Convolution is a key kernel in Convolutional Neural Networks (CNN). It is also a powerful tool for object and pattern detection. In this project we going to detect a specific pattern/object from a pool of objects and patterns.

You will be provided with a pattern and an image where you need to detect that pattern and determine how many times the pattern is being matched. Therefore You will supply your fpga with two input images and fpga will render an output of how many times a match is found.

Step 1: we would be using convolution to extract features (filter) from the sample-image and pattern-image. There is a number of filters you may choose to apply here:

1. sobel filter for vertical edge detection

 \[-1 -2 -1; 0 0 0;1 2 1\]

2. sobel filter for horizontal edge detection

 \[-1 0 1; -2 0 2; -1 0 1\]

3. Laplasian filter

 \[0 -1 0; -1 4 -1; 0 -1 0\]

These are 3x3 filters with depth 1 (1D). Since the input is 3D you need to construct 3D filter by replication.

Step 2: after this feature extraction layer; we will convolve the feature extracted version of sample-image and pattern-image.

Step 3: a maxpool layer may be cascaded with the convolutional layer for dimensionality reduction.

Step 4: At positions of match, high value of convolution result will appear. You need to devise a scheme to detect how many times match is found. One way of doing it would be to analyze positions of maximum and near maximum spikes.
The objective is to design a fully working hardware that can perform pattern recognition using the steps explained earlier. The possible modules that need to be designed are shown in Figure 1 and also as follows:

- module for convolution
- module for max pooling
- module for sorting (to detect how many times peaks are happening)
- module that controls this sequence

Delivery and Timeline

For all phases, students will give a short presentation and update on their work.

Phase 1: Due Aril 21st

- You are provided Convolution and maxpool module. You need to use these modules to construct a software prototype (preferably in matlab) of the whole system.
- You may not use the whole image but a resized version of it to fit in the FPGA data memory. Therefore, you need to calculate how many data memory of what size you need for calculation.
- You discuss on choice of filter to use and why (discuss filter effect on Detection pattern).
- How much memory you need to handle in each layer.
- How many bits of data in each layer.
Phase 2 due April 28th

- Detailed design presentation and characterization such as number of bits for input/output and middle, memory size, control sequence, number of cycles to finish, parallel vs serial architecture
- Verilog design and verification for convolution and maxpooling kernels

Phase 3 due May 5th

- Finish all kernel design and verification in simulation

Phase 4 due May 10th Last day of class

- Full working system and demo in simulation.
- Your hardware should work with any new image and pattern. The demo will be evaluated upon functionality and accuracy of your design with the given image during demo time. A new image will be given