 1989.

[19] H. Kopetz, et al., \Distributed Fault-tolerance Real-Time
Systems: The Mars Approach," IEEE Micro, pp. 25-39,
February 1989.

[20] A. Kral, \Improving Semi-static Branch Prediction by
Code Replication,"Proceedings of the ACM SIGPLAN '94
Conference on Programming Language Design and Imple-
mentation, ACMPRESS, pp. 97{105, June 1994.

[21] D. Leinbaugh, and M. Yamini, \Guaranteed Response
Times in a Distributed Hard Real Time Environment,"
IEEE Transactions on Software Engineering, Vol. SE-12,
No. 12, pp. 1139{1144, December 1986.

[22] K. Li, J. Naughton, and J. Plank, \Real-time concurrent
checkpoint for parallel programs," Proceeding of the 1990
Conference on the Principles and Practice of parallel Pro-
gramming, pp. 79{88, March 1990.

[23] T. J. Marlowe, A. D. Stoyenko, S. P. Masticola, L. R.
Welch, \Schedulability-Analyzable Exception Handling for
Fault-Tolerant Real-Time Languages," Journal of Real-
Time Systems, Vol. 7, pp. 183{212, 1994.

[24] A. Mehra, J. Rexford, H. Ang, and F. Jahanian, \Design
and Evaluation of a Window-Consistent Replication Ser-
vice," Proceedings of the �rst IEEE Real-Time Technology
and Applications Symposium, May 1995.

[25] R. Schlichting, and F. Schneider, \Fail-stop processors: An
approach to designing fault-tolerant computing systems,"
ACM Transactions on Computer Systems, Vol. 1, No. 3,
pp. 222{238, August 1983.

[26] A. D. Stoyenko, T. J. Marlowe, W. A. Halang, M. Younis,
\Enabling E�cient Schedulability Analysis through Con-
ditional Linking and Program Transformations," Control
Engineering Practice, Vol. 1, No. 1, pp. 85{105, Jan 1993.

[27] R. E. Strom, S. A. Yemini. \Optimistic recovery in dis-
tributed systems," ACM Transactions on Computer Sys-
tems, Vol. 3, No. 3, pp. 204{226, August 1985.

[28] P. Verissimo, et. al., The extra performance architecture
(xpa), In D. Powell, editor, Delta-4 - A genericArchitecture
for Dependable Distributed Computing, 1991.

[29] M. Younis, T. Marlowe, and A. Stoyenko, \Compiler
Transformations for Speculative Execution in a Real-Time
System," Proceedings of the 15th Real-Time Systems Sym-
posium, San Juan, Puerto Rico, December 1994.

[30] M. Younis, G. Tsai, T. Marlowe, and A. Stoyenko, \Stati-
cally Safe Speculative Execution For Real-Time Systems,"
Technical Report CIS-95-30, Computer and Information
Science Dept., New Jersey Institute of Technology, 1995.


