
Finding Story Chains in Newswire Articles
Xianshu Zhu

CSEE Department
University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD USA

Email: xianshu1@umbc.edu

Tim Oates
CSEE Department

University of Maryland, Baltimore County
1000 Hilltop Circle, Baltimore, MD USA

Email: oates@cs.umbc.edu

Abstract—Massive amounts of information about news events
are published on the Internet every day in online newspapers,
blogs, and social network messages. While search engines like
Google help retrieve information using keywords, the large
volumes of unstructured search results returned by search
engines make it hard to track the evolution of an event. A story
chain is composed of a set of news articles that reveal hidden
relationships among different events. Traditional keyword-based
search engines provide limited support for finding story chains.
In this paper, we propose a random walk based algorithm to
find story chains. When breaking news happens, many media
outlets report the same event. We have two pruning mechanisms
in the algorithm to automatically exclude redundant articles
from the story chain and to ensure efficiency of the algorithm.
Experimental results show that our proposed algorithm can
generate coherent story chains without redundancy.

I. I NTRODUCTION

Nowadays, the flood of information on the Internet can
easily swamp people, which seems to produce more pain than
gain. While there are some excellent search engines, such
as Google, Yahoo and Bing, to help us retrieve information
by simply providing keywords, the problem of information
overload makes it hard to understand the evolution of an
event. Conventional search engines display unstructured search
results. The search results are ranked by relevance, including
keyword-based methods of ranking search results, PageRank
[1], and other more complicated ranking algorithms. However,
when it comes to searching for a story (a sequence of events),
none of the ranking algorithms above can help to organize the
search results by evolution of the story.

Limitations of unstructured search results include: (1)Miss-
ing the big picture on complex stories: For complex news
stories, users can spend significant time looking through
unstructured search results without being able to see the big
picture of the story. For instance, Hurricane Katrina struck
New Orleans on August 23, 2005 and many news articles
related to this hurricane were published from every major
media outlet throughout the world every day. By typing ”Hur-
ricane Katrina” in Google, people can get much information
about the event and its impact on the economy, education,
health, and government policies. However, people may feel
desperate to sort the information to form a story chain that
tells how, for example, Hurricane Katrina has impacted gov-
ernment policies. We seek to extend the capability of existing
search engines to output coherent story chains, rather than
loosely connected pieces of information. Previous research

in event threading and tracking [2], [3] has largely focused
on organizing news articles into hierarchies or graphs, but
little effort has been made on presenting search results in a
meaningful and coherent manner. Shahaf et al.[4] were the
first to address the output coherence problem. However, the
algorithm discussed in [4] can be further improved in many
ways. Another limitation of unstructured search results is: (2)
Hard to find hidden relationships between two events:
The connection between news events are sometimes extremely
complicated and implicit. It is hard for users to discover
the connections without thorough investigation of the search
results. Such hidden relationships between news events can
be very useful for users to obtain a deep understanding of
the event, because every news event happens for some reason,
and many have impact on various aspects of our lives. The
information that the user gets from search engines would be
more informative if we could uncover the hidden relationships
between news events.

In this paper, we propose a random walk based algorithm
that can automatically find story chains. More specifically,our
algorithm can find out how two events are correlated by finding
a chain of events that coherently connect them together. A
good story chain needs to have the following characteristics:

1) Relevance: The articles on the chain should be relevant
to the events connecting the two articles.

2) Coherence: The chain should be coherent. The transition
between nodes on the chain should be smooth, with no
concept jumping or jittering. This allows users to have a
better understanding of the progression of the story after
reading the chain.

3) Low Redundancy: When breaking news happens, many
media outlets report the same event. Users may prefer to
read a story chain that contains only one representative
article for every event.

4) Coverage: Good story chains should cover every impor-
tant event of the story.

Moreover, efficiency is an important factor in developing the
system of discovering story chains, since no user wants a
system that takes a long time to compute a story chain.

Based on the discussion above, our goal is to develop an
algorithm that can efficiently find hidden relationships between
news events and output a story chain that is coherent and
relevant, with high coverage and low redundancy. Shahaf et al.
[4] already addressed the coherence and relevance problems.

Our work mainly focuses on the latter two problems (low
redundancy and efficiency), while still maintaining a highly
coherent and relevant story chain.

The rest of this paper is organized as follows. Section
II describes related work. Section III describes the story
chain problem. Section IV contains a detailed description of
our algorithm for finding story chains. Section V provides
experimental results, and Section VI concludes the paper.

II. RELATED WORK

Previous research in event detection has largely focused
on grouping retrieved documents into events according to the
similarity of their contents and time stamps. They focused
on organizing news articles into hierarchies, but little effort
was made on presenting data in a meaningful and coherent
manner. Shahaf et al. [4] were the first to address this problem,
and our work is highly motivated by them. In their work, a
method was proposed for automatically finding story chains.
They define the notion of chain coherence to be as strong as
its weakest link. Then, they formalize the story chain finding
problem into a linear programming (LP) problem, with the
objective function of maximizing the influence of the weakest
link. A set of random walks are simulated on a word-document
bipartite graph to calculateInfluence(di, di+1|w), which is
the influence of documentdi on di+1 through wordw. Let
|D| be the number of documents, and|W | be the number
of words. They needO(|D|) random walks and the LP has
O(|D|2 · |W |) variables. Results show that their method can
find coherent chains. The drawbacks of that work are: (1)
Efficiency: The time complexity of the algorithm is high.
Even though they used some speed-up methods to scale the
algorithm, it still takes ten minutes for the creation of a chain
of length 6 or 7. (2) Redundancy: The redundancy problem is
caused by including multiple articles for a single event in the
story chain. They did not address the redundancy problem. In
our work, we propose a random walk based method that can
handle redundancy and is more computationally efficient.

Fung et al. [5] studied the problem of identifying related
keywords given the limited query keywords provided by users.
They proposed a Time Driven Documents-partition (TDD)
method to construct an event hierarchy in a text corpus based
on a given query. However, we enrich the query related fea-
tures by asking users to provide an article as input. Nallapati et
al. [2] investigate methods for event threading. They developed
a time-decay based clustering approach for both clustering
stories into events and constructing dependencies among them.
Mei et al. [3] study the problem of detecting topics from
temporal text streams. A topic evolution graph is built and
used to trace topic transitions. Chen et al. [6] developed a user
interface that organizes Web search results into hierarchical
categories. However, none of the methods above tried to
categorize documents based on causes and effects.

Timeline generation [7], [8], [9] generates news story evo-
lution tracjectories along a timeline given query related news
collections. Yan et al. [9] proposed a framework for Evolu-
tionary Timeline Summarization(ETS). They also considered
coherence as a key requirement for timelines. However, our

task is different that we do not try to generate summaries.
Instead we are trying to re-organize news articles in a more
meaningful and coherent manner based on a user’s query.

Significant work has been done on random walks on graphs
to find associations between two objects. Sun et al. [10]
propose a model based on random walks on bipartite graphs
to detect neighborhoods and anomalies. Xiang et al. [11]
propose a temporal personalized random walk method to cap-
ture user’s temporal preference. Angelova et al. [12] studied
the propagation of labels in web graphs. In this paper, we
find the relevance score between two documents based on
random walks on a bipartite graph. We further introduce time
nodes into the graph to capture the temporal attribute of the
documents.

III. PROBLEM DEFINITION

Suppose we have a set of chronologically-ordered articles
d1, d2, · · · , dn obtained by key word search. Users may want
to refine the search results by looking at the relationship
between two news events. They are allowed to choose two
news articles from the search results to be start and end nodes,
respectively. The goal is to find a chain of articles that can form
a coherent story connecting both the start and end nodes. In
figure 1, we plot two sample story chains in a coordinate plane
in which the x-axis is time and the y-axis is the content of
the article. The story chain shown in figure 1(a) has a big
jump between articleA andB, which makes the story chain
incoherent. Moreover, the chain contains redundant articles,
such as those aroundA in the graph. In contrast, the story
chain shown in figure 1(b) has high coherence and relevance
and low redundancy. A common and easy way to solve the
redundancy problem is to divide the time line intoK equally-
spaced time bins and choose one article in each of the time
bins. However, the development of a story is not usually
linear in time. There may be frequent updates about a story
in a certain time range, or the pace of story evolution may
slow down. Therefore, this method may prune some articles
that are essential to the evolution of the story. Moreover, the
performance of this method is highly related to the bin size
parameter and highly dependent on the nature of the story. It
cannot reduce redundancy if the bin size is too small.

Moreover, efficiency is an important factor that we need to
consider, since no user wants to use such a system that takes
a long time to compute a story chain.

A potential major challenge in this task is branching,
namely, the different paths a story can evolve which gives
users the options to choose which direction they want to go.
However, in this paper we assume users already select a branch
(end node) that a story chain should follow. The branching
problem will be explored in the future.

IV. STORY CHAIN FINDING ALGORITHM

Our story chain algorithm, as described in Algorithm 1,
contains two iterative stages: (1) search for articles thatcan
be added to the chain; (2) prune articles, which includes (a)
pruning the least relevant articles and (b) pruning redundant
articles. The two stages work iteratively until no more articles

content

S

TA

B

timeline

(a) Bad story chain

content

S

T

timeline

(b) Good story chain

Fig. 1. Story Chain

can be added to the chain. We formalize the story chain finding
problem as a divide and conquer bisecting search problem. The
initial story chain contains only one links− t, wheres is start
article andt is end article. Each time we insert a node on a
link, the link will be divided into two sub-links. The bisecting
search adds a node on each sub-link recursively. The final story
chain will be composed of multiple links. We simulate random
walks on a bipartite graph to calculate article relevance scores,
which are used to select the best nodes to add to the link.

Algorithm 1 Story chain finding algorithm
Input: chronologically-ordered articlesd1, d2, · · · , dn, Start nodes, End
nodet
Initialize story chainC = s - t, input link l = {s - t}
repeat

1. Pruning process (a): Prune least relevant articles
2. Select a best articleai, that can be added to the link. Story chain
becomesC = s - ai - t.
3. Pruning process (b): Prune redundant articles
4. Update input link asl = {s - ai, ai - t}. Repeat step 1, 2 and 3 for
each of the input link inl

until There are no articles left in the set. (Articles are either been added
to the chain or have been pruned.)
Output: story chainC = s - a1 - a2 - · · · - ai - t

The advantages of this algorithm are:

• Coherence and relevance: This method can create high
quality chains in terms of coherence and relevance. See
section IV-B for more details.

• Efficiency: We just needO(logk) random walks to find
a chain of lengthk. This saves computation compared
to the method in [4]. Moreover, we can save even more
computation by using the two pruning methods, because
random walks will be simulated on a much smaller graph.

• Redundancy: Redundant documents are removed while
pruning.

• Two pruning methods, which will be discussed in more
detail below.

In the following subsections, we describe the two stages as
well as how we compute link strength.

A. Compute link strength

Our goal is to find the best articles to be added to a link so
as to improve the strength of that link. In this way, we can find
a story chain with every link on the chain of high strength.
The strength of a link is determined by the correlation of two
articles that connect to each other. Intuitively, two articles are

correlated if they share many common words. The more words
they have in common, the more strongly they are correlated.
However, we can not conclude that two articles are not relevant
when they don’t share any common words. For example, an
article which contains words ’storm’ and ’tornado’ does not
share any common words with article which contains word
’hurricane’. However these two articles might be related.

We construct a bipartite graph, as shown in figure 2. Bipar-
tite graphG = 〈VD ∪ VW , E〉, whereVD = {di|1 ≤ i ≤ m}
andVW = {wi|1 ≤ i ≤ n}, E ⊂ V1 × V2. The vertices corre-
spond to documents and words. The edge weights represent the
strength of the association between a document and a word.
We use TF-IDF weights for document-to-word edges. A short
random walk starting fromdi should reachdj frequently if
these two articles are highly relevant to each other.da usually
has a high relevance score todb if (1) direct relevance: they
have many shared words. For example,d1 has many shared
words withd2, see figure 2; or (2) indirect relevance: they both
are relevant to a common article. For example, even thoughd1
has no shared words withd3, random walks starting fromd1
can frequently reachd3, because they both are closely related
to d2, as is shown in figure 2.

d1

d2

d3

w1

w2

w3

w4

0.2
0.7

0.1

0.3

0.7

.7/(.7+.3)=.7

.3/(.7+.3)=.3

.2/.2=1

Articles Words

w5

0.3
0.2
0.20.3

Fig. 2. Method to solve redundancy problem

B. Stage 1: Search

Given start nodes and end nodet, we want to find a
coherent chain linkings and t. Forming a coherent chain is
easy whens and t are close. However, the problem becomes
very difficult whens andt are far away. Motivated by the idea
of divide and conquer, we formalize the story chain finding
problem as a bisecting search problem. We divide the chain
into two sub-chains by selecting the middle node of the chain
and solving the sub-problem recursively. We fist compute
argmax

di

rs(di) ∗ rt(di), where rs(di) is the probability that

random walks reachdi from s. The formula means document
di, which can be reached most frequently from both nodes,
will be put on the story chain. Figure 3 is an illustration
of the search algorithm. NodeA is selected because it can
be frequently reached from boths and t. After step 1, the
problem of finding a chain linkings and t is reduced to two
sub-problems, which are (1) finding a chain betweens and
A; (2) finding a chain betweenA and t. The chain search
process is very directional under this search method. To be
more specific, it avoidss wandering around lots of irrelevant

nodes before going back tot. In other words, this method
allows to generate a coherent and relevant story chain.

s t

s t
A

s t
B

C

A

Initial

Step 1

Step 2

Fig. 3. Illustration of search algorithm

C. Stage 2: Pruning

Simulating random walks on a graph containing thousands
of article-nodes and word-nodes is time consuming, even
though our binary story chain search algorithm only needs
a small set of random walks. We want to further improve the
efficiency of the algorithm by pruning unnecessary articles
in each recursion. We do two types of pruning before going
directly to the next level of search recursion: (1) Prune least
relevant articles; (2) Prune redundant articles

1) Prune least relevant articles:A story chain can be
viewed as an association rule, where each link in the chain
is a subset of the rule. Similarly, the strength of any sub-
link in the chain must be larger than or equal to the
coherence score of the chain. In other words, the coher-
ence score of the chain can be defined as the weakest
link of the chain, which isCoherence(d1, d2, · · · , dn) =
min

i=1···n−1
linkStrength(di, di+1). We can prune the least rel-

evant articles based on this idea.
In figure 4, we simulate a random walk starting froms

and compute the relevance score betweens and all the other
articles in the graph. Obviously,s is more relevant tot com-
pared toD. If we addD into the chain, the coherence score
of the chain will decrease, which isCoherence(s,D, t) =
linkStrength(sD). Thus,D should not be included in the
chain, even thoughD is close tot. We can prune all articles
di such thatrs(di) < rs(t) or rt(di) < rt(s), wherers(di)
and rt(di) are the probabilities that a random walk reaches
nodedi from nodes and t, respectively. Articles outside the
solid arc will be pruned. However, the random walk, which
is used to calculate relevance score between articles, is based
on word similarity. There might be a gap between content
similarity and semantic similarity. Therefore, we modify the
threshold to bers(di) < rs(t) − α or rt(di) < rt(s) − α
to avoid over pruning. Articles outside the dotted arc will be
pruned.α is a parameter which controls how aggressive the
pruning should be. In implementation, we simplify this by
pruning only a portion of the nodes that are least relevant.
For example, we will prune the top 80% of the nodesdi that
satisfyrt(di) < rt(s) or rs(di) < rs(t).

s t

D

Fig. 4. Prune least relevant articles (rs are probability values. The larger
the rs value, the closer the relationship between two nodes will be.)

2) Prune redundant articles:When the binary search picks
one article, we want to further prune articles similar to that
article both in content and time. Since there could be various
news outlets reporting the same event, we just want to select
a representative article. Moreover, there can be similar events
that happen at different times, so we don’t want to remove
similar articles with different time stamps. This is the intuition
of introducing time nodes into the random walk graph.

We add time nodes into the previous bipartite graph. Thus,
the graph becomes a tripartite graph with three different kinds
of nodes: document nodes, word nodes, and time nodes, as
is shown in figure 5. We split the whole time period into
multiple equal time bins. The duration of each bin is ofp
days. The document-to-time weight is always 1, because each
document can be associated with only one time stamp. The
time-to-document weight is normalized over the number of
documents connecting to the time node. For example, there
are two articles connecting to time nodet1. Thus, the time-
to-document weight fort1 is 1/2 = 0.5.

After adding time nodes to the graph, the outlink weights
for document nodes do not sum up to 1. Without changing the
original weight of the graph, we use a hierarchical method to
construct the transition matrix for the tripartite graph. Level 1:
The transitions starting from document nodes will go to time
nodes with probabilityα and go to word node with probability
1−α. Level 2: follow the transition probability on the original
graph. For example, the transition probability fromd1 to w1
is 0.2, afterd1 is selected to go to a word node. We can alter
the value ofα to adjust how influential the time nodes should
be.

d1

d2

d3

w1

w2

w3

w4

0.2
0.7

0.1

0.4

0.6

0.2

0.8

.2/(.2+.2)=.5

.2/(.2+.2)=.5

.7/(.7+.6+.8)=.33

.4/.4=1

Articles Words

t1

t2

t3

Time

1

1

1

0.5

0.5

Fig. 5. Method to solve redundancy problem
The new random walk starts from document nodes on the

tripartite graph and will be more likely to reach articles that
are in the same bin and close in content. One drawback of
this graph is it puts more weight on the articles that are in the
same time bin and ignores the difference between bins that are

close and bins that are far away. We extend the typical random
walk algorithm to support reflecting effects of time decay. We
assume the random walk starts fromda. The extended random
walk formula is:

~r = (1− β)M~r + β ~N (1)

where ~N is a vector indicating which nodes the random walk
will jump to after a restart.

~N(d) =

λ, d = da

(1− λ)wdecayi, d = ti

0, otherwise

(2)

The vector ~N should bias both document nodes and time
nodes, which means that the random walk is more likely to
jump to its own document node and corresponding time nodes,
or time nodes that are close in time after a restart. We choose
an exponential decay functionf(n) = exp(−γn) for γ > 0.
Let the corresponding time bin forda be ta. k is the duration
time of each time bin. The weightwdecayi that is assigned
to each time binti is: exp(−γ|ta − ti|). Then, the weights
wdecayi are normalized to sum up to 1.

V. EXPERIMENTS AND EVALUATION

In the experiments, we aim to answer this fundamental
question: can our story chain finding algorithm produce good
story chains efficiently? In addition, we also show how differ-
ent pruning methods affect story chain construction and the
efficiency of the algorithm. The quality of story chains is
evaluated using four criteria: relevance, coherence, coverage
and redundancy. As there are no standard datasets suitable for
our task, we constructed our own data sets on real news articles
which will be discussed in section V-A in detail.

• Connecting-Dots[4]: We cannot compare our results with
theirs because we don’t have access to their code and the
paper lacks implementation detail for us to implement the
algorithm by our own. More importantly, in this paper
we concentrate on developing a more efficient algorithm
while maintaining high quality of the story chain, espe-
cially producing story chains with low redundancy. In the
experiments, we will show the computational complexity
in terms of execution time of the algorithm.

• Event threading (TDT) [2]: In this work, a time-decay
based hierarchical clustering approach was proposed to
cluster news articles into multiple clusters and find de-
pendencies among them. Assume that each cluster repre-
sents an event. Then a story chain can be constructed
by picking representative articles from each cluster in
the dependency path. In section V-C3 we compare our
algorithm with the TDT algorithm.

It is a very subjective task to evaluate the quality of the story
chain. The evaluation was conducted on Amazon’s Mechanical
Turk (MTurk)1. MTurk is a marketplace where requesters can
publish human intelligence tasks (HITs) to multiple workers
and workers can choose to complete tasks. We publish our

1https://www.mturk.com/mturk/welcome

Topics # Docs Year Query Key Words
O.J.Simpson Trial 10475 06/94-08/97 O.J.Simpson
Hurricane Katrina 3834 08/05-06/07 Hurricane Katrina
Japan Earthquake
2011

6607 03/11-11/11 Japan earthquake 2011; Japan
nuclear 2011; Japan tsunami
2011; nuclear disaster 2011;
Fukushima Daiichi nuclear
disaster

TABLE I
DATA SET INFORMATION

story chains evaluation task to MTurk. Workers who choose
to do the task will rank the story chains from best (5) to worst
(1) by relevance, coherence, coverage and redundancy.

A. Data Set

We constructed data sets for three news topics: the O.J.
Simpson Trial, Hurricane Katrina and the earthquake and
tsunami in Japan 2011. The O.J. Simpson Trial was a very
publicized criminal trial in American history. Many news
articles from various news outlets were published about this
event. Over 10,000 articles contain the key word ”O.J. Simp-
son”. Thus, it is hard for web users to keep a clear picture
of the story. On the other hand, Hurricane Katrina and the
earthquake in Japan 2011 are both complex stories, since they
have different impacts on many aspects, such as the economy,
education, health, the environment and government.

We use the ”North American News Text2” and the ”New
York Times Annotated Corpus3” data sets from the Linguis-
tic Data Consortium (LDC) to construct the O.J. Simpson
Trial and Hurricane Katrina datasets. Articles are selected
to construct datasets based on keyword search. The ”North
American News Text” data set contains news articles (1994-
1996) from multiple sources, including the Los Angeles Times
& Washington Post, New York Times News & Syndicate,
Reuters News and Wall Street Journal. The ”New York Times
Annotated Corpus” data set contains articles from the New
York Times between 1987 to 2007. We also crawled news
articles from multiple sources (New York Times, USA Today,
Washington Post, Reuters and CNN) to construct a data set on
the earthquake in Japan 2011. Table I shows detailed statistics
of these three datasets.

For each article in the dataset we convert words to lower-
case, remove stop words, and do word stemming. We only use
the most frequent words in the dataset for graph construction.

B. Exprimental parameters

Our goal is to construct a story chain representing the
evolution of the story given the start (ds) and end (dt) articles
as input. The method should be able to automatically select
only one representative article for each event. We evaluate
our method by considering five stories in table II. These five
stories contain both simple stories (such as C4) and complex
stories (such as C1, C2, C3, and C5). The complexity of a
story can be defined as how relevant the start and end articles
are. For example, story C1 is a complex story since Hurricane

2http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC95T21
3http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T19

Katrina and government policies are not directly connected.
In addition, we also consider the same story but different
threads. For example, both story chain C2 and C3 are about
the Japanese earthquake, and both story chain C4 and C5 are
about the O.J. Simpson trial.

C. Performance Evaluation

There are two pruning steps in our story chain finding
method: (1) Prune least relevant articles (PLR); (2) Prune
redundant articles (PR). We show the performance for random
walks with PLR only and random walks with PR only,
respectively. We also show the performance with both pruning
methods (PLR-PR). The performance evaluation results are
based on human judegments through MTurk. Story chains are
ranked from best (5) to worst (1) by relevance, coherence,
coverage and redundancy.

1) Performance of PLR (prune irrelevant articles):In this
section, we show the experimental results for PLR. We further
change the aggressiveness in PLR to see how it affects the
results. Story C2 and C3 both are related to Japan Earthquake
2011. The Japan earthquake dataset spans multiple topics, such
as earthquake and tsunami rescue, nuclear crisis, economic
loss etc. Thus this data set contains many irrelevant articles as
opposed to a specific query. Figure 6(a) shows the relevance
score of the story chain increases as we prune more irrelevant
articles. The more aggressive the pruning is, the higher the
relevance score is. However, in figure 6(b) the coherence
score increases as we remove irrelevant articles but the score
decreases as the pruning becomes more aggressive. This is
because over pruning causes some relevant articles to be
removed.

2) Performance of PR (only prune redundant articles):In
this section, we show the experimental results for PR. Figure
7 shows that the story chain contains much less redundant
articles with PR.

3) Performance of both PLR-PR:Figure 8 compares the
performance among three algorithms: Event threading, No-
pruning and Both-pruning(PLR-PR). The performance of the
event threading method is not as good as the two pruning
methods in terms of relevance, coherence, and coverage. On
the other hand, the event threading method outperforms the
No-pruning methods in terms of redundancy. This is because
it groups articles into clusters which to some degree relieves
the redundancy problem. However, the size of the clusters is
hard to control. Sometimes when the clusters are too big, it
will result in low coherence and coverage if we only select
one representative article in each cluster. Figure 9 shows the
algorithm performance with both pruning methods. We can
see that PLR-PR algorithm outperforms random walk with no
pruning algorithm on all of four criteria.

4) Computational complexity:The computation overhead
of the story chain algorithm includes two parts. The first part
is to parse the data set, compute TF-IDF weights and then
compute graph edge weight. This is a one time computation.
Once the graph is constructed, our algorithm can find different
story chains based on different queries (start and end nodes).
The second part is the random walk computation and graph

Query intent C2 Query intent C3
0

1

2

3

4

5

R
e
le
v
a
n
c
e
 S
c
o
re
s

No pruning
PLR: 60% pruning
PLR: 80% pruning

(a) Relevance Score

Query intent C2 Query intent C3
0

1

2

3

4

5

C
o
h
e
re
n
c
e
 S
c
o
re
s

No pruning
PLR: 60% pruning
PLR: 80% pruning

(b) Coherence Score

Fig. 6. Performance of PLR

Query intent C5
0

1

2

3

4

5

R
e
d
u
n
d
a
n
c
y
 S
c
o
re
s

No pruning
PR

Fig. 7. Performance of PR

weight update. The story chain algorithm can find a story
chain in around ten iterations. In each iteration, it needs two
random walks from the start and end node respectively. Our
algorithm requires onlyO(logk) random walks to find a story
chain of lengthk, which is much lower compared with the
computational overhead ofO(|D|) random walks to compute
word influence and solve a linear programming problem with
O(|D|2·|W |) in paper [4], where|D| is total number of articles
in the dataset andk ≪ |D|. Moreover, the graph size is largely
reduced with the help of the two pruning method, which
further speeds up the random walk computation. Figure 10
shows the number of remaining documents in each iteration.
Most of the irrelevant articles are pruned in the first two
iterations. It introduces little computational overhead to update
graph weights. Since TF-IDF values can be easily updated
incrementally, we do not have to recompute the values from

Query intent Startds and enddt articles
C1: How Hurricane Katrina is related to government
policies

ds: Hurricane Katrina hit New Orleans (08/26/05)
dt: Attacking Bush, Clinton Urges Government Overhaul (04/14/07)

C2: How Japan earthquake has impact on nuclear policy in
German nuclear company

ds: Japan super quake, tsunami terrify tremor-prone nation (03/11/11)
dt: E.ON to sue German government over nuclear closure (11/14/11)

C3: How Japan earthquake has impact on competition
between Toyota and Volkswagen

ds: Japan super quake, tsunami terrify tremor-prone nation (03/11/11)
dt: Volkswagen may topple Toyota as world’s top automaker (10/24/11)

C4: Story about O.J. Simpson trial
ds: O.J. Simpson’s Ex-Wife Found Dead in Double Homicide (06/13/94)
dt: Simpson jury reaches verdict in six hours (10/02/95)

C5: How O.J.Simpson trial has impact on racial problems
ds: O.J. Simpson’s Ex-Wife Found Dead in Double Homicide (06/13/94)
dt: Race flares anew as polarizing issue in U.S. life (10/19/95)

TABLE II
INITIAL INFORMATION OF THE STORY CHAINS

Relevance Coherence Coverage Redundancy
Query intent C2

0

1

2

3

4

5

S
c
o
re
s

Two pruning
No pruning
Event threading

(a) Story chain C2

Relevance Coherence Coverage Redundancy
Query intent C3

0

1

2

3

4

5

S
c
o
re
s

Two pruning
No pruning
Event threading

(b) Story chain C3

Fig. 8. Performance of PLR-PR, No-pruning and Event threading

Relevance Coherence Coverage Redundancy
Query intent C1

0

1

2

3

4

5

S
c
o
re
s

Two pruning
No pruning

(a) Story chain C1

Relevance Coherence Coverage Redundancy
Query intent C4

0

1

2

3

4

5

S
c
o
re
s

Two pruning
No pruning

(b) Story chain C4

Relevance Coherence Coverage Redundancy
Query intent C5

0

1

2

3

4

5

S
c
o
re
s

Two pruning
No pruning

(c) Story chain C5

Fig. 9. Performance of PLR-PR and No-pruning

the very beginning.

0 1 2 3 4 5 6 7 8 9
Iteration

0

1000

2000

3000

4000

5000

6000

7000

N
u
m
b
e
r
o
f
re
m
a
in
in
g
 d
o
cu

m
e
n
t
n
o
d
e
s

Fig. 10. Number of remaining documents in each iteration

Table III shows the running time of the algorithm. We set the

running time for the algorithm without any pruning to be one
time unit. The value in the table shows how many time units
PLR, PR, and PLR-PR take respectively with respect to no-
pruning method. We can see that the running time for the PLR
algorithm decreases to only 33% of the time since it removes
large numbers of irrelevant articles from the graph which
makes random walk computation much smaller. Algorithm
PR needs much more running time, because the no-pruning
algorithm needs two random walk computation starts from
start and end nodes respectively and PR requires one more
round of random walk on a tri-partite graph based on the
original data set to find redundant articles. The running time
for PLR-PR which combined two pruning methods together is
on average only 40% of what the no-pruning method requires.
The algorithm is running on a laptop with Intel Core i5
2.67GHz and 4G memory. The average running time for the
no-pruning algorithm is 5 minutes and the algorithm with

Algorithm C1 C2 C3 C4 C5
No-pruning 1 1 1 1 1
PLR - 60% 0.51 0.33 0.45 0.11 0.25

PR 1.78 1.79 1.39 1.55 1.77
PLR-PR 0.67 0.47 0.55 0.15 0.38

TABLE III
RUNNING TIME OF THE ALGORITHM

both pruning algorithm reduces the time to only 2 minutes.
Since the random walk is basically matrix multiplication, we
believe that there are many exsiting methods, such as parallel
computing etc, to optimize or speed up matrix multiplication
which can further reduce the running time of our algorithm
and make it very scalable.

5) Same story, different thread:In this experiment (table
IV), we keep the start node the same but change the end node
of the story chain. One story ends with the verdict of O.J.
Simpson’s trial, while the other story ends with discussion
of race issues in the U.S. The latter generates a completely
different story chain, which focuses on how race issue played
an important role in the jury. The result shows that our story
chain algorithm is quite adaptive to users’ queries. It helps
web users to easily understand different aspects of a story.

(a) Story chain on O.J.Simpson trial
(1) O.J. Simpson’s Ex-Wife Found Dead in Double Homicide (06/13/94)
(2) Five Days After Ex-Wife’s Murder, O.J Simpson Faces

Charges (06/17/94)
(3) Simpson Prosecutors Win Right to Begin DNA Tests (07/25/94)
(4) Chronology of events in O.J. Simpson murder case (09/26/94)
(5) Simpson Jurors To Be Sequestered, Starting Wednesday (01/09/95)
(6) Whether police and prosecutors rushed to judge Simpson as

a suspect (03/17/95)
(7) Simpson limo driver tells of tall, black figure (03/28/95)
(8) Simpson jury reaches verdict in six hours (10/02/95)

(b) Story chain on how Simpson trial related to race issue
(1) O.J. Simpson’s Ex-Wife Found Dead in Double Homicide (06/13/94)
(2) O.J. Simpson Questioned In Ex-wife’s Murder (06/14/94)
(3) Simpson’s Lawyer Says Police Overlooked, Faked

Evidence (01/25/95)
(4) Simpson judge denies trial delay but slams defense (01/30/95)
(5) Tough Math Problem at O.J. Trial

(Whether the bloodstain is O.J.’s)(06/22/95)
(6) Lawyers Argue Over Simpson Glove Evidence (08/01/95)
(7) Prosecution Gears Up for Rebuttal in Simpson Case

(Mark Fuhrman and the taped interviews) (09/10/95)
(8) Defense makes final bid for Simpson’s acquittal

(mention Fuhrman ”lying, perjuring, genocidal racist’)(09/28/95)
(9) Million Man March in Washington D.C. (10/16/95)
(10)Race flares anew as polarizing issue in U.S. life (10/19/95)

TABLE IV
SAME STORY BUT DIFFERENT THREADS

6) Performance on finding complex story chain:Hurricane
Katrina and its effects on government policies is a complex
story. Since the start node and end node are not directly related.
Table V shows that our story chain algorithm can still find
valid and coherent chains for complex stories.

VI. CONCLUSION

In this paper, we proposed a random walk-based finding
story chain algorithm. The story chain finding problem is
formalized as a divide and conquer bisect search problem.

1) A Blast of Rain but Little Damage as Hurricane Hits South
Florida 2005 8 26

3) Hurricane Drenches Florida And Leaves Seven Dead 2005 8 27
4) FEMA, Slow to the Rescue, Now Stumbles in Aid Effort 2005 9 17
5) Millions Are Still Without Power and in Need of Basic Supplies 200510 26
6) South Florida Scrambling To Find Emergency Housing 2005 11 11
7) Bush Erred In Responding To Katrina, Lamont Says 2006 8 25
8) Bush failed to act immediately after Hurricane Katrina to waive the requirement

that state and local governments match federal rebuilding funds 2007 2 13
9) Bush Consoles Victims of Tornadoes in Alabama and Georgia 2007 3 04
10)Gulf Hits Snags In Rebuilding Public Works 2007 3 31
11)Attacking Bush, Clinton Urges Government Overhaul 2007 4 14

TABLE V
STORY CHAIN ON HOW HURRICANE KATRINA AFFECTS ON GOVERNMENT

POLICIES

Two pruning methods are proposed to eliminate redundant
articles on the story chain and improve algorithm efficiency:
(1) prune least relevant articles; (2) prune redundant articles.
The experimental results show that our algorithm can generate
coherent story chains with no redundancy and with low
computational complexity. Future work includes detect and
form story chains with different branches.

REFERENCES

[1] T. H. Haveliwala, “Topic-sensitive pagerank,” inProceedings of the 11th
international conference on World Wide Web, ser. WWW ’02. New
York, NY, USA: ACM, 2002, pp. 517–526.

[2] R. Nallapati, A. Feng, F. Peng, and J. Allan, “Event threading within
news topics,” inProceedings of the thirteenth ACM international confer-
ence on Information and knowledge management, ser. CIKM ’04. New
York, NY, USA: ACM, 2004, pp. 446–453.

[3] Q. Mei and C. Zhai, “Discovering evolutionary theme patterns from text:
an exploration of temporal text mining,” inProceedings of the eleventh
ACM SIGKDD international conference on Knowledge discovery in data
mining, ser. KDD ’05. New York, NY, USA: ACM, 2005, pp. 198–207.

[4] D. Shahaf and C. Guestrin, “Connecting the dots between news articles,”
in Proceedings of the 16th ACM SIGKDD international conference on
Knowledge discovery and data mining. New York, NY, USA: ACM,
2010, pp. 623–632.

[5] G. P. C. Fung, J. X. Yu, H. Liu, and P. S. Yu, “Time-dependent
event hierarchy construction,” inProceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, ser.
KDD ’07. New York, NY, USA: ACM, 2007, pp. 300–309.

[6] H. Chen and S. Dumais, “Bringing order to the web: automatically
categorizing search results,” inProceedings of the SIGCHI conference
on Human factors in computing systems, ser. CHI ’00. New York, NY,
USA: ACM, 2000, pp. 145–152.

[7] H. L. Chieu and Y. K. Lee, “Query based event extraction along a
timeline,” in Proceedings of the 27th annual international ACM SIGIR
conference on Research and development in information retrieval. New
York, NY, USA: ACM, 2004, pp. 425–432.

[8] F.-r. Lin and C.-H. Liang, “Storyline-based summarization for news topic
retrospection,”Decis. Support Syst., vol. 45, pp. 473–490, June 2008.

[9] R. Yan, X. Wan, J. Otterbacher, L. Kong, X. Li, and Y. Zhang, “Evo-
lutionary timeline summarization: a balanced optimization framework
via iterative substitution,” inProceedings of the 34th international ACM
SIGIR conference. New York, NY, USA: ACM, 2011, pp. 745–754.

[10] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos, “Neighborhood
formation and anomaly detection in bipartite graphs,” inIn ICDM, 2005,
pp. 418–425.

[11] L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and
J. Sun, “Temporal recommendation on graphs via long- and short-term
preference fusion,” inIn KDD. New York, NY, USA: ACM, 2010, pp.
723–732.

[12] R. Angelova and G. Weikum, “Graph-based text classification: learn
from your neighbors,” inProceedings of the 29th annual international
ACM SIGIR conference. New York, USA: ACM, 2006, pp. 485–492.

	Introduction
	Related Work
	Problem definition
	Story chain finding algorithm
	Compute link strength
	Stage 1: Search
	Stage 2: Pruning
	Prune least relevant articles
	Prune redundant articles

	Experiments and Evaluation
	Data Set
	Exprimental parameters
	Performance Evaluation
	Performance of PLR (prune irrelevant articles)
	Performance of PR (only prune redundant articles)
	Performance of both PLR-PR
	Computational complexity
	Same story, different thread
	Performance on finding complex story chain

	Conclusion
	References

