Critical Path and Clock Frequency

- A key performance indicator of FPGA designs is the maximum clock frequency at which they will operate.
- This is limited by the longest propagation delay along a combinatorial logic path between two clocked elements (the critical path).

Pipelining and Latency

- Having noted the dependence of clock frequency on length of combinatorial logic path, we might seek to break this up by inserting additional registers. This process is referred to as *pipelining*.
- To continue the previous example, we insert the register P, and divide the combinatorial logic path into two equal sections.

- The effect of adding the additional pipeline register is to increase the maximum clock frequency by a factor of 2.
- However a less desirable consequence is to delay the output by one clock cycle (i.e. add 1 clock cycle of *latency*).

Version 4.5/13/09 For Academic Use Only, All Rights Reserved