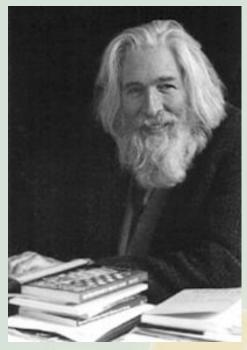
Logic Puzzles


Miran Kim Ben Seelbinder Matthew Sgambati

What are logic puzzles?

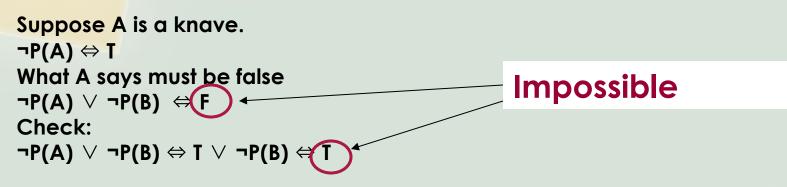
- "A puzzle deriving from the mathematics field of deduction"
- Produced by Charles Lutwidge Dodgson
- A puzzle that can be solved using logical reasoning
- It helps work with rules of logic (and, or, xor, etc.)
- Programs that carry out logical reasoning use these puzzles to illustrate capabilities

The Master of Logic Puzzles

- High School dropout who got a Ph.D. in logic at Princeton
- Wrote many books on logic puzzles such as Alice in Puzzle-Land and To Mock a Mockingbird
- Most famous for his "Knights and Knaves Problem"

Raymond Smullyan

Knights and Knaves



- Encounter two people
- Knights always tell the truth
- Knaves always lie
- Figure out whether each person is a knight or a knave from their statements
- Example: A says, "At least one of us is a knave" and B says nothing

Knight and Knave Problem

A says "At least one of us is a knave" and B says nothing. P(x): x is a knight ¬P(x): x is a knave

A is a knight and what A says must be true. P(A) $\neg P(A) \lor \neg P(B)$

∴¬P(B)

Answer: A is a knight. B is a knave.

Knight and Knave Problem

A says "The two of us are both knight" and B says "A is a knave." P(x): x is a knight ¬P(x): x is a knave

Suppose A is a knight. P(A) ⇔ T Impossible What A says must be true **P(A)**∧**P(B)** ⇔ **T P(B)** ⇔ T However, **B** says **Answer**: ¬P(A) ⇔ T P(A) 숙 F A is a knave. B is a knight. A is a knave and what A says is false. ¬P(A) ⇔ T $P(A) \land P(B) \Leftrightarrow F \land P(B) \Leftrightarrow F$ B is a knight because his statement (A is a knave) is true.

Knight and Knave Problem

A says, "I am a knave or B is a knight" and B says nothing.

- <mark>A i</mark>s a knight
- B is a knight
- Both A and B say, "I am a knight."
 - Cannot determine the answer
- A says, "We are both knaves" and B says nothing.
 - A is a knave
 - B is a knight

A says, "B is a knight" and B says, "The two of us are opposite types."

- A is a knave
- B is a knave

Knight, Knave and Spy Problem

from Alice in Puzzle-Land

Added rule: Spy can lie or tell the truth.

There is one spy, one knight, and one knave. A says that C is a knave. B says that A is a knight. C says "I am the spy." Which one is the spy, which one is the knight, which one is the knave?

Knight(x): x is a knight Knave(x): x is a knave Spy(x): x is a spy

From C's statement, C can't be a knight because a knight never lie abo ut his identity. Therefore, C is either a knave or a spy.

Knight, Knave and Spy Problem cont.

from Alice in Puzzle-Land

Suppose C is a spy.

¬Knight(C) ∧ ¬Knave(C) ∧ Spy(C) ⇔ T ¬Knave(C) ⇔ T (simplification)
Knave(C) ⇔ F

What A says is false, so A is knave.

 $\neg Knight(A) \land Knave(A) \land \neg Spy(A) \Leftrightarrow T$ $\neg Knight(A) \Leftrightarrow T (simplification)$

B must be a knight, and what B says must be true.

Check:

Knight(A) ⇔ T

¬Knight(A) ⇔(F)

Answer: C is a knave. A is telling the truth, so A is a knight. B is a spy.

There is one spy, one knig ht, and one knave.

A says that C is a knave. B says that A is a knight. C says "I am the spy."

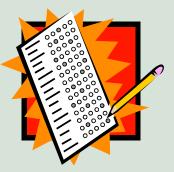
Impossible

 \therefore C isn't a spy.

Multiple Choice Help

You encounter a problem on an exam with only answer choices, the question has been omitted. Here are the answers:

- A. Answer A
- **B.** Answer A or Answer B
- C. Answer B or Answer C


We may determine the correct answer using discrete math

- R(x): Answer x is right
- The correct answer must be the only one •

Suppose A correct (R(A) = True), we have the following answers:

- $R(A) \quad \Leftrightarrow \quad T \quad \Leftrightarrow \quad True$ •
- $R(A) \lor \neg R(B) \Leftrightarrow T \lor F \Leftrightarrow True$ $\neg R(B) \lor \neg R(C) \Leftrightarrow F \lor F \Leftrightarrow False$ False

Knowing this may only have one correct answer, we can determine that this answ er is not right.

Multiple Choice Help

Suppose R(B) = True

• $\neg R(A)$ \Leftrightarrow F \Leftrightarrow False • $\neg R(A) \lor R(B)$ \Leftrightarrow F \lor T \Leftrightarrow True False $R(B) \lor \neg R(C) \quad \Leftrightarrow \quad T \lor F \ \Leftrightarrow \quad True$ •

Suppose R(C) = True

- $\neg R(A) \Leftrightarrow F \Leftrightarrow False$ $\neg R(A) \lor \neg R(B) \Leftrightarrow F \lor F \Leftrightarrow False$
- True
- $\neg R(B) \lor R(C) \quad \Leftrightarrow \quad F \lor T \ \Leftrightarrow \quad True$ •

Comparing each solution, we know that the correct answer must be C. We didn't have to look at the question!

False Statement

Which statement is false (assuming only one is false)?

- A. Statement D is true
- B. Statement A is false
 - C. Statement B is false
 - D. Statement C is true

When statement B is true, it results in statement A being false, which results in statement D being false also. This results in more than one false statement, so statement B is the false one.

Conclusion

- What are logic puzzles?
- Who started logic puzzles?
- The master of logic puzzles
 - Knights and Knaves
- Method of thinking for logic puzzles

Questions?

Pop Quiz!

- 1. The next question with the same answer as this one is: (A) 2 (B) 3 (C) 4 (D) 5
- 2. The first question with answer C is: (A) 1 (B) 2 (C) 3 (D) 4
- 3. The last question with answer A is: (A) 5 (B) 6 (C) 7 (D) 8
- 4. The number of questions with answer D is: (A) 1 (B) 2 (C) 3 (D) 4
- 5. The answer occurring the most is (if tied, first alphabetically): (A) A (B) B (C) C (D) D
- 6. The first question with the same answer as the question following it is: (A) 2 (B) 3 (C) 4 (D) 5
- 7. The answer occurring the least is (if tied, last alphabetically): (A) A (B) B (C) C (D) D
- 8. The highest possible score on this test is: (A) 5 (B) 7 (C) 6 (D) 8

