

Core Generator Software System

After completing this module, you will able to:

- Describe the differences between LogiCORE[™] and AllianceCORE solutions
- Identify two benefits of using cores in your designs
- Create customized cores by using the CORE Generator software system GUI
- Instantiate cores into your HDL design
- Run behavioral simulation on a design that contains cores

What are Cores?

- A core is a ready-made function that you can instantiate into your design as a *black box*
- Cores can range in complexity
 - Simple arithmetic operators, such as adders, accumulators, and multipliers
 - System-level building blocks, such as filters, transforms, and memories
 - Specialized functions, such as bus interfaces, controllers, and microprocessors
- Some cores can be customized

Benefits of Using Cores

Save design time

- Cores are created by expert designers who have in-depth knowledge of Xilinx FPGA architecture
- Guaranteed functionality saves time during simulation

Increase design performance

- Cores that contain mapping and placement information have predictable performance that is constant over device size and utilization
- The data sheet for each core provides performance expectations
 - Use timing constraints to achieve maximum performance

Types of Cores

LogiCORE solutions

AllianceCORE solutions

LogiCORE Solutions

Typically customizable

- Fully tested, documented, and supported by Xilinx
- Many are pre-placed for predictable timing
- Many are unlicensed and provided for free with Xilinx software
 - More complex LogiCORE solution products are licensed
- VHDL and Verilog flow support for several EDA tools

AllianceCORE Solutions

Point-solution cores

- Typically not customizable (some HDL versions are customizable)
- Sold and supported by Xilinx AllianceCORE solution partners
 - Partners can be contacted directly to provide customized cores
 - A free evaluation version of the module is available
 - · You will need to contact the IP Center for licensing and ordering information
- All cores are optimized for Xilinx; some are pre-placed
- Typically supplied as an Electronic Design Interchange Format (EDIF) netlist
- VHDL and Verilog flow support

Sample Functions

LogiCORE solutions logic

- DSP functions
 - Time skew buffers, Finite Impulse Response (FIR) filters, transforms, and correlators
- Math functions
 - Accumulators, adders, multipliers, integrators, trig functions, and square root
- Memories
 - Pipelined delay elements, single- and dual-port RAM
 - · Synchronous FIFOs
- PCI[™] core master and slave interfaces, PCI core bridge

AllianceCORE solutions

- Peripherals
 - DMA controllers, programmable interrupt controllers, and UARTs
- Communications and
 - networking
 - ATM, Fibre Channel, and Ethernet MAC
 - · Error Correction
 - CTC, 3GPP, Viterbi, and Reed-Solomon
- Video and image processing
- Standard bus interfaces
 - PCMCIA, USB, PCI, PCI Express® core

CORE Generator Software System

A Graphical User Interface (GUI) allows central access to LogiCORE IP products, as well as

- Data sheets
- Customizable parameters

Interfaces with design entry tools

- Creates instantiation templates for HDL-based designs
- Web Links tab provides access to the Xilinx Website and the IP Center
 - The IP Center contains new cores to download and install
 - You always have access to the latest cores

Launching the CORE Generator

- The Core Generator is available as standalone application
 - Launched from Programs → Xilinx ISE Design Suite → ISE Design Tools → Tools → Core Generator
- Can be launched from ISE Project Navigator.
- Latest 12.1 PlanAhead software has Core Generator software integrated.

Running the CORE Generator

- From the Project
 Navigator, select Project
 → New Source
- Select IP (CORE Generator & Architecture Wizard) and enter a filename
- Click Next and then select the type of core

🔤 New Source Wizard	
Select Source Type Select source type, file name and its location.	
BMM File ChipScope Definition and Connection File Implementation Constraints File IP (CORE Generator & Architecture Wizard) MEM File Schematic User Document Verilog Module Verilog Test Fixture VHDL Module VHDL Library VHDL Test Bench Embedded Processor	File name: Location: :\training\embedded\labs\lab6\MB_SP605\ipcore_dir Add to project
More Info	Next > Cancel

Running the CORE Generator(contd)

- From the PlanAhead GUI, select Project Manager → IP Catalog.
- In IP Cores window expand tree and select the type of core.

1	project_3 - Project Manager - [0	::\trai	aining\PlanAhead\PlanAhead_Tutorial\Tutorial_Created_Data\project	ł
F	ile Edit View Flow Tools Wi	ndow	v Select Layout Help	
(🖸 🖻 🗎 🖬 🕬 🗶 🕅 🗞	6	š \Sigma 📚 🕨 🐂 🗞 🕵 📾 🔂 👎 🏥 뵺 🧠	
	Project Manager	Pro	oject Manager	
	🀞 Project Settings	٩	Search: Q-	
	😚 Add Sources	Z	Name A 1 Version Status License	I
	🞐 Add Existing IP		Automotive & Industrial Basic Elements	
	📴 Add Constraints	逐	E → Communication & Networking	
1	u== ↓ IP Catalog		E In C Debug & Verification In C FPGA Features and Design	
	Slaborate		Memories & Storage Elements B. Construction	
	> Project Summary		🖻 🗁 RAMs & ROMs	
			Block Memory Generator 4.1 Production Included	
	RTL Design 🔻	n	Distributed Memory Generator 5.1 Production Included	
			E Constant Bus Interfaces	
		-0-	🛛 🖽 🗀 Video & Image Processing	

Core Customize Window

Core Data Sheets

Features

Also: Functionality and pinout (next page)

Performance expectations and resource utilization

XILINX[®] logi^C

Block Memory Generator v3.3

Product Specification

DS512 September 16, 2009

Introduction

The Xilinx LogiCORE™ IP Block Memory Generator core is an advanced memory constructor that generates area and performance-optimized memories using embedded block RAM resources in Xilinx FPGAs. Available through the CORE Generator[™] software, users can quickly create optimized memories to leverage the performance and features of block RAMs in Xilinx FPGAs.

Features

- Generates Single-port RAM, Simple Dual-port RAM, True Dual-port RAM, Single-port ROM, and Dual-port ROM
- Performance up to 450 MHz
- · Supports data widths from 1 to 1152 bits and memory depths from 2 to 9M words (limited only by memory resources on selected part)
- · Supports configurable port aspect ratios for dualport configurations and read-to-write aspect ratios in Virtex®-6, Virtex-5 and Virtex-4 FPGAs
- · Optimized algorithms for minimum block RAM resource utilization or low power utilization
- Configurable memory initialization
- · Supports individual write enable per byte in Virtex-6, Virtex-5, Virtex-4, Spartan®-6, and Spartan-3A/XA DSP with or without parity
- Optimized VHDL and Verilog behavioral models for fast simulation times; structural simulation models for precise simulation of memory hehaviors
- Selectable operating mode per port: WRITE_FIRST, READ FIRST, or NO CHANGE
- Supports built-in Hamming Error Correction Capability (ECC) for Virtex-6 and Virtex-5 devices, and associated error injection pins in Virtex-6 to insert single and double bit errors
- Supports pipelining of DOUT bus for improved performance in specific configurations
- Constitution and Constitution in Co

- Lower data widths for Virtex-6 devices in SDP mode Choice of reset priority for output registers
- between priority of SR (Set Reset) or CE (Clock Enable) in Spartan-6 and Virtex-6 families.
- Asynchronous reset in Spartan-6 devices.

	Core Specifics
upported levice Family ⁽¹⁾	Virtex-6, Virtex-5, Virtex-4, Spartan-6, Spartan-3E/XA, Spartan-3/XA, Spartan-3A/3AN/3A DSP
lock RAM	Varied, based on core parameters
CM	None
UFG	None
DBs/ ransceivers	None
PC	None
DB-FF/TBUFs	None
	Provided with Core
ocumentation	Product Specification Migration Guide ⁽²⁾
esign File ormats	NGC Netlist
Des	ign Tool Requirements
ilinx nplementation ools	ISE® v11.3
imulation	Mentor Graphice® ModelSim®: v6.4b and above VHDL Structural Venilog Structural VHDL Behavioral ⁽³⁾ Venilog Behavioral ⁽³⁾
ynthesis	XST
	Support
rovided by Xilinx,	Inc.

IP 6.x Single or Dual Port Block Memory, or older versions

	billing printing configurations in open			width	nesource offization						2011-2012-301-201-0-302-
devices with the introduction of new 9K primitives.	Memory	Options	Depth	Block RAMs			Shift	EEa	LUTe(1)	Performance (MHz)	
		-			36K	16K	8K	Regs	FFS	LUIS	
	e 2006-2009 XIIm, Inc. XIIm, Inc. XIII, XI, The XIIInX logo, Vite States and other countries. All other tradsmarks are the property DS512 September 16, 2009 Product Specification	True Dual-port RAM	No Output Registers	36x512	1	0	0	0	0	0	325
				9x2k	0	1	0	0	0	0	325
			Embedded Output Registers	36x512	1	0	0	0	0	0	450
ľ				9x2k	0	1	0	0	0	0	450

HDL Design Flow

Core Generation and Integration

Generate or purchase a core

- Netlist file (NGC)
- Instantiation template files (VHO or VEO)
- Behavioral simulation wrapper files (VHD or V)
- Instantiate the core into your HDL source
 - Cut and paste from the templates provided in the VEO or VHO file
- The design is ready for synthesis and implementation
- Use the wrapper files for behavioral simulation
 - The ISE® software automatically uses wrapper files when cores are present in the design
 - VHDL: Analyze the wrapper file for each core before analyzing the file that instantiates the core

Summary

- A core is a ready-made and verified function that you can insert into your design
- LogiCORE solution products are sold and supported by Xilinx
- AllianceCORE solution products are sold and supported by AllianceCORE solution partners
- Using cores can save design time and provide increased performance
- Cores can be used in schematic or HDL design flows

Where Can I Learn More?

Xilinx IP Center

- Help \rightarrow Xilinx on the Web \rightarrow IP Center

- · Find out about new IP (for EDK as well)
- · Browse IP by type, vendor, and function
- Find IP documentation
- · Update the Core Generator with the latest IP
- · Evaluate IP

Xilinx Training

- www.xilinx.com/training
 - Xilinx tools and architecture courses
 - Hardware description language courses
 - Basic FPGA architecture, Basic HDL Coding Techniques, and other free training videos!