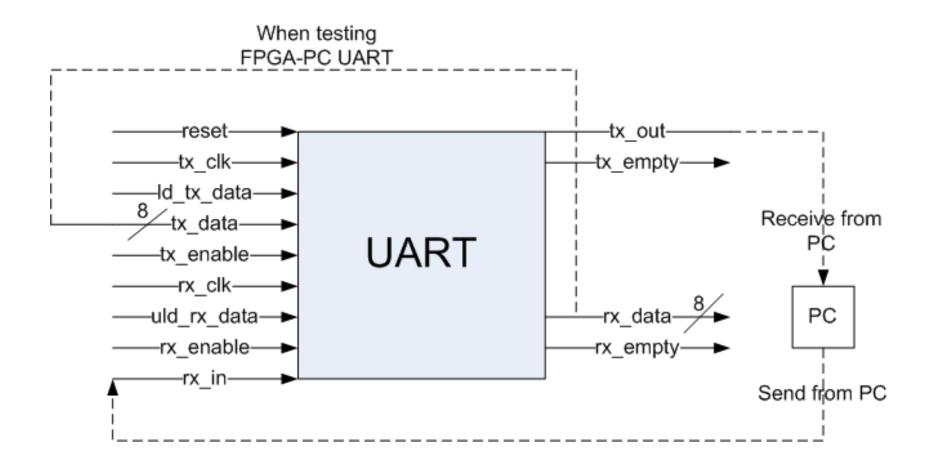
UART

Universal asynchronous receiver and transmitter


UART

• A protocol that translates data between parallel and serial form.

- Interface with PC is serial. i.e Data is sent serially, bit by bit.
- There are only two pins between UART & PC interface: rx_in and tx_out.

UART IO pins for the UART verilog example code

<u>http://www.asic-world.com/examples/verilog/uart.html</u>

Specifics for the UART verilog example code

- For this module: rx_clk set to be 16x faster than tx_clk which is desired baudrate.
- Baudrate values 110, 150, 300, 1200, 2400, 9600, 19200, 38400, 115200, ...
- If tx_empty = 1 then ld_tx_data = 1 => tx_data is loaded

For receiving , check if rx_empty = 0 then make uld_rx_data = 1

• For this code rx_in = tx_out (In test bench)

- You need to generate rx-clk and tx_clk from a reference clk that is generated on board according to your UCF file. Tx_clk is set as baudrate and rx-clk is 16 times faster. You need to find the appropriate counter numbers to divide the reference clk to generate both tx_clk and rx_clk.
- For example if reference clk is 50MhZ and the baud rate is 115200 bps. You need to divide the reference clk by 50M/115200 = 434 clock cycles to generate tx_clk. The rx_clk is 16 times faster, so we need to divide the reference clk by 50M/115200 /16 = 27 cycles to generate rx_clk.
- Verilog Code example:

```
always@(posedge clk)
begin
  tx counter <= tx counter + 1;</pre>
  rx counter <= rx counter + 1;
  if(tx counter == 434)
  begin
    tx counter <= 0;
    txclk \leq ~txclk;
  end
  if(rx counter == 27)
  begin
    rx counter \leq 0;
    rxclk <= ~ rxclk;
  end
```