
Command Reference for
Encounter RTL Compiler

Product Version 9.1
July 2009

 2003-2009 Cadence Design Systems, Inc. All rights reserved.
Portions © Concept Engineering GmbH. Used by permission.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Product Encounter™ RTL Compiler contains technology licensed from, and copyrighted by: Concept
Engineering GmbH, and is 1998-2006, Concept Engineering GmbH. All rights reserved.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered
trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with
permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are
attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks, contact the
corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the
property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and contains
trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this
publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted,
or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by
Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this
publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark,

and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Patents: Cadence Product Encounter™ RTL Compiler described in this document, is protected by U.S. Patents
[5,892,687]; [6,470,486]; 6,772,398]; [6,772,399]; [6,807,651]; [6,832,357]; and [7,007,247]

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs
of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Command Reference for Encounter RTL Compiler

Contents
Alphabetical List of Commands . 17

Preface . 23

About This Manual . 24
Additional References . 24
How to Use the Documentation Set . 25
Reporting Problems or Errors in Manuals . 26
Customer Support . 26

Cadence Online Support . 26
Other Support Offerings . 26

Messages . 27
Man Pages . 27
Command-Line Help . 28

Getting the Syntax for a Command . 28
Getting the Syntax for an Attribute . 28
Searching for Attributes . 29
Searching For Commands When You Are Unsure of the Name 29

Documentation Conventions . 30
Text Command Syntax . 30

1
Navigation . 31

basename . 32
cd . 33
dirname . 35
dirs . 36
filter . 37
find . 39
inout_mate . 44
ll . 45
July 2009 3 Product Version 9.1

Command Reference for Encounter RTL Compiler
ls . 46
popd . 50
pushd . 51
pwd . 52
vdir_lsearch . 53
what_is . 54

2
General . 55

? . 57
alias . 58
all_inputs . 59
all_outputs . 60
apropos . 61
clear . 62
date . 63
enable_transparent_latches . 64
exec_embedded_script . 65
exit . 67
get_attribute . 68
get_liberty_attribute . 71
get_read_files . 72
help . 73
include . 74
lcd . 75
license . 76
license checkin . 77
license checkout . 78
license list . 79
lls . 80
lpopd . 81
lpushd . 82
lpwd . 83
man . 84
more . 85
July 2009 4 Product Version 9.1

Command Reference for Encounter RTL Compiler
quit . 87
rc . 88
redirect . 92
reset_attribute . 94
resume . 96
sdc_shell . 97
set_attribute . 98
shell . 101
suppress_messages . 102
suspend . 103
unsuppress_messages . 104

3
GUI Text. 105

General GUI Text Commands . 106
gui_hide . 107
gui_info . 107
gui_raise . 107
gui_reset . 107
.gui_selection . 108
gui_show . 108
gui_status . 108
gui_update . 108

HDL Viewer GUI Text Commands . 109
gui_hv_clear . 110
gui_hv_get_file . 110
gui_hv_load_file . 110
gui_hv_set_indicators . 111

Schematic Viewer GUI Text Commands . 112
gui_sv_clear . 113
gui_sv_get_instance . 113
gui_sv_grey . 113
gui_sv_highlight . 114
gui_sv_load . 115

Physical Viewer GUI Text Commands . 116
July 2009 5 Product Version 9.1

Command Reference for Encounter RTL Compiler
gui_pv_airline_add . 117
gui_pv_airline_delete . 118
gui_pv_airline_display . 118
gui_pv_airline_raw_add . 119
gui_pv_clear . 119
gui_pv_highlight . 120
gui_pv_highlight_update . 122
gui_pv_label . 122
gui_pv_redraw . 123
gui_pv_selection . 123
gui_pv_snapshot . 123
gui_pv_zoom_fit . 125
gui_pv_zoom_in . 125
gui_pv_zoom_out . 125
gui_pv_zoom_to . 125

4
Chipware Developer . 127

cwd . 128
cwd check . 129
cwd create_check . 133
cwd report_check . 135
hdl_create . 137
hdl_create binding . 138
hdl_create component . 140
hdl_create implementation . 142
hdl_create library . 144
hdl_create operator . 145
hdl_create package . 146
hdl_create parameter . 148
hdl_create pin . 150

5
Input and Output . 153

decrypt . 155
July 2009 6 Product Version 9.1

Command Reference for Encounter RTL Compiler
encrypt . 156
export_critical_endpoints . 159
read_config_file . 161
read_cpf . 162
read_def . 163
read_dfm . 164
read_dft_abstract_model . 166
read_encounter . 167
read_hdl . 168
read_io_speclist . 172
read_netlist . 173
read_saif . 175
read_sdc . 176
read_spef . 178
read_tcf . 179
read_vcd . 180
restore_design . 181
write_atpg . 183
write_bsdl . 184
write_compression_macro . 185
write_config_template . 186
write_def . 187
write_design . 188
write_dft_abstract_model . 189
write_do_ccd . 190
write_do_ccd compare_sdc . 191
write_do_ccd generate . 192
write_do_ccd propagate . 193
write_do_ccd validate . 195
write_do_clp . 196
write_do_lec . 198
write_do_verify cdc . 200
write_encounter . 202
write_et_atpg . 205
write_et_bsv . 206
write_et_mbist . 207
July 2009 7 Product Version 9.1

Command Reference for Encounter RTL Compiler
write_et_rrfa . 208
write_ets . 209
write_ett . 210
write_forward_saif . 211
write_hdl . 212
write_io_speclist . 215
write_saif . 216
write_scandef . 217
write_script . 218
write_sdc . 221
write_sdf . 224
write_set_load . 227
write_spef . 228
write_tcf . 229
write_template . 230

6
Constraints . 233

clock_uncertainty . 234
create_mode . 237
define_clock . 240
define_cost_group . 245
derive_environment . 246
external_delay . 248
generate_constraints . 252
multi_cycle . 254
path_adjust . 259
path_delay . 263
path_disable . 266
path_group . 269
propagate_constraints . 272
specify_paths . 274
validate_constraints . 280
July 2009 8 Product Version 9.1

Command Reference for Encounter RTL Compiler
7
Elaboration and Synthesis. 283

elaborate . 284
remove_assigns_without_optimization . 286
remove_inserted_sync_enable_logic . 288
retime . 289
set_remove_assign_options . 291
synthesize . 294

8
Analysis and Report . 301

all_connected . 304
all des . 305
all des inps . 306
all des insts . 307
all des outs . 308
all des seqs . 309
all lib . 311
all lib bufs . 312
all lib ties . 313
analyze_library_corners . 314
check_design . 316
clock_ports . 321
compare_sdc . 322
fanin . 323
fanout . 326
report . 328
report area . 332
report boundary_opto . 334
report buskeepers . 335
report cdn_loop_breaker . 336
report cell_delay_calculation . 338
report checks . 339
report clock_gating . 342
July 2009 9 Product Version 9.1

Command Reference for Encounter RTL Compiler
report clocks . 347
report congestion . 349
report datapath . 350
report design_rules . 355
report dft_chains . 356
report dft_registers . 361
report dft_setup . 365
report dft_violations . 370
report disabled_transparent_latches . 373
report gates . 374
report hierarchy . 377
report instance . 379
report isolation . 381
report level_shifter . 384
report memory . 388
report memory_cells . 389
report messages . 391
report net_cap_calculation . 393
report net_delay_calculation . 394
report net_res_calculation . 395
report nets . 396
report operand_isolation . 400
report ple . 402
report port . 403
report power . 404
report power_domain . 416
report qor . 419
report scan_power . 422
report sequential . 426
report slew_calculation . 428
report spare_instances . 429
report state_retention . 430
report summary . 435
report timing . 437
report yield . 445
timestat . 446
July 2009 10 Product Version 9.1

Command Reference for Encounter RTL Compiler
validate_timing . 447

9
Physical . 449

def_move . 450
predict_qos . 451
read_def . 453
read_encounter . 455
read_spef . 456
report congestion . 457
reset_def . 458
specify_floorplan . 459
update_congestion_map . 461
write_def . 462
write_spef . 463

10
Quality Analyzer . 465

add_rule_group . 466
launch . 467
read_config_file . 468
report buskeepers . 469
report checks . 470
report spare_instances . 471
reset_session . 472
restore_session . 473
save_session . 474
signoff_checks . 475
signoff_checks all . 477
signoff_checks clock_domain_crossing . 478
signoff_checks constraints . 479
signoff_checks dft . 480
signoff_checks hdl_lint . 481
signoff_checks library . 482
signoff_checks physical . 483
July 2009 11 Product Version 9.1

Command Reference for Encounter RTL Compiler
signoff_checks power . 484
write_config_template . 485

11
Design for Test . 487

 analyze_scan_compressibility . 490
analyze_testability . 495
check_atpg_rules . 498
check_dft_pad_configuration . 500
check_dft_rules . 501
compress_scan_chains . 508
concat_scan_chains . 520
configure_pad_dft . 522
connect_scan_chains . 523
define_dft . 528
define_dft abstract_segment . 530
define_dft boundary_scan_segment . 535
define_dft dft_configuration_mode . 538
define_dft fixed_segment . 540
define_dft floating_segment . 542
define_dft jtag_instruction . 543
define_dft jtag_instruction_register . 547
define_dft jtag_macro . 549
define_dft mbist_clock . 554
define_dft preserved_segment . 557
define_dft scan_chain . 560
define_dft scan_clock_a . 566
define_dft scan_clock_b . 569
define_dft shift_enable . 572
define_dft shift_register_segment . 575
define_dft test_clock . 577
define_dft test_mode . 581
dft_trace_back . 584
fix_dft_violations . 586
fix_scan_path_inversions . 590
July 2009 12 Product Version 9.1

Command Reference for Encounter RTL Compiler
identify_multibit_cell_abstract_scan_segments . 591
identify_shift_register_scan_segments . 593
identify_test_mode_registers . 595
insert_dft . 598
insert_dft analyzed_test_points . 600
insert_dft boundary_scan . 607
insert_dft dfa_test_points . 611
insert_dft jtag_macro . 614
insert_dft lockup_element . 617
insert_dft mbist . 618
insert_dft ptam . 622
insert_dft scan_power_gating . 625
insert_dft shadow_logic . 627
insert_dft test_point . 631
insert_dft user_test_point . 636
insert_dft wrapper_cell . 638
read_dft_abstract_model . 641
read_io_speclist . 643
replace_scan . 644
report_scan_compressibility . 645
report dft_chains . 647
report dft_registers . 648
report dft_setup . 649
report dft_violations . 650
report scan_power . 651
reset_scan_equivalent . 652
set_compatible_test_clocks . 653
set_scan_equivalent . 654
write_atpg . 656
write_bsdl . 659
write_compression_macro . 662
write_dft_abstract_model . 666
write_et_atpg . 669
write_et_bsv . 674
write_et_dfa . 678
write_et_mbist . 682
July 2009 13 Product Version 9.1

Command Reference for Encounter RTL Compiler
write_et_rrfa . 687
write_io_speclist . 691
write_scandef . 693

12
Low Power Synthesis. 697

build_rtl_power_models . 699
clock_gating . 701
clock_gating connect_test . 703
clock_gating declone . 704
clock_gating import . 705
clock_gating insert_in_netlist . 707
clock_gating insert_obs . 708
clock_gating join . 710
clock_gating remove . 712
clock_gating share . 714
clock_gating split . 716
read_saif . 718
read_tcf . 722
read_vcd . 727
report clock_gating . 730
report operand_isolation . 731
report power . 732
state_retention . 733
state_retention connect_power_gating_pins . 734
state_retention swap . 735
write_forward_saif . 736
write_saif . 738
write_tcf . 740

13
Advanced Low Power Synthesis . 743

check_cpf . 744
check_library . 746
commit_cpf . 752
July 2009 14 Product Version 9.1

Command Reference for Encounter RTL Compiler
create_library_domain . 753
isolation_cell remove . 754
level_shifter remove . 757
read_cpf . 760
reload_cpf . 762
report isolation . 764
report level_shifter . 765
report state_retention . 766
verify_power_structure . 767

14
Design Exploration . 769

dex_create_exploration_scenarios . 770
dex_define_exploration_power_domain . 771
dex_execute_exploration_scenarios . 773
dex_report qor_summary . 775
dex_report thread_info . 776
dex_write_scenario . 778

15
Design Manipulation. 779

change_link . 781
change_names . 783
clock_gating . 790
delete_unloaded_undriven . 791
edit_netlist . 792
edit_netlist bitblast_all_ports . 794
edit_netlist connect . 795
edit_netlist dedicate_subdesign . 797
edit_netlist disconnect . 798
edit_netlist group . 800
edit_netlist new_design . 802
edit_netlist new_instance . 803
edit_netlist new_port_bus . 805
edit_netlist new_primitive . 806
July 2009 15 Product Version 9.1

Command Reference for Encounter RTL Compiler
edit_netlist new_subport_bus . 808
edit_netlist ungroup . 809
edit_netlist uniquify . 810
group . 811
insert_tiehilo_cells . 812
mv . 815
remove_cdn_loop_breaker . 817
reset_design . 819
rm . 820
ungroup . 822
uniquify . 824

16
Customization . 825

add_command_help . 826
define_attribute . 827
mesg_make . 831
mesg_send . 833
parse_options . 834

Index. 839
July 2009 16 Product Version 9.1

Command Reference for Encounter RTL Compiler
Alphabetical List of Commands
Symbols
? 57

A
add_command_help 826
add_rule_group 466
alias 58
all des inps 306
all des insts 307
all des outs 308
all des seqs 309
all lib 311
all lib bufs 312
all lib ties 313
all_connected 304
all_inputs 59
all_outputs 60
analyze_library_corners 314
analyze_scan_compressibility 490
analyze_testability 495
apropos 61

B
basename 32
build_rtl_power_models 699

C
cd 33
change_link 781
change_names 783
check_atpg_rules 498
check_cpf 744
check_design 316
check_dft_pad_configuration 500
check_dft_rules 501
check_library 746
clear 62
clock_gating 701
clock_gating connect_test 703
July 2009 1
clock_gating declone 704
clock_gating import 705
clock_gating insert_in_netlist 707
clock_gating insert_obs 708
clock_gating join 710
clock_gating remove 712
clock_gating share 714
clock_gating split 716
clock_ports 321
clock_uncertainty 234
commit_cpf 752
compare_sdc 322
compress_scan_chains 508
concat_scan_chains 520
configure_pad_dft 522
connect_scan_chains 523
create_library_domain 753
create_mode 237
cwd 128
cwd check 129
cwd create_check 133
cwd report_check 135

D
date 63
decrypt 155
define_attribute 827
define_clock 240
define_cost_group 245
define_dft 528
define_dft abstract_segment 530
define_dft boundary_scan_segment 535
define_dft dft_configuration_mode 538
define_dft fixed_segment 540
define_dft floating_segment 542
define_dft jtag_instruction 543
define_dft jtag_instruction_register 547
define_dft jtag_macro 549
define_dft mbist_clock 554
define_dft preserved_segment 557
define_dft scan_chain 560
define_dft scan_clock_a 566
define_dft scan_clock_b 569
define_dft shift_enable 572
7 Product Version 9.1

Command Reference for Encounter RTL Compiler
define_dft shift_register_segment 575
define_dft test_clock 554, 577
define_dft test_mode 581
delete_unloaded_undriven 791
derive_environment 246
dex_create_exploration_scenarios 770
dex_define_exploration_power_domain 7

71
dex_execute_exploration_scenarios 773
dex_report qor_summary 775
dex_report thread_info 776
dex_write_scenario 778
dft_trace_back 584
dirname 35
dirs 36

E
edit_netlist 792
edit_netlist bitblast_all_ports 794
edit_netlist connect 795
edit_netlist dedicate_subdesign 797
edit_netlist disconnect 798
edit_netlist group 800, 811
edit_netlist new_design 802
edit_netlist new_instance 803
edit_netlist new_port_bus 805
edit_netlist new_primitive 806
edit_netlist new_subport_bus 808
edit_netlist ungroup 809
edit_netlist uniquify 810, 824
elaborate 284
enable_transparent_latches 64
encrypt 156
exec_embedded_script 65
exit 67
export_critical_endpoints 159
external_delay 248

F
fanin 323
fanout 326
filter 37
find 39
fix_dft_violations 586
fix_scan_path_inversions 590
July 2009 1
G
generate_constraints 252
get_attribute 68
get_liberty_attribute 71
get_read_files 72
group 811
gui_hide 107
gui_hv_clear 110
gui_hv_get_file 110
gui_hv_load_file 110
gui_hv_set_indicators 111
gui_info 107
gui_pv_airline_add 117
gui_pv_airline_delete 118
gui_pv_airline_display 118
gui_pv_airline_raw_add 119
gui_pv_clear 119
gui_pv_highlight 120
gui_pv_highlight_update 122
gui_pv_label 122
gui_pv_redraw 123
gui_pv_selection 123
gui_pv_snapshot 123
gui_pv_zoom_fit 125
gui_pv_zoom_in 125
gui_pv_zoom_out 125
gui_pv_zoom_to 125
gui_raise 107
gui_reset 107
gui_selection 108
gui_show 108
gui_status 108
gui_sv_clear 113
gui_sv_get_instance 113
gui_sv_grey 113
gui_sv_highlight 114
gui_sv_load 115
gui_update 108

H
hdl_create 137
hdl_create binding 138
hdl_create component 140
hdl_create implementation 142
hdl_create library 144
hdl_create operator 145
hdl_create package 146
8 Product Version 9.1

Command Reference for Encounter RTL Compiler
hdl_create parameter 148
hdl_create pin 150
help 73

I
identify_multibit_cell_abstract_scan_segme

nts 591
identify_shift_register_scan_segments 59

3
identify_test_mode_registers 595
include 74
inout_mate 44
insert_dft 598
insert_dft analyzed_test_points 600
insert_dft boundary_scan 607
insert_dft jtag_macro 614
insert_dft lockup_element 617
insert_dft mbist 618
insert_dft ptam 622
insert_dft scan_power_gating 625
insert_dft shadow_logic 627
insert_dft test_point 631
insert_dft user_test_point 636
insert_dft wrapper_cell 638
insert_tiehilo_cells 812
isolation_cell remove 754

L
launch 467
lcd 75
level_shifter remove 757
license checkin 77
license checkout 78
license list 79
ll 45
lls 80
lpopd 81
lpwd 83
ls 46

M
man 84
mesg_make 831
mesg_send 833
more 85
July 2009 1
multi_cycle 254
mv 815

P
parse_options 834
path_adjust 259
path_delay 263
path_disable 266
path_group 269
popd 50
predict_qos 451
propagate_constraints 272
pushd 51
pwd 52

Q
quit 87

R
rc 88
read_config_file 468
read_cpf 760
read_def 453
read_dfm 164
read_dft_abstract_model 641
read_encounter 455
read_hdl 168
read_io_speclist 643
read_netlist 173
read_saif 718
read_sdc 176
read_spef 456
read_tcf 722
read_vcd 727
redirect 92
reload_cpf 762
remove_assigns_without_optimization 28

6
remove_cdn_loop_breaker 817
remove_inserted_sync_enable_logic 288
replace_scan 644
report 328
report area 332
report boundary_opto 334
report buskeepers 335
9 Product Version 9.1

Command Reference for Encounter RTL Compiler
report cdn_loop_breaker 336
report cell_delay_calculation 338
report checks 339
report clock_gating 342
report clocks 347
report congestion 349
report datapath 350
report design_rules 355
report dft_chains 356
report dft_registers 361
report dft_setup 365
report dft_violations 370
report disabled_transparent_latches 373
report gates 374
report hierarchy 377
report instance 379
report isolation 381
report level_shifter 384
report memory 388
report memory_cells 389
report messages 391
report net_cap_calculation 393
report net_delay_calculation 394
report net_res_calculation 395
report nets 396
report operand_isolation 400
report ple 402
report port 403
report power 404
report power_domain 416
report qor 419
report scan_power 422
report sequential 426
report slew_calculation 428
report spare_instances 429
report state_retention 430
report summary 435
report timing 437
report yield 445
report_scan_compressibility 645
reset_attribute 94
reset_def 458
reset_design 819
reset_scan_equivalent 652
reset_session 472
restore_design 181
restore_session 473
resume 96
retime 289
rm 820
July 2009 2
S
save_session 474
sdc_shell 97
set_attribute 98
set_compatible_test_clocks 653
set_remove_assign_options 291
set_scan_equivalent 654
shell 101
signoff_checks 475
signoff_checks all 477
signoff_checks

clock_domain_crossing 478
signoff_checks constraints 479
signoff_checks dft 480
signoff_checks hdl_lint 481
signoff_checks library 482
signoff_checks physical 483
signoff_checks power 484
specify_floorplan 459
specify_paths 274
state_retention 733
state_retention

connect_power_gating_pins 734
state_retention swap 735
suppress_messages 102
suspend 103
synthesize 294

T
timestat 446

U
ungroup 822
uniquify 824
unsuppress_messages 104
update_congestion_map 461

V
validate_constraints 280
validate_timing 447
vdir_lsearch 53
verify_power_structure 767
0 Product Version 9.1

Command Reference for Encounter RTL Compiler
W
what_is 54
write_atpg 656
write_bsdl 659
write_compression_macro 662
write_config_template 485
write_def 462
write_design 188
write_dft_abstract_model 666
write_do_ccd 190
write_do_ccd compare_sdc 191
write_do_ccd generate 192
write_do_ccd validate 195
write_do_clp 196
write_do_lec 198
write_do_verify cdc 200
write_encounter 202
write_et_atpg 669, 687
write_et_bsv 674
write_et_dfa 678
write_et_mbist 682
write_ets 209
write_ett 210
write_forward_saif 736
write_hdl 212
write_io_speclist 691
write_saif 738
write_scandef 693
write_script 218
write_sdc 221
write_sdf 224
write_set_load 227
write_tcf 740
write_template 230
July 2009 2
1 Product Version 9.1

Command Reference for Encounter RTL Compiler
July 2009 2
2 Product Version 9.1

Command Reference for Encounter RTL Compiler
Preface

■ About This Manual on page 24

■ Additional References on page 24

■ How to Use the Documentation Set on page 25

■ Reporting Problems or Errors in Manuals on page 26

■ Customer Support on page 26

■ Messages on page 27

■ Man Pages on page 27

■ Command-Line Help on page 28

■ Documentation Conventions on page 30
July 2009 23 Product Version 9.1

Command Reference for Encounter RTL Compiler
Preface
About This Manual

This manual provides a concise reference of the commands available to the user when using
Encounter™ RTL Compiler. This manual describes each command available within the RTL
Compiler shell with their command options.

Additional References

The following sources are helpful references, but are not included with the product
documentation:

■ TclTutor, a computer aided instruction package for learning the Tcl language:
http://www.msen.com/~clif/TclTutor.html.

■ TCL Reference, Tcl and the Tk Toolkit, John K. Ousterhout, Addison-Wesley
Publishing Company

■ IEEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language (IEEE Std.1364-1995)

■ IEEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language (IEEE Std. 1364-2001)

■ IEEE Standard VHDL Language Reference Manual (IEEE Std. 1076-1987)

■ IEEE Standard VHDL Language Reference Manual (IEEE Std. 1076-1993)

Note: For information on purchasing IEEE specifications go to http://shop.ieee.org/store/ and
click on Standards.
July 2009 24 Product Version 9.1

http://www.msen.com/~clif/TclTutor.html

Command Reference for Encounter RTL Compiler
Preface
How to Use the Documentation Set

INSTALLATION AND CONFIGURATION

NEW FEATURES AND
SOLUTIONS TO PROBLEMS

Cadence Installation Guide

Cadence License Manager

README File

What’s New in Encounter RTL
Compiler

README File

Known Problems and Solutions in
Encounter RTL Compiler

Using Encounter RTL Compiler

HDL Modeling in Encounter RTL
Compiler

Datapath Synthesis in
Encounter RTL

Compiler

Setting Constraints
andPerformingTiming
Analysis in Encounter

RTL Compiler

Low Power in
Encounter RTL

Compiler

Design for Test in
Encounter RTL

Compiler

TASKS AND CONCEPTS

REFERENCES

Attribute Reference
for Encounter RTL

Compiler

GUI Guide for
Encounter RTL

Compiler

ChipWare in
Encounter RTL

Compiler

Command Reference
for Encounter RTL

Compiler

Quick Reference for
Encounter RTL

Compiler

Command Reference
for Encounter RTL

Compiler

Getting Started with Encounter
RTL Compiler

Library Guide for Encounter RTL
Compiler

ChipWare Developer in
Encounter RTL Compiler
July 2009 25
 Product Version 9.1

Command Reference for Encounter RTL Compiler
Preface
Reporting Problems or Errors in Manuals

The Cadence® Help online documentation, lets you view, search, and print Cadence product
documentation. You can access Cadence Help by typing cdnshelp from your Cadence tools
hierarchy.

Contact Cadence Customer Support to file a CCR if you find:

■ An error in the manual

■ An omission of information in a manual

■ A problem using the Cadence Help documentation system

Customer Support

Cadence offers live and online support, as well as customer education and training programs.

Cadence Online Support

The Cadence® online support website offers answers to your most common technical
questions. It lets you search more than 40,000 FAQs, notifications, software updates, and
technical solutions documents that give you step-by-step instructions on how to solve known
problems. It also gives you product-specific e-mail notifications, software updates, service
request tracking, up-to-date release information, full site search capabilities, software update
ordering, and much more.

For more information on Cadence online support go to:

http://support.cadence.com

Other Support Offerings

■ Support centers—Provide live customer support from Cadence experts who can
answer many questions related to products and platforms.

■ Software downloads—Provide you with the latest versions of Cadence products.

■ Education services—Offers instructor-led classes, self-paced Internet, and virtual
classroom.

■ University software program support—Provides you with the latest information to
answer your technical questions.
July 2009 26 Product Version 9.1

http://support.cadence.com

Command Reference for Encounter RTL Compiler
Preface
For more information on these support offerings go to:

http://www.cadence.com/support

Messages

From within RTL Compiler there are two ways to get information about error messages.

■ Use the report messages command.

For example:

rc:/> report messages

This returns the detailed information for each message output in your current RTL
Compiler run. It also includes a summary of how many times each message was issued.

■ Use the man command.

Note: You can only use the man command for messages within RTL Compiler.

For example, to get more information about the "TIM-11" message, type the following
command:

rc:/> man TIM-11

If you do not get the details that you need or do not understand a message, either contact
Cadence Customer Support to file a PCR or email the message ID you would like improved
to:

rc_msg_improvement@cadence.com

Man Pages

In addition to the Command and Attribute References, you can also access information about
the commands and attributes using the man pages in RTL Compiler. Man pages contain the
same content as the Command and Attribute References.

To use our man pages from the UNIX shell:

1. Set your environment to view the correct directory:

setenv MANPATH $CDN_SYNTH_ROOT/share/synth/man

2. Enter the name of the command or attribute that you want. For example:

❑ man check_dft_rules

❑ man cell_leakage_power
July 2009 27 Product Version 9.1

Command Reference for Encounter RTL Compiler
Preface
You can also use the more command, which behaves like its UNIX counterpart. If the output
of a manpage is too small to be displayed completely on the screen, use the more command
to break up the output. Use the spacebar to page forward, like the UNIX more command.

rc:/> more man synthesize

Command-Line Help

You can get quick syntax help for commands and attributes at the RTL Compiler command-
line prompt. There are also enhanced search capabilities so you can more easily search for
the command or attribute that you need.

Note: The command syntax representation in this document does not necessarily match the
information that you get when you type help command_name. In many cases, the order of
the arguments is different. Furthermore, the syntax in this document includes all of the
dependencies, where the help information does this only to a certain degree.

If you have any suggestions for improving the command-line help, please e-mail them to:

rc_pubs@cadence.com

Getting the Syntax for a Command

Type the help command followed by the command name.

For example:

rc:/> help path_delay

This returns the syntax for the path_delay command.

Getting the Syntax for an Attribute

Type the following:

rc:/> get_attribute attribute_name * -help

For example:

rc:/> get_attribute max_transition * -help

This returns the syntax for the max_transition attribute.
July 2009 28 Product Version 9.1

Command Reference for Encounter RTL Compiler
Preface
Searching for Attributes

You can get a list of all the available attributes by typing the following command:

rc:/> get_attribute * * -h

You can type a sequence of letters after the set_attribute command and press Tab to
get a list of all attributes that contain those letters.

rc:/> set_attr li

ambiguous "li": lib_lef_consistency_check_enable lib_search_path libcell
liberty_attributes libpin library library_domain line_number

Searching For Commands When You Are Unsure of the Name

You can use help to find a command if you only know part of its name, even as little as one
letter.

■ If you only know the first few letters of a command you can get a list of commands that
begin with that letter.

For example, to get a list of commands that begin with “ed”, you would type the following
command:

rc:/> ed* -h

■ You can type a single letter and press Tab to get a list of all commands that contains that
letter.

For example:

rc:/> c <Tab>

This returns the following commands:

ambiguous "c": cache_vname calling_proc case catch cd cdsdoc change_names
check_dft_rules chipware clear clock clock_gating clock_ports close cmdExpand
command_is_complete concat configure_pad_dft connect_scan_chains continue
cwd_install ..

■ You can also type a sequence of letters and press Tab to get a list of all commands that
contain those letters.

For example:

rc:/> path_<Tab>

This returns the following commands:

ambiguous command name "path_": path_adjust path_delay path_disable path_group
July 2009 29 Product Version 9.1

Command Reference for Encounter RTL Compiler
Preface
Documentation Conventions

To aid the readers understanding a consistent formatting style has been used throughout this
manual.

■ UNIX commands are shown following the unix> string.

■ RTL Compiler commands are shown following the rc:/> string.

Text Command Syntax

The list below describes the syntax conventions used for the RTL Compiler text commands.

literal Nonitalic words indicate keywords that you must type literally.
These keywords represent command, attribute or option names.

arguments and options Words in italics indicate user-defined arguments or options for
which you must substitute a name or a value.

| Vertical bars (OR-bars) separate possible choices for a single
argument.

[] Brackets denote options. When used with OR-bars, they enclose
a list of choices from which you can choose one.

{ } Braces denote arguments and are used to indicate that a choice
is required from the list of arguments separated by OR-bars. You
must choose one from the list.

{ argument1 | argument2 | argument3 }

Braces, used in Tcl command examples, indicate that the braces
must be typed in.

... Three dots (...) indicate that you can repeat the previous
argument. If the three dots are used with brackets (that is,
[argument]...), you can specify zero or more arguments. If
the three dots are used without brackets (argument...), you
must specify at least one argument, but can specify more.

The pound sign precedes comments in command files.
July 2009 30 Product Version 9.1

Command Reference for Encounter RTL Compiler
1
Navigation

■ basename on page 32

■ cd on page 33

■ dirname on page 35

■ dirs on page 36

■ filter on page 37

■ find on page 39

■ inout_mate on page 44

■ ll on page 45

■ ls on page 46

■ popd on page 50

■ pushd on page 51

■ pwd on page 52

■ what_is on page 54
July 2009 31 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
basename

basename pathname

Removes the leading directory names of the specified path name and returns only the object
name. This command behaves similarly to the UNIX basename command.

Options and Arguments

Examples

■ The following example removes the directory name of the CW_absval ChipWare
component and only returns the component name:

rc:/> basename \
/hdl_libraries/CW/components/CW_absval/comp_architectures/CW_absval

CW_absval

■ The following example uses the basename command with the dirname command to
return the name of the library to which the ND2X1 library cell belongs:

rc:/> set libcell /libraries/LIB/libcells/ND2X1

rc:/> basename [dirname [dirname $libcell]]

Related Information

pathname Specifies the path name of the object, including the object
name.

Related commands: dirname on page 35
July 2009 32 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
cd

cd [directory]

Sets the current directory in the design hierarchy and navigates the design hierarchy. This
command is similar to its UNIX counterpart. A description of the design hierarchy is given in
the Using Encounter RTL Compiler.

Options and Arguments

Examples

■ The following command returns you to the top of the design hierarchy:

rc:/designs> cd

rc:/> pwd
/

■ The following command specifies the absolute path to the target directory:

rc:/> cd /designs/alu/timing/exceptions

■ The following command specifies the relative path to the target directory:

rc:/> cd designs/alu

rc:/designs/alu> cd timing/exceptions

■ The following command changes the current directory to a parent directory:

rc:/designs/alu/timing/exceptions cd ../../subdesigns

rc:/designs/alu/subdesigns> pwd
/designs/alu/subdesigns

■ The following command uses wildcards in the path specification:

rc:/designs/cmplx_alu/subdesigns/addinc> cd ../../tim*/exc*

rc:/designs/cmplx_alu/timing/exceptions> pwd
/designs/cmplx_alu/timing/exceptions

directory Specifies the name of the directory to be set as the current
directory.

The “.”, “..”, and “/”have the same meaning as their UNIX
counterparts (current directory, parent directory, and root
directory respectively).

You can use wildcards when they do not produce an ambiguous
reference (more than one match).
July 2009 33 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
Related Information

Affects these commands: dirs on page 36

ls on page 46

popd on page 50

pushd on page 51

pwd on page 52
July 2009 34 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
dirname

dirname pathname [-times integer]

Removes the object name of the specified path name and only returns the directory name.
This command behaves similarly to the UNIX dirname command.

Options and Arguments

Examples

■ The following example removes the CW_absval ChipWare component name and only
returns its directory name:

rc:/>dirname \
/hdl_libraries/CW/components/CW_absval/comp_architectures/CW_absval

/hdl_libraries/CW/components/CW_absval/comp_architectures

■ The following command applies the dirname command 3 times to the specified path.

rc:/> dirname -times 3 \
/hdl_libraries/CW/components/CW_absval/comp_architectures/CW_absval

/hdl_libraries/CW/components

■ The following example uses the basename command with the dirname command to
return the name of the library to which the ND2X1 library cell belongs:

rc:/> set libcell /libraries/LIB/libcells/ND2X1

rc:/> basename [dirname [dirname $libcell]]

Related Information

pathname Specifies the path name of the object, including the object
name.

-times integer Specifies the number of times to apply dirname.

Default: 1

Related commands: basename on page 32
July 2009 35 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
dirs

dirs

Displays the contents of the design directory stack. This command is similar to its UNIX
counterpart and is used in conjunction with the pushd and popd commands.

Example

■ The following commands respectively add designs and libraries to the design directory
stack, then display the contents of the directory stack:

rc:/> pushd designs
/designs /

rc:/designs> pushd /libraries
/libraries /designs /

rc:/libraries> dirs
/libraries /designs /

■ The following commands respectively remove the last added directories and then display
the contents of the directory stack:

rc:/libraries> popd
/designs /

rc:/designs> popd
/

rc:/> dirs
/

Related Information

Related commands: ls on page 46

popd on page 50

pushd on page 51

pwd on page 52
July 2009 36 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
filter

filter [-invert] [-regexp] attribute_name
attribute_value ... [object_list...]

Filters a set of objects based on the values of the given attributes using the pattern matching
mechanism from the glob Tcl command.

This command provides a powerful means of selecting objects within the design hierarchy at
a more discrete level than is allowed by the directory structure alone.

Use the get_attribute command to list the attributes available for each object type.

Options and Arguments

Examples

■ The following command finds the list of all matching library cells on which the preserve
attribute has been set to true:

rc:/> filter preserve true [find . -libcell *]

■ The following command stores the Tcl list of all matching cells returned by the filter
command in a variable for use in scripting later.

rc:/> set preserved_cells [filter preserve true [find . -libcell *]]

■ The following command embeds the Tcl list of all matching cells returned by the filter
command as part of a larger command.

rc:/> report timing -through [filter preserve true [find . -libcell *]]

attribute_name Specifies the name of an attribute to use as filter.

This argument is required. A compound string (containing
spaces) should be represented as a list either by using
double-quotes or braces ({ }).

attribute_value Specifies the value of an attribute to use as filter.

-invert Filters out objects that match the expression and returns
those that do not.

object_list Specifies a Tcl list of objects to filter.

-regexp Overrides the default Tcl glob pattern matching with Tcl
regular expression matching.
July 2009 37 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
■ The following Tcl code fragment sets the variable result to all instances that start with
the letter g and whose corresponding library cell starts with inv:

set result {}
foreach inst [find . -inst g*] {
 if {[string match "inv*" [get_att libcell $inst]]}
 {lappend result $inst}
}
puts $result

■ The following example returns only returns those pins that have the preserve attribute
set to either true or false and ignores those with size_ok values:

rc:/> filter -regexp preserve {true|false} [find / -pin *]

■ Use the ls -dir command to format the output:

rc:/> ls -dir [filter preserve true [find . -libcell *]]

/libraries/penny/libcells/ANTENNA/

/libraries/penny/libcells/FILL1/

/libraries/penny/libcells/RF1R1WX2/

/libraries/penny/libcells/RF2R1WX2/

■ Use the ls -dir command and the redirect arrow to redirect the output to the specified file:

rc:/> ls -dir [filter preserve true [find . -libcell *]] > areid.txt

You can also append arrows (">>").

Related Information

Affects these commands: ls on page 46

get_attribute on page 68

set_attribute on page 98
July 2009 38 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
find

find [root_path] [-maxdepth integer] [-mindepth integer]
[-ignorecase] [-regexp <expression>] [-vname]
{-option...|-*} object

Searches the design hierarchy for the specified types of objects and returns a Tcl list
containing the full paths to any matching objects. This list can then be used by other
commands to operate on groups of objects.

The find command supports the * and ? wildcard characters.

Note: The find command is very powerful but overusing it can increase the execution time.
To reduce the execution time, be as specific as possible when specifying the object to match.

Options and Arguments

-ignorecase Ignores the case (upper case or lower case) of the parameters.
Alternatively, specifies the search to be case insensitive.

-maxdepth level Descends no more than the specified number (non-negative
integer) of levels below root_path. A level of 0 searches only
the root_path.

Default: infinity

-mindepth integer Skips the specified number (non-negative integer) of levels
below root_path before finding objects. A level of 1
searches all objects except root_path.

Default: 0

object Specifies the name of the object to match. The name can
include wildcard characters.

-option Specifies the type of object you want to find. You can specify
multiple options or look in all types by specifying *.

Option can have one of the following values:

actual_scan_chain hdl_param operating_condition

actual_scan_segment hdl_pin pin

attribute hdl_proc pin_bus

clock hdl_subp port

clock_domain instance port_bus
July 2009 39 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
constant isolation_rule power_domain

cost_group jtag_instruction power_ground_net

design jtag_instruction_register root

exception jtag_port scan_chain

external_delay level_shifter_group scan_segment

hdl_arch level_shifter_rule seq_function

hdl_bind libarc subdesign

hdl_block libcell subport

hdl_comp libpin subport_bus

hdl_config library test_clock

hdl_impl library_domain test_clock_domain

hdl_inst message test_signal

hdl_label message_group violation

hdl_lib mode wireload

hdl_oper net wireload_selection

hdl_pack object_type

Note: The clock_domain, test_clock_domain, and
wireload_selection object types currently do not have any
attributes associated with them.

-regexp Specifies regular expression.

root_path Specifies the name of the directory from where to start
searching. The name can include wildcard characters.

By default, an explicit search is done for the specified object.
During an explicit search every object directory is searched,
instead of starting from root_path. Specifying a
root_path reduces the numbers of locations where the find
command will search which reduces the execution time.

-vname Removes the container directories in the pathname and returns
Verilog style names where appropriate. This option will only
work on the following objects: pin, port, net, subdesign,
and instance.
July 2009 40 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
Examples

■ The following command searches for any object type whose name contains add,
starting from the current directory (/designs):

rc:/designs> find . * *add*

/designs/alu/instances_hier/ops1_add_25 /designs/alu/subdesigns/addinc64

■ The following command finds all registers in all designs:

rc:/> find des* -instance *seq/*

/designs/alu/instances_hier/RC_CG_HIER_INST_0/instances_seq/RC_CGIC_INST
/designs/alu/instances_seq/aluout_reg_7
/designs/alu/instances_seq/aluout_reg_6
/designs/alu/instances_seq/aluout_reg_4
/designs/alu/instances_seq/aluout_reg_0
/designs/alu/instances_seq/aluout_reg_3
/designs/alu/instances_seq/aluout_reg_5
/designs/alu/instances_seq/aluout_reg_2
/designs/alu/instances_seq/aluout_reg_1
/designs/alu/instances_seq/zero_reg

■ The following command finds all input ports in design alu:

rc:/> find des*/alu -port ports_in/*

{/designs/alu/ports_in/opcode[2]} {/designs/alu/ports_in/opcode[1]}
{/designs/alu/ports_in/opcode[0]} {/designs/alu/ports_in/data[7]}
{/designs/alu/ports_in/data[6]} {/designs/alu/ports_in/data[5]}
{/designs/alu/ports_in/data[4]} {/designs/alu/ports_in/data[3]}
{/designs/alu/ports_in/data[2]} {/designs/alu/ports_in/data[1]}
{/designs/alu/ports_in/data[0]} {/designs/alu/ports_in/accum[7]}
{/designs/alu/ports_in/accum[6]} {/designs/alu/ports_in/accum[5]}
{/designs/alu/ports_in/accum[4]} {/designs/alu/ports_in/accum[3]}
{/designs/alu/ports_in/accum[2]} {/designs/alu/ports_in/accum[1]}
{/designs/alu/ports_in/accum[0]} /designs/alu/ports_in/clock
/designs/alu/ports_in/ena /designs/alu/ports_in/reset

■ The following command searches for an external delay whose name starts with in,
starting from the designs directory:

rc:/designs> find designs -external_delay in*

/designs/alu/timing/external_delays/in_del_1

■ The following command finds all designs that are four characters:

rc:/> find . -designs ????

/designs/test

■ The following command finds all design names with four characters that end with the
letter "i":

rc:/> find . -designs ???i

/designs/topi

■ The following command performs a case insensitive search for the design TEST:

rc:/> find . -ignorecase -design test
July 2009 41 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
/designs/TEST

■ To find hierarchical objects, you can just specify the top-level object instead of the root or
current directory. Doing so can provide faster results because it minimizes the number of
hierarchies that RTL Compiler traverses. In the following example, if we wanted to only
find the output pins for inst1, the first specification is more efficient than the second.
The second example not only traverses more hierarchies, it also returns inst2
instances.

rc:/> find inst1 -pin out*

{/designs/woodward/instances_hier/inst1/pins_out/out1[3]}

rc:/>find / -pin out*

{/designs/woodward/instances_hier/inst1/pins_out/out1[3]}
{/designs/woodward/instances_hier/inst2/pins_out/out1[3]}

■ The following example uses the find command to return a list of all the instances in a
small design.

rc:/> find / -instance *

/designs/MOD69/instances_hier/inst1
/designs/MOD69/instances_hier/inst1/instances_comb/g21

The -vname option removes the container directories (in this case instance_hier)
and presents the list more concisely:

rc:/> find / -instance -vname *

inst1

inst1/g21

This option is useful when you want to present the object in a report because the name
is more concise. The disadvantage of the shortened name is that it may no longer refer
to a unique object because an instance, pin, net, and subport may all share the same
Verilog name.

■ The following example uses the -regexp option to return all message objects that
contain at least VLOGPT-6:

rc:/> find / -regexp (VLOGPT-6+) -messsages * *

The following example returns all combinational instances named g58 or g59 in the
Verilog name style:

rc:/> find / -regexp {g[5][8-9]} -vname -instance instances_comb/*

■ Use the ls -dir command to format the output row over row:

rc:/> ls -dir [find / -instance -vname *]

/designs/quea/instances_hier/inst1/
/designs/quea/instances_hier/inst1/instances_comb/g41/
/designs/quea/instances_hier/inst1/instances_comb/g42/
/designs/quea/instances_hier/inst1/instances_comb/g43/
/designs/quea/instances_hier/inst1/instances_comb/g44/
July 2009 42 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
■ Use the ls -dir command and the redirect arrow to redirect the output to the specified file:

rc:/> ls -dir [find / -instance -vname *] > quea.txt

■ You can also append arrows (">>").

Related Information

Related command: clock_ports on page 321
July 2009 43 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
inout_mate

inout_mate {subport_bus|port_bus|subport|port|pin}

Distinguishes bidirectional pins, ports, port_busses, subports, and subport_busses inout
objects so you can find the input object and the corresponding output object.

These bidirectional inout objects are represented as two distinct objects: the input pin, port,
port_bus, subport, and subport_bus object and the corresponding output object.The pair
cannot be broken apart, such as using an edit_netlist rm command to delete just one
of the two objects, because together, they represent the inout object.

Examples

■ The following example is a design called top that has a primary inout port named io,
which RC Encounter represents as two distinct ports:

 /designs/top/ports_in/io

 /designs/top/ports_out/io

❑ Use the inout_mate command on the input object to find the corresponding output
object:

rc:/> inout_mate ports_in/io

/designs/top/ports_out/io

❑ Use the inout_mate command on the output object to find the corresponding input
object

rc:/> inout_mate ports_out/io

/designs/top/ports_in/io

■ The following example is an hierarchical instance called s4 that has an inout port named
io, which RC Encounter represents as two distinct subports:

 /designs/top/instances_hier/s4/subports_in/io

 /designs/top/instances_hier/s4/subports_out/io

❑ Use the inout_mate command on the input object to find the corresponding output
object:

rc:/> inout_mate s4/subports_in/io

/designs/top/instances_hier/s4/subports_out/io

❑ Use the inout_mate command on the output object to find the corresponding input
object:

rc:/> inout_mate s4/subports_out/io

/designs/top/instances_hier/s4/subports_in/io
July 2009 44 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
ll

ll virtual_dir

Lists the contents of the specified virtual directory in long format

A virtual directory is a directory in the design hierarchy.

Options and Arguments

Examples

■ The following example lists the contents of the counter (design) directory.

rc:/> ll counter
/designs/counter:
Total: 17 items
./ (design)
constants/
dex_settings/
dft/
instances_comb/
instances_hier/
instances_seq/
modes/
nets/
physical/
port_busses_in/
port_busses_out/
ports_in/
ports_out/
power/
subdesigns/
timing/
rc:/>

Related Information

virtual_dir Specifies the virtual directory whose contents to list.

If no directory is specified, the contents of the current directory
in the design hierarchy is listed.

Affected by this command: cd on page 33

Related command: pwd on page 52
July 2009 45 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
ls

ls [-computed] [-attribute] [-long] [-dir]
[-width integer] [object]... [>file]

Lists information about any objects in the design hierarchy (designs, library cells, clocks, and
so on). This command is similar to its UNIX counterpart.

Options and Arguments

Examples

■ The following command lists the contents of the libraries directory:

rc:/> ls libraries
/libraries:
./ em333s/ sm333s/

■ The following command shows information of cell buf1 in regular and long listing format:

rc:/libraries/tutorial/libcells/buf1> ls
./ A Y

rc:/libraries/tutorial/libcells/buf1> ls -long
Total: 3 items
./ (libcell)
A (libpin)
Y (libpin)

-attribute List the attributes for the specified object whose values are
different from the default values.

-computed Lists all computed attributes. Computed attributes are
potentially very time consuming to process and are therefore by
default not listed.

-dir Lists only the directory name not its contents.

file Specifies the name of the file to which to list the information.

-long Lists the contents (long listing) of the directory.

object Specifies the directory for which you want to list information.

Default: current directory

-width integer Specifies the width of the screen that can be used to show the
information

Default: 80
July 2009 46 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
■ The following command lists only the attributes of buf1 whose values are different from
the default values:

rc:/libraries/tutorial/libcells/buf1> ls -attribute
Total: 3 items
./ (libcell)

Attributes:
area = 1
buffer = true
cell_leakage_power = 0.0 nW
combinational = true
liberty_attributes = area 1.0

A/ (libpin)
Attributes:
capacitance = 25.0 25.0 femtofarads
fanout_load = 1.000 fanout_load units
input = true
liberty_attributes = capacitance 0.025 direction input
max_transition = 4500.0
outgoing_timing_arcs = /libraries/tutorial/libcells/buf1/Y/inarcs/A_n90

Y/ (libpin)
Attributes:
capacitance = 0.0 0.0 femtofarads
fanout_load = 0.000 fanout_load units
function = A
incoming_timing_arcs = /libraries/tutorial/libcells/buf1/Y/inarcs/A_n90
liberty_attributes = direction output function A
max_transition = 4500.0
output = true

■ The following command lists all attributes (except for the computed attributes) for buf1,
even those with the default value:

rc:/libraries/tutorial/libcells/buf1> ls -long -attribute
Total: 3 items

./ (libcell)
All attributes:
adder = false
area = 1.0
async_clear =
async_preset =
avoid = false
buffer = true
cell_delay_multiplier = 1.0
cell_leakage_power = 0.0 nW
clock =
clock_gating_integrated_cell =
combinational = true
constraint_multiplier = 1.0
flop = false
height = no_value
...
usable = true
user_defined =
width = no_value

A (libpin)
All attributes:
async_clear_phase = none
async_preset_phase = none
capacitance = 25.0 25.0 femtofarads
July 2009 47 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
clock_gate_clock_pin = false
clock_gate_enable_pin = false
clock_gate_obs_pin = false
clock_gate_out_pin = false
clock_gate_reset_pin = false
clock_gate_test_pin = false
...
tristate = false
user_defined =

Y (libpin)
All attributes:
async_clear_phase = none
async_preset_phase = none
capacitance = 0.0 0.0 femtofarads
clock_gate_clock_pin = false
clock_gate_enable_pin = false
clock_gate_obs_pin = false
clock_gate_out_pin = false
clock_gate_reset_pin = false
clock_gate_test_pin = false
...
tristate = false
user_defined =

■ The following command uses wildcard strings and the results of a find command:

rc:/libraries> ls -long [find . -libcell A*]
/libraries/cg/libcells/AND2A:
Total: 4 items
./ (libcell)
A/ (libpin)
B/ (libpin)
Z/ (libpin)

/libraries/cg/libcells/AO21A:
Total: 5 items
./ (libcell)
A/ (libpin)
B/ (libpin)
C/ (libpin)
Z/ (libpin)

■ The following command shows that the computed attribute
timing_case_computed_value has been turned on:

rc:/>ls -computed /designs/violet/instances_comb/U1/pins_in/S
timing_case_computed_value = 1

■ The following examples show the difference between the ls -attribute and
get_attribute commands.

rc:/designs> ls -attribute
Total: 2 items
./
async_set_reset_flop_n/ (design)

Attributes:
dft_mix_clock_edges_in_scan_chains = false
wireload = /libraries/slow/wireload_models/sartre18_Conservative

rc:/designs> get_attribute wireload /designs/async_set_reset_flop_n/
/libraries/slow/wireload_models/sartre18_Conservative
July 2009 48 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
The ls -attribute command lists all user-modified attributes and their values. The
get_attribute command lists only the value of the specified attribute. The
get_attribute command is especially useful in scripts where its returned values can
be used as arguments to other commands.

Related Information

Related command: get_attribute on page 68
July 2009 49 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
popd

popd

Removes the topmost element of the directory stack, revealing a new top element and
changes the current directory to the new top element. This command is similar to its UNIX
counterpart.

Note: If popd is issued on a directory stack that has only one element, an appropriate
warning message is printed and the popd command exits without changing the directory
stack.

Examples

■ In the following example, the directory stack starts off as /libraries /designs:
/libraries is the current directory and the top element of the directory stack, and
/designs is next on the stack). When the popd command is issued, /libraries is
popped off, and /designs becomes the top (and only element) of the stack and the
current directory.

rc:/libraries> dirs
/libraries /designs

rc:/libraries> popd
/designs

rc:/designs> dirs
/designs

rc:/designs> pwd
/designs

■ In the following example, a popd command is issued on a directory stack that has only
one element.

rc:/> cd /designs

rc:/designs> dirs
/designs

rc:/designs> popd
Directory stack empty
/designs

This can happen when more popd commands are issued than pushd commands.

Related Information

Affects these commands: dirs on page 36

ls on page 46

pushd on page 51

pwd on page 52
July 2009 50 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
pushd

pushd directory

Pushes the specified new target directory onto the directory stack (as the topmost element)
and changes the current directory to that specified directory. This command is similar to its
UNIX counterpart.

Options and Arguments

Examples

■ In the following example, /libraries is pushed onto the top of the /designs directory
stack and the current directory is changed to it:

rc:/designs> pushd /libraries
/libraries /designs
rc:/libraries>

■ In the following example, the push operation does not succeed because there is more
than one directory that starts with ex.

rc:/libraries> pushd ex*
Error : A single object was expected, but multiple objects were found.[TUI-62]

: The argument that found multiple objects was ’ex*’.
pushd: push current dir onto stack and cd to new dir

Usage: pushd <object>
<object>:

new target directory
Failed on pushd ex*

Related Information

directory Specifies the name of the directory to be set as target directory.

You can use wildcards when they do not produce an ambiguous
reference (more than one match).

Affects these commands: dirs on page 36

ls on page 46

popd on page 50

pwd on page 52
July 2009 51 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
pwd

pwd

Displays the current position in the design hierarchy. This command is similar to its UNIX
counterpart.

Examples

■ The following example shows the current directory after changing the current directory
first:

rc:/> cd /designs

rc:/designs> pwd
/designs

Related Information

Related commands: dirs on page 36

ls on page 46

popd on page 50

pushd on page 51
July 2009 52 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
vdir_lsearch

vdir_lsearch list object

Performs an lsearch of a vdir type object in a list of objects. If a match is found, it returns the
position of that object in the list. If no match is found, it returns -1.

While performing the search, the command performs a (fast) direct comparison of every vdir
type object in the list with the pointer of the given object; whereas for every non-vdir type
object in the list, it creates a string-name of the object and compares it with the string-name
of the given object. This makes it faster than the regular lsearch command, which does string-
name derivation and string comparison for every object in the list.

Note: Examples of commands that return vdir type objects are find, edit_netlist and
get_attribute.

Options and Arguments

Example

In the following example, the first search, performed on a list of vdir type objects (result of
find command), returns -1. To this list, two regular objects are added: abc and
/designs/test/instances_hier/mux_oo_5_10/pins_out/z. The search on this
mixed list of objects returns 4.

rc:/> set pin [get_attr driver /designs/test/nets/oo]
/designs/test/instances_hier/mux_oo_5_10/pins_out/z
rc:/> set list [find / -pin in*]
/designs/test/instances_hier/mux_oo_5_10/pins_in/in_0
/designs/test/instances_hier/mux_oo_5_10/pins_in/in_1
/designs/test/instances_comb/g4/pins_in/in_0
rc:/> vdir_lsearch $list $pin
-1
rc:/> lappend list "abc"
/designs/test/instances_hier/mux_oo_5_10/pins_in/in_0
/designs/test/instances_hier/mux_oo_5_10/pins_in/in_1
/designs/test/instances_comb/g4/pins_in/in_0 abc
rc:/> lappend list "/designs/test/instances_hier/mux_oo_5_10/pins_out/z"
/designs/test/instances_hier/mux_oo_5_10/pins_in/in_0
/designs/test/instances_hier/mux_oo_5_10/pins_in/in_1
/designs/test/instances_comb/g4/pins_in/in_0 abc
/designs/test/instances_hier/mux_oo_5_10/pins_out/z
rc:/> vdir_lsearch $list $pin
4

list Specifies a list of objects.

The objects can be regular objects or can be of type vdir.

object Specifies the object for which you want to know the position in
the list. The object must be of type vdir.
July 2009 53 Product Version 9.1

Command Reference for Encounter RTL Compiler
Navigation
what_is

what_is object

Returns a string describing the type of object given as its argument. The command will work
only if a single object is specified. A list of valid objects can be obtain by typing find -help.

This command is mostly used for writing Tcl scripts (rather than being an interactive
command). It is useful for checking the types of arguments to the Tcl procedures.

Options and Arguments

Examples

■ The following example returns pin:

what_is /designs/TOP/instances_hier/SUB/pins_in/A[0]

pin

■ In the following example, the top-level design has two clocks clock2 and clock3. The
following command returns the type of clock2.

rc:/> what_is clock2

clock

■ The following command fails because there is more than one object of the given name
in the current tree structure.

rc:/designs/alu> what_is alu*
Error : A single object was expected, but multiple objects were found. [TUI-62]

: The argument that found multiple objects was ’alu*’.
what_is: return an object’s type

Usage: what_is <object>
<object>:

drs object of interest
Failed on what_is alu*

object Specifies the object for which you want to know the type.
July 2009 54 Product Version 9.1

Command Reference for Encounter RTL Compiler
2
General

■ ? on page 57

■ alias on page 58

■ all_inputs on page 59

■ all_outputs on page 60

■ apropos on page 61

■ clear on page 62

■ date on page 63

■ enable_transparent_latches on page 64

■ exec_embedded_script on page 65

■ exit on page 67

■ get_attribute on page 68

■ get_liberty_attribute on page 71

■ get_read_files on page 72

■ help on page 73

■ include on page 74

■ lcd on page 75

■ license on page 76

■ license checkin on page 77

■ license checkout on page 78

■ license list on page 79

■ lls on page 80
July 2009 55 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
■ lpopd on page 81

■ lpwd on page 83

■ man on page 84

■ more on page 85

■ quit on page 87

■ rc on page 88

■ redirect on page 92

■ reset_attribute on page 94

■ resume on page 96

■ sdc_shell on page 97

■ set_attribute on page 98

■ shell on page 101

■ suppress_messages on page 102

■ suspend on page 103

■ unsuppress_messages on page 104
July 2009 56 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
?

? [command]...[> file]

Provides help on the specified RTL Compiler commands.

Note: You can get help at any stage of the design.

Options and Arguments

Examples

■ The following examp[le requests help for the

rc:/> ? all_inputs
That command is:

General
===
all_inputs returns all the input ports.

Command details:

all_inputs: returns all the input ports.

Usage: all_inputs [-design <design>]

[-design <design>]:
limits list of input ports to the specified top-level design

■ The following example requests help for the synthesize and report commands:

rc:/> ? synthesize report
Commands are:

Analysis
===
report generates one of various reports

Synthesis
===
synthesize synthesizes the design

command Specifies the command for which you want help.

If you do not specify a command name, you get a brief
summary of all RTL Compiler commands.

file Specifies the name of the file to which to write the help.
July 2009 57 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
alias

alias alias_name command_name

Defines an alias for the specified name.

Options and Arguments

Example

The following command creates an alias ai for the all_inputs command.

rc:/> alias ai all_inputs
ai
rc:/> ai -h

all_inputs: returns all the input ports.

Usage: all_inputs [-design <design>]

[-design <design>]:

limits list of input ports to the specified top-level design

alias_name Specifies the alias name.

command_name Specifies the name of the command for which you want to
create an alias.
July 2009 58 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
all_inputs

all_inputs [-design design]

Returns the input ports of the specified design.

Options and Arguments

Examples

■ The following example lists the input ports of all loaded designs.

rc:/designs/top> all_inputs

/designs/top/ports_in/enable {/designs/top/ports_in/in1[7]}
{/designs/top/ports_in/in1[6]} {/designs/top/ports_in/in1[5]}
{/designs/top/ports_in/in1[4]} {/designs/top/ports_in/in1[3]}
{/designs/top/ports_in/in1[2]} {/designs/top/ports_in/in1[1]}
{/designs/top/ports_in/in1[0]} {/designs/top/ports_in/in2[7]}
{/designs/top/ports_in/in2[6]} {/designs/top/ports_in/in2[5]}
{/designs/top/ports_in/in2[4]} {/designs/top/ports_in/in2[3]}
{/designs/top/ports_in/in2[2]} {/designs/top/ports_in/in2[1]}
{/designs/top/ports_in/in2[0]} /designs/top/ports_in/clk
/designs/my_CG_MOD/ports_in/ck_in /designs/my_CG_MOD/ports_in/enable
/designs/my_CG_MOD/ports_in/test /designs/my_CG_MOD_neg/ports_in/ck_in
/designs/my_CG_MOD_neg/ports_in/enable /designs/my_CG_MOD_neg/ports_in/test

■ The following example lists the input ports of design my_CG_MOD.

rc:/designs/top> all_inputs -design my_CG_MOD

/designs/my_CG_MOD/ports_in/ck_in /designs/my_CG_MOD/ports_in/enable /
designs/my_CG_MOD/ports_in/test

■ Use the ls -dir command to format the output of the command

rc:/> ls -dir [all_inputs]

/designs/ksable/ports_in/in1[0]
/designs/ksable/ports_in/in1[1]
/designs/ksable/ports_in/in1[2]

■ Use the ls -dir command with the redirect arrow to redirect the output to a specified
file:

rc:/> ls -dir [all_inputs] > areid.txt

You can also append arrows (">>").

-design design Specifies the name of the top-level design for which you want to
list all input ports.

If you omit the design name, the input ports of all loaded
designs are listed.
July 2009 59 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
all_outputs

all_outputs [-design design]

Returns the output ports of the specified design.

Options and Arguments

Examples

■ The following example lists the output ports of all loaded designs.

rc:/designs/top> all_outputs

{/designs/top/ports_out/out1[7]} {/designs/top/ports_out/out1[6]}
{/designs/top/ports_out/out1[5]} {/designs/top/ports_out/out1[4]}
{/designs/top/ports_out/out1[3]} {/designs/top/ports_out/out1[2]}
{/designs/top/ports_out/out1[1]} {/designs/top/ports_out/out1[0]}
{/designs/top/ports_out/out2[7]} {/designs/top/ports_out/out2[6]}
{/designs/top/ports_out/out2[5]} {/designs/top/ports_out/out2[4]}
{/designs/top/ports_out/out2[3]} {/designs/top/ports_out/out2[2]}
{/designs/top/ports_out/out2[1]} {/designs/top/ports_out/out2[0]}
/designs/my_CG_MOD/ports_out/ck_out /designs/my_CG_MOD_neg/ports_out/ck_out

■ The following example lists the output ports of design my_CG_MOD.

rc:/designs/top> all_outputs -design my_CG_MOD

/designs/my_CG_MOD/ports_out/ck_out

■ Use the ls -dir command to format the output of the command

rc:/> ls -dir [all_inputs]

/designs/ksable/ports_out/out1[0]

/designs/ksable/ports_out/out1[1]

/designs/ksable/ports_out/out1[2]

■ Use the ls -dir command with the redirect arrow to redirect the output to a specified
file:

rc:/> ls -dir [all_outputs] > areid.txt

You can also append arrows (">>").

-design design Specifies the name of the top-level design for which you want to
list all output ports.

If you omit the design name, the output ports of all loaded
designs are listed.
July 2009 60 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
apropos

apropos [-skip_help] [-skip_commands]
[-skip_attributes] string

Performs a case insensitive wildcard search of commands (including their options) and
attributes. The command will even encompass the help text of commands and attributes. The
search results will be categorized into the following different sections:

■ Commands that match search text

■ Commands with help text that match search text

■ Commands with options (both option name and option help text) that match search text

■ Attributes that match search text

■ Attributes with help text and attribute objects that matches search text

Options and Arguments

Examples

■ The following example searches for the term "generic":

rc:/> apropos generic
Commands with option text matching search string:
 synthesize
 write_hdl

Attributes with help text matching search string:
 dp_perform_csa_operations (root)
 dp_perform_sharing_operations (root)
 dp_perform_speculation_operations (root)
 hdl_auto_sync_set_reset (root)
 timing_driven_muxopto (design)
 timing_driven_muxopto (subdesign)

■ The following example searches for the term "generic" among commands only:

rc:/> apropos -skip_attributes generic
Commands with option text matching search string:
 synthesize
 write_hdl

-skip_help Do not include help text in the search results.

-skip_command Do not include commands in the search results.

-skip_attributes Do not include attributes in the search results.

string Specifies the search string
July 2009 61 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
clear

clear

Clears the terminal screen.
July 2009 62 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
date

date

Returns the data and time. This command is equivalent to the UNIX date command.

Examples
rc:/> date

Thu Apr 23 01:28:55 PM PDT 2009
July 2009 63 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
enable_transparent_latches

enable_transparent_latches

Enables transparent latches in the design by disabling the EN to Q arcs in the latch. This
command must be used after elaborate. Transparent latches are latches with the enable
signal held constant at the active state. Without enabling transparent latches, paths through
them cannot be traced.

Related Information

Affects this command: report disabled_transparent_latches on page 373
July 2009 64 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
exec_embedded_script

exec_embedded_script
[-design string] [-subdesign string]

Executes embedded scripts found in a specified design or subdesign. To execute the scripts
on all top-designs and their subdesigns, use the exec_embedded_script command
without any arguments. Use this command after the elaborate command.

The embedded script of a design or subdesign is stored in the embedded_script attribute
of that design or subdesign.

Options and Arguments

Examples

■ The following commands execute a SDC script, if any, embedded in the RTL description
of the design.

rc> exec_embedded_script

rc> exec_embedded_script -design name of top design

rc> exec_embedded_script -design full vdir path to top design

rc> exec_embedded_script -subdesign full vdir path to subdesign

■ If design or subdesign is not specified, then using this command executes the embedded
SDC script of all designs and all subdesigns.

■ If a design is specified, then this command executes the embedded SDC script in the
RTL code of the given design and all its subdesigns.

■ If a subdesign is specified, then this command executes the embedded SDC script in
the RTL code of the specific subdesign only.

Note: The impact of executing only this embedded script can still be hierarchical. For
example, this can happen if an SDC command in the embedded script at this level of
design hierarchy specifies a constraint for some instance down in the hierarchy.

■ If both a design and a subdesign is specified, then the subdesign setting is ignored.

-design string Specifies the top level design for which the embedded script
need to be executed. Using this option executes scripts for the
specified design and every subdesign in it.

-subdesign string Specifies the full path of the subdesign for which the embedded
script needs to be executed. Using this option executes the
script only for the specified subdesign.
July 2009 65 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
Related Information

Related command: elaborate on page 284

Related attributes: hdl_auto_exec_sdc_scripts
July 2009 66 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
exit

exit [code]

Exits from the RTL Compiler shell without saving design data.

Control-c is a shortcut to the exit and quit commands.

Important

When exiting, no design data is saved, so it is important to save the design using the
write_hdl and write_script commands.

Options and Arguments

code Specifies the exit code.

The following are the built-in exit codes:

0 – normal exit

1 – abnormal exit

246 – exit when no license server is available

245 – exit when no license feature is available

244 – exit when syntax error in script
July 2009 67 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
get_attribute

get_attribute {attribute_name [object]
|-h {attribute_name | *] {type|*} }

Retrieves the value of an attribute set by RTL Compiler or via the set_attribute
command. You can also use this command to list all attributes of a given object type.

This command is most commonly used within scripts to control the way a script operates
based on the value of the attribute, or to retrieve basic information on the tool.

Options and Arguments

attribute_name Specifies the name of an attribute whose value you want to
retrieve.

object Specifies the path from where the attribute should be retrieved.

Default: current working directory

type Specifies the object type for which you want the list of attribute
names. Specify any of the following:

actual_scan_chain hdl_param operating_condition

actual_scan_segment hdl_pin pin

attribute hdl_proc pin_bus

clock hdl_subp port

clock_domain instance port_bus

constant isolation_rule power_domain

cost_group jtag_instruction power_ground_net

design jtag_instruction_register root

exception jtag_port scan_chain

external_delay level_shifter_group scan_segment

hdl_arch level_shifter_rule seq_function

hdl_bind libarc subdesign

hdl_block libcell subport

hdl_comp libpin subport_bus

hdl_config library test_clock

hdl_impl library_domain test_clock_domain
July 2009 68 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
Examples

■ The following example retrieves the current value of the library attribute on the root
directory:

rc:/> get_attribute library /
tutorial.lbr

■ The following example assumes you are already at the root of the design hierarchy, so
the object specification is omitted:

rc:/> get_attribute library
tutorial.lbr

■ The following example stores the attribute value in a variable:

rc:/> set old_library [get_attribute library /]
tutorial.lbr

■ The following example returns the area of library cell:

rc:/> get_attribute area [find /lib* -libcell nor*]
1.5

■ The following example lists all root-level attributes starting with lp:

rc:/> get_attribute lp* root -help

■ The following example lists all attributes for all object types:

rc:/> get_attribute * * -help

■ The following examples show the difference between the ls -attribute and
get_attribute commands.

❑ Using the ls -attribute command:

rc:/designs> ls -attribute

Total: 2 items

./

async_set_reset_flop_n/ (design)

hdl_inst message test_signal

hdl_label message_group violation

hdl_lib mode wireload

hdl_oper net wireload_selection

hdl_pack

Note: The clock_domain, test_clock_domain, and
wireload_selection object types currently do not have any
attributes associated with them.
July 2009 69 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
Attributes:

dft_mix_clock_edges_in_scan_chains = false

wireload = /libraries/slow/wireload_models/sartre18_Conservative

❑ Using the get_attribute wireload command:

rc:/designs> get_attribute wireload /designs/async_set_reset_flop_n/

returns the following wireload model:

/libraries/slow/wireload_models/sartre18_Conservative

The ls -attribute command lists all user modified attributes and their values.
The get_attribute command lists only the value of the specified attribute. The
get_attribute command is especially useful in scripts where its returned values
can be used as arguments to other commands.

Related Information

Affected by this command: set_attribute on page 98

Related command: ls on page 46
July 2009 70 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
get_liberty_attribute

get_liberty_attribute attribute_name
{libarc|libcell|libpin|library|operating_condition|wireload}

Options and Arguments

Example

The following command retrieves the default_operating_conditions attribute of the
tutorial library.

rc:/> get_liberty_attribute default_operating_conditions tutorial

typical_case

attribute_name Specifies the name of the Liberty attribute whose value you
want to retrieve.

libarc|libcell|libpin|library|operating_condition|wireload

Specifies the name of the object for which you want to retrieve a
Liberty attribute value.
July 2009 71 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
get_read_files

get_read_files [-quiet] [-command command]

Returns information on the files that have been read for the specified command

Options and Arguments

Example
rc:/> get_read_files -command read_def
point.def

-command command Specifies the command for which you want the information.

-quiet Suppresses the status message.
July 2009 72 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
help

help [command]...[> file]

Provides help on the specified RTL Compiler commands.

Note: You can get help at any stage of the design.

Options and Arguments

Examples

■ The following example requests help for the report command:

rc:/> help report
That command is:
 report generate one of various reports

■ The following example requests help for the synthesize and report commands:

rc:/> help synthesize report
Commands are:

report generate one of various reports
synthesize synthesize the design

command Specifies the command for which you want help.

If you do not specify a command name, you get a brief
summary of all RTL Compiler commands.

file Specifies the name of the file to which to write the help.
July 2009 73 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
include

include file

Executes scripts containing RTL Compiler or Tcl commands in the order they are listed in the
include command.

When RTL Compiler begins executing, a number of scripts are automatically included.
Information on these configuration scripts is given in the Using Encounter RTL Compiler.

The use of script files allows automation and modularization of the design flow by placing
commonly used commands and sequences of commands into their own scripts. For
externally defined components like memories, the vendor can supply a script to create and
set up the memory.

This command is identical to the source command.

Note: If an error occurs during execution of one of the scripts, execution of that script (and
all scripts following it) is stopped.

Options and Arguments

Examples

■ The following example includes one script file:

rc:/> include constraint.g

■ The following example includes multiple scripts at once:

rc:/> include constraint.g; include synth.g

Related Information

file Specifies the name of the script file to include.

Affected by these attributes: hdl_search_path

lib_search_path

script_search_path
July 2009 74 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
lcd

lcd directory

Changes the UNIX working directory to the specified directory.

Options and Arguments

Examples

■ The following example changes the working directory to the rtl_lab01 directory in the
current UNIX directory.

rc:>/ lcd rtl_lab01

Related Information

directory Specifies the UNIX directory to which to change the current
directory.

Affects these commands: lls on page 80

lpwd on page 83

shell on page 101
July 2009 75 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
license

license {checkin | checkout | list}

Manages the checking in and checking out of licenses.

Options and Arguments

Related Information

checkin Checks in a product license that was previously
checked out.

checkout Checks-out additional licenses.

list Returns a list of licenses currently checked out.

Related commands: license checkin on page 77

license checkout on page 78

license list on page 79
July 2009 76 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
license checkin

license checkin license

Checks in a product license that was previously checked out.

Options and Arguments

Examples

■ The following example checks in the RTL_Compiler_Verification license:

rc:/> license checkin RTL_Compiler_Verification

license Specifies the license to be checked in. The licenses that
can be checked in are:

■ FE_GPS

■ First_Encounter_GXL

■ RTL_Compiler_Ultra

■ RTL_Compiler_Verification

■ RTL_Compiler_Ultra_II_Option

■ SOC_Encounter_GPS

■ SOC_Encounter_GXL
July 2009 77 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
license checkout

license checkout license [-version float] [-wait]

Checks-out an additional product license. Licenses can only be checked-out one at a time.

If the license is available, it is checked out and 1 is returned. If the license is not available, a
warning message is issued and 0 is returned. To check-in a license, use the license
checkin command or quit RTL Compiler.

Options and Arguments

Examples

■ The following example checks-out the RTL_Compiler_Verification license:

rc:/> license checkout RTL_Compiler_Verification
Checking out license ’RTL_Compiler_Verification’...... (0 seconds elapsed)
1

■ The following command checks out version 6.2 of the SOC_Encounter_GPS license. For
example, the primary license could be 8.1 and the alternate version 7.1.

license checkout SOC_Encounter_GPS -version 6.2

license Specifies the license to be checked out. The licenses
that can be checked out are:

■ FE_GPS

■ First_Encounter_GXL

■ RTL_Compiler_Ultra

■ RTL_Compiler_Verification

■ RTL_Compiler_Ultra_II_Option

■ SOC_Encounter_GPS

■ SOC_Encounter_GXL

-version float Allows you to specify a specific version of the license. By
default, the command uses the hardcoded primary or
alternate version of the license that you want to check
out.

-wait Waits until a license becomes available. RTL Compiler
will wait indefinitely, until the license is available.
July 2009 78 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
license list

license list

Returns a Tcl list of additional licenses that are currently checked-out. The license used to
launch RTL Compiler is not included in this list.

Example

■ The following example shows that four additional licenses are currently checked-out.
Notice that two instances of FE_GPS are checked-out:

rc:/> license list

FE_GPS FE_GPS SOC_Encounter_GPS RTL_Compiler_Verification
July 2009 79 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
lls

lls directory

Lists the contents of the specified UNIX directory.

Options and Arguments

Examples

■ The following example lists the contents of the rtl_lab01 directory in the current UNIX
directory.

rc:/> lls rtl_lab01
alu.v
lab01_gates.v
rc.cmd
rc.log
script.g
tutorial.lbr
rc:/>

Related Information

directory Specifies the UNIX directory whose contents to list.

Affected by this command: lcd on page 75

Related commands: lpwd on page 83

shell on page 101
July 2009 80 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
lpopd

lpopd

Removes the topmost element of the UNIX directory stack, revealing a new top element and
changes the current directory to the new top element. This command is equivalent to the
UNIX popd command.

Note: If lpopd is issued on a directory stack that has only one element, an appropriate
warning message is printed and the lpopd command exits without changing the directory
stack.

Example

In the following example, the synthesis directory is removed from the UNIX directory stack.

rc:/> lpwd

/home/ria/rc_ex/synthesis

rc:/> lpopd

/home/ria/rc_ex

Related Information

Affects these commands: lls on page 80

lpushd on page 82

lpwd on page 83
July 2009 81 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
lpushd

pushd directory

Pushes the specified new target directory onto the UNIX directory stack (as the topmost
element) and changes the current directory to that specified directory. This command is
equivalent to the UNIX pushd command.

Options and Arguments

Example

In the following example, the synthesis directory is pushed on top of the current UNIX
directory.

rc:/> lpwd

/home/ria/rc_ex

rc:/> lpushd synthesis

synthesis

rc:/> lpwd

/home/ria/rc_ex/synthesis

Related Information

directory Specifies the name of the UNIX directory to be set as target
directory.

You can use wildcards when they do not produce an ambiguous
reference (more than one match).

Affects these commands: lls on page 80

lpopd on page 81

lpwd on page 83
July 2009 82 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
lpwd

lpwd

Returns the UNIX working directory.

Examples

■ The following example shows the current UNIX directory.

rc:/> lpwd
/usr3/verilog_labs

Related Information

Affected by this command: lcd on page 75

Related commands: lls on page 80

shell on page 101
July 2009 83 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
man

man { command_name | attribute_name | message_ID}

Returns detailed information about the specified command, attribute, or message from the
online reference manual. You must first set your MANPATH environment variable to the
following path:

$CDN_SYNTH_ROOT/share/synth/man

After setting the MANPATH variable, you can obtain manpages for commands and attributes
both within RTL Compiler or within the Unix shell. To obtain more information about RTL
Compiler messages, you must use the man command within RTL Compiler.

Example

■ The following example returns the manpage for the synthesize command:

rc:/> man synthesize

User Commands synthesize(1)

NAME

synthesize

SYNTAX

synthesize [-effort {high|medium|low}] [-to_generic]

[-to_mapped] [-incremental] [<design>]...

DESCRIPTION

Determines the most suitable design implementation using the

given design constraints (clock cycle, input delays, output

delays, technology library, and so on).

...

■ The following example returns information about the TIM-11 message:

rc:/> man TIM-11

Entry : TIM-11

Severity : Warning

Verbosity : Message is visible at any ’information_level’ above ’1’.

Description : Possible timing problems have been detected in this design.

Help : Use ’report timing -lint’ for more information
July 2009 84 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
more

more command

Displays the output of the specified command one screen at a time.This command is similar
to the UNIX more command.

If the output is several screens, the percentage of characters displayed so far is also shown
at the bottom of the screen.

To scroll down the display one line at a time, press Return.

To display the next screen, press the SPACE bar.

To stop the display, press q.

Options and Arguments

Examples

The following command displays one screen for the output of the write_scandef
command.

rc:/> more write_scandef

VERSION 5.4 ;
NAMESCASESENSITIVE ON ;
DIVIDERCHAR "/" ;
BUSBITCHARS "[]" ;
DESIGN ria_test ;

SCANCHAINS 6 ;
 - AutoChain_1_seg1_test_clk1_falling
+ PARTITION p_test_clk1_falling
MAXBITS 5
 + START PIN DFT_sdi_1
 + FLOATING
 out1_reg[4] (IN SI) (OUT QN)
 out1_reg[5] (IN SI) (OUT QN)
 out1_reg[6] (IN SI) (OUT QN)
 out1_reg[7] (IN SI) (OUT QN)
 out1_reg[8] (IN SI) (OUT QN)
 + STOP DFT_lockup_g1 D
;

 - AutoChain_1_seg2_test_clk2_falling

command Specifies the command whose output you want to display with
the more command.
July 2009 85 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
+ PARTITION p_test_clk2_falling
MAXBITS 5
 + START DFT_lockup_g1 Q
 + FLOATING
 out2_reg[4] (IN SI) (OUT QN)
 out2_reg[5] (IN SI) (OUT QN)
 out2_reg[6] (IN SI) (OUT QN)
 out2_reg[7] (IN SI) (OUT QN)
 out2_reg[8] (IN SI) (OUT QN)
 + STOP DFT_lockup_g259 D
;

 - AutoChain_1_seg3_test_clk3_falling
+ PARTITION p_test_clk3_falling
MAXBITS 5
 + START DFT_lockup_g259 Q
 + FLOATING
 out3_reg[4] (IN SI) (OUT QN)
 out3_reg[5] (IN SI) (OUT QN)
 out3_reg[6] (IN SI) (OUT QN)
 out3_reg[7] (IN SI) (OUT QN)
 out3_reg[8] (IN SI) (OUT QN)
--More--(51%)

■ The following command outputs the library check report results:

more report checks -library

■ The following command outputs the HDL lint check report results, displaying every
message for every message ID, one message per line:

more report checks -hdl_lint -detail
July 2009 86 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
quit

quit

Exits from the RTL Compiler shell without saving design data.
Control-C is a shortcut to the exit and quit commands.

Important

When exiting, no design data is saved, so it is important to save the design using the
write_hdl and write_script commands.

Options and Arguments

code Specifies the exit code.

The following are the built-in exit codes:

0 – normal exit

1 – abnormal exit

246 – exit when no license server is available

245 – exit when no license feature is available

244 – exit when syntax error in script
July 2009 87 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
rc

rc [-32] [-64] [-E]
[-execute command] [-files file] [-post command]
[-gui] [-no_custom]
[-cmdfile file] [-logfile log_file] [-overwrite]
[-lsf_cpus integer] [-lsf_queue string]
[-N integer] [-version]
[-queue] [-cfm_eco] [-cfo_eco_gxl] [-rcl] [-vdi]
[-use_license {Conformal_ECO | Conformal_ECO_GXL
| Encounter_Design_Planner_XL
| Encounter_Digital_Impl_Sys_XL
| FE_GPS | First_Encounter_GXL
| RTL_Compiler_L | RTL_Compiler_Physical
| RTL_Compiler_Ultra | RTL_Compiler_Verification
| SOC_Encounter_GPS | SOC_Encounter_GXL
| Virtuoso_Digital_Implement | Virtuoso_Digital_Implem}]

Starts RTL Compiler from the UNIX environment. If you specify multiple licenses with the
-use_license, only the last one will be used.

Note: Use rc64 instead of rc if you are using RTL Compiler on a Solaris 64-bit environment.

Tip

You can abbreviate the options for the rc command as long as there are no
ambiguities with its other options. In the following example, -ever would imply the
-version option:

unix> rc -ver

Just using rc -v would not work because there is more than one option that starts with
the letter “v.”

Options and Arguments

-32 Launches RTL Compiler in 32-bit mode. This is the default
mode.

-64 Launches RTL Compiler in 64-bit mode.You can set the
CDS_AUTO_64BIT environment variable to ALL to launch not
only RTL Compiler, but all Cadence tools in 64-bit. You will not
need to specify the -64 option if you use this variable.

-big Enables the back ground mode.

-cfm_eco Starts RTL Compiler with a Conformal_ECO license.
July 2009 88 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
-cfm_eco_gxl Starts RTL Compiler with a Conformal_ECO_GXL license.

-cmdfile file Specifies the command file name. If a file with this name
already exists in your unix directory, the new command file will
overwrite the existing file.

Default: rc.cmd

-E Specifies that RTL Compiler must exit if a script error is found.

-execute command Specifies the command or Tcl code to execute as a quoted
string before any other files specified with the -files option
are processed.

-files file Specifies the names of the scripts (or command files) to
execute.

-gui Launches the RTL Compiler Graphical User Interface (GUI).

Note: GUI commands are only available in the GUI version of
RTL Compiler. See GUI Guide for Encounter RTL Compiler for
detailed information on GUI commands.

-logfile logfile Specifies the log file name. If a file with this name already exists
in your unix directory, the new log file will overwrite the existing
file (new content with the same filename).

Default: rc.log

-lsf_cpus integer Specifies the number of LSF CPUs to use for super-threading.

-lsf_queue string Specifies the name of the LSF queue.

-N integer Specifies the number of licenses to use for VDIO and RC-L.

Important

The licenses must be on the same server.

-no_custom Specifies to read only the master .synth_init file, located in
the installation directory.

By default, RTL Compiler also loads the initialization file in your
home directory and in your current design directory.

-overwrite Allows overwriting of the default and specified command and
log files.

-post string Specifies the command to be executed after the file(s) specified
with the -files option is (are) processed.
July 2009 89 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
Examples

■ The following example first starts RTL Compiler, then executes a script file.

unix> rc
rc:/> include script.g

■ The following example specifies two script files in the command line:

unix> rc -f script1.g -f script2.g

■ The following example specifies a logfile name with the -logfile option. The default
name is rc.log if there is no other logfile in the directory from which RTL Compiler is
launched:

unix> rc -logfile pov.log

Do not use the UNIX tee command and pipe (|) to specify your logname: doing so would
not allow you to use the control-c key sequence to gracefully exit a process like
incremental optimization.

■ The following example uses the -execute option to execute a script file:

unix> rc -exute "include script.g"

■ The following example specifies the library path in the command line:

unix> rc -ex "set_attribute lib_search_path /net/serverx/libs/mylib"

-queue Puts an RTL Compiler session in a queue if a license is not
currently available. Once an RTL Compiler license becomes
available, an RTL Compiler session is launched.

-rcl Launches RTL Compiler with the RTL_Compiler_L license.

-use_license string

Specifies which license to use at startup. If the specified license
is unavailable, startup will not continue and the command will
fail. If you specify multiple licenses, only the last one will be
used.

-version Returns the version number without launching the executable.

-vdi Launches RTL Compiler with the Virtuoso Digital
Implementation license. It will first try to use the
Virtuoso_Digital_Implem license. If that license is
unavailable, then it will use the
Virtuoso_Digital_Implement license.
July 2009 90 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
■ The following commands start RTL Compiler with the RTL_Compiler_Physical
license:

unix> rc -physical

unix> rc -use_license RTL_Compiler_Physical

■ The following example starts RTL Compiler with the RTL_Compiler_Verification
license:

unix> rc -use_license RTL_Compiler_Verification

This command will fail if the RTL_Compiler_Verification license is unavailable.

If the -use_license option is not specified, then the RTL_Compiler_Ultra,
RTL_Compiler_Verification, FE_GPS, and SOC_Encounter_GPS licenses will be
checked, respectively, and RTL Compiler will start with the first available license. For
example, if in the following example the only available license was FE_GPS, then RTL
Compiler will start with the FE_GPS license:

unix> rc

■ The following commands have the same effect. Therefore, you should use one or the
other and not both in conjunction:

unix> rc -use_license Virtuoso_Digital_Implement

is the same as:

unix> rc -vdi

■ The following example launches RTL Compiler on four LSF CPUs in the LSF queue
named my_queue:

unix> rc -lsf_cpus 4 -lsf_queue my_queue

■ The following example will launch not only RTL Compiler, but all Cadence tools in 64-bit
mode:

unix> setenv CDS_AUTO_64BIT ALL

unix> rc

■ The following example specifies that two Virtuoso Digital Implementation licenses be
used:

unix> rc -vdi -N 2

Related Information

Affected by this attribute: command_log
July 2009 91 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
redirect

redirect [-append] [-tee] [-variable] target command

Redirects the standard output to a file or variable. You can write out a gzip compressed file
by adding the .gz extension to the filename.

Note: Messages generated by the command whose output you are redirecting, can be mixed
with the command output. To limit the number of messages included, you can change the
value of the information_level root attribute.

Options and Arguments

Examples

■ The following example sends the output generated by the report gates command
to a file called gates.rep:

redirect gates.rep "report gates"

■ The following example appends information to the existing gates.rep file:

redirect -append gates.rep "report gates"

■ The following example sends the report to stdout and to a file on the disk:

redirect -tee gates.rep "report gates"

■ The following example prevents output generated during reading of the script from being
sent to the screen by sending it to /dev/null.

redirect /dev/null "include script.g"

■ The following example stores the timing report in a variable $rep_var. You can use Tcl
commands to manipulate or parse the variable.

redirect -variable rep_var "report timing"

-append Append the generated output to the specified file or Tcl
variable.

command Specifies the command or Tcl code to execute as a quoted
string.

target Specifies the name of the file or variable to which to write the
output.

-tee Also writes the output to standard output (stdout).

-variable Redirects the output to a Tcl variable.
July 2009 92 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
■ The following examples output a timing and a scan_power gzip compressed report file:

redirect file.gz "report timing"

redirect file.gz "report scan_power"
July 2009 93 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
reset_attribute

reset_attribute { [-quiet] attribute_name [object...]
| -h {attribute_name | *] {type|*}}

Resets an attribute to its default value.

Options and Arguments

attribute_name Specifies the attribute that should be returned to its default
value. The "*" wildcard character is supported.

object Specifies the object for which the attribute values should be
returned to the default values.

-quiet Suppresses those messages that indicate which attributes
and objects are being affected.

type Specifies the object type for which you want the list of
attribute names. The "*" wildcard character is supported.
Specify any of the following types:

actual_scan_chain hdl_lib mode

actual_scan_segment hdl_oper net

attribute hdl_param operating_condition

clock hdl_pin pin

cost_group hdl_proc port

design hdl_subp port_bus

exception instance power_domain

external_delay isolation_rule power_ground_net

hdl_arch level_shifter_group root

hdl_bind libarc subdesign

hdl_block libcell subport

hdl_comp libpin subport_bus

hdl_impl library test_clock

hdl_inst library_domain test_signal

hdl_label message wireload
July 2009 94 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
Examples

■ The following example specifies that all retiming attributes should be returned to their
default values:

rc:/> reset_attribute retime* *

■ The following example specifies that all attributes on all sequential instances be returned
to their default values:

rc:/> reset_attribute * [find / -instance *seq/*]

■ The following command lists all valid attributes that you can reset:

rc:/> reset_attribute -h * *

Both type and attribute_name accept wildcard strings.
July 2009 95 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
resume

resume

Restarts the current Tcl process. This command only works in conjunction with the suspend
command. See the suspend command to see how these commands work together to stop
and restart a Tcl process.

Related Information

Related command: suspend on page 103
July 2009 96 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
sdc_shell

sdc_shell

Opens the SDC shell within RTL Compiler. All SDC commands can be used without the dc::
prefix inside the SDC shell. The command exit quits the SDC shell and returns you back to
the RTL Compiler prompt.

Example

■ The following example launches the SDC shell within RTL Compiler and then exits:

rc:/> sdc_shell

Info : Entering sdc_shell. [SDC-300]

: All sdc commands will work without the dc:: prefix inside sdc_shell.
Type ’exit’ to leave the shell.

sdc_shell> exit

Info : Leaving sdc_shell. [SDC-301]

 : Type sdc_shell to use it again.

rc:/>
July 2009 97 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
set_attribute

set_attribute
{ attribute_name attribute_value [objects]
[-quiet] [-lock]

| -h {attribute_name | *] {type|*}}

Sets the value of a specified attribute or returns a list of valid attributes.

Attributes are placed on directory objects to control the way they are processed by RTL
Compiler. They can also be used to control the synthesis process, the style of the generated
code, and numerous other things. A complete list of all attributes is contained in the Attribute
Reference for Encounter RTL Compiler.

Note: Not all attributes can be set. Attempting to set a read-only attribute returns an error.
The Attribute Reference for Encounter RTL Compiler indicates whether an attribute is
read-write or read-only.

Options and Arguments

attribute_name Specifies the name of the attribute whose value you want to
set.

attribute_value Specifies the new attribute value.

The value can be either a Boolean, integer, or string. A
compound string (containing spaces) should be represented
as a list using double-quotes or braces.

-lock Locks the specified attribute’s value so that it cannot be
changed. The attribute becomes read-only.

objects Specifies the path(s) to the objects.

Default: current directory

-quiet Suppresses those messages that indicate which objects are
being affected. Alternatively, when setting an attribute on an
object, an information message will not be printed.

type Specifies the object type for which you want the list of
attribute names. Specify any of the following:

actual_scan_chain hdl_lib mode

actual_scan_segment hdl_oper net

attribute hdl_param operating_condition
July 2009 98 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
Examples

■ The following example lists all valid attributes that you can set:

rc:/> set_attribute * * -help

Both type and attribute_name accept wildcard strings.

■ The following example lists all valid attribute names that contain the string dont:

rc:/> set_attribute *dont* * -help

■ The following example sets the information_level attribute, which controls the
verbosity of the tools, to the value of 5 and assumes the current directory for the path:

rc:/> set_attribute information_level 5
Setting attribute of root /: 'information_level' = 5

■ In the following example, the path needed to be specified because
information_level is a root attribute and would not have been found in the current
path:

rc:/designs/alu> set_attribute information_level 5 /
Setting attribute of root /: 'information_level' = 5

■ The following locks the technology library search path to /home/Test/bree by locking
the lib_search_path attribute. For the rest of the session, the lib_search_path
attribute becomes read-only.:

rc:/> set_attribute -lock lib_search_path /home/Test/bree

clock hdl_pin pin

cost_group hdl_proc port

design hdl_subp port_bus

exception instance power_domain

external_delay isolation_rule power_ground_net

hdl_arch level_shifter_group root

hdl_bind libarc subdesign

hdl_block libcell subport

hdl_comp libpin subport_bus

hdl_impl library test_clock

hdl_inst library_domain test_signal

hdl_label message wireload
July 2009 99 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
Related Information

Affects these commands: ls on page 46

get_attribute on page 68
July 2009 100 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
shell

shell command_string

Executes a UNIX shell command from the RTL Compiler shell.

When executing shell commands, RTL Compiler uses /bin/sh.

Important

Attempting to change the working directory for the RTL Compiler shell using shell
cd ..is not possible because each shell command is executed in its own shell,
and that shell is killed once the command is complete.

Options and Arguments

Examples

■ The following example uses the sh command to get the current date:

rc:/> shell date
…

Related Information

command_string Specifies the UNIX command to execute.

You can specify any valid UNIX command. A sequence of
commands must be specified in the same string.

Affected by this command: lcd on page 75

Related commands: lls on page 80

lpwd on page 83
July 2009 101 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
suppress_messages

suppress_messages [-n integer] message_id...

Suppresses printing of the specified message in the log file.

Options and Arguments

Examples

■ The following example suppresses the VLOG-1 and VLOG-2 messages:

rc:/> suppress_messages { VLOG-1 VLOG-2 }

Related Information

message_id Specifies the message identification.

-n integer Prints the specified message only n number of times. The
default value is 0.

Related command: unsuppress_messages on page 104
July 2009 102 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
suspend

suspend

Stops the current Tcl process. Type resume to restart the process from where it was stopped.
Issuing the suspend command brings up the RTL Compiler prompt and any commands or
attributes that are issued during this time will not have access to the temporary variables from
the suspended Tcl process. However, global variables and Tcl processes can still be
accessed.

Note: Any commands that you enter after issuing the suspend command but before the
resume command will not be included in Tcl’s command history. However, these commands
will be included in RTL Compiler’s command editor history.
July 2009 103 Product Version 9.1

Command Reference for Encounter RTL Compiler
General
unsuppress_messages

unsuppress_messages message_id...

Allows a previously suppressed message to be printed.

Options and Arguments

Examples

■ The following example suppresses the VLOG-1 and VLOG-2 messages and then allows
them to be printed again:

rc:/> suppress_messages { VLOG-1 VLOG-2 }

rc:/> unsuppress_messages { VLOG-1 VLOG-2 }

Related Information

message_id Specifies the message identification.

Related command: suppress_messages on page 102
July 2009 104 Product Version 9.1

Command Reference for Encounter RTL Compiler
3
GUI Text

■ General GUI Text Commands on page 106

■ HDL Viewer GUI Text Commands on page 109

■ Schematic Viewer GUI Text Commands on page 112

■ Physical Viewer GUI Text Commands on page 116
July 2009 105 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
General GUI Text Commands

■ gui_hide on page 107

■ gui_info on page 107

■ gui_raise on page 107

■ gui_reset on page 107

■ .gui_selection on page 108

■ gui_show on page 108

■ gui_status on page 108

■ gui_update on page 108
July 2009 106 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_hide

gui_hide

Hides the GUI. Type the gui_show command to re-display the GUI.

gui_info

gui_info string

Adds the specified text string in the info section of the status bar. The text remains until it is
overwritten.

This command is usually used to print persistent messages (for example, Design is mapped).

gui_raise

gui_raise [-nosync]

Keeps the GUI window on top of all other windows.

Options and Arguments

gui_reset

gui_reset

Resets the busy indicator if it remains busy.

The busy indicator can remain red if the script that set the busy indicator is broken and
therefore the busy indicator does net get reset or cleared.

-nosync Does not synchronize the GUI when the GUI is raised.
July 2009 107 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
.gui_selection

gui_selection

Returns the selection list, which consists of the object path for instance, net, pin, and port
objects. The list can contain multiple objects.

Example

■ The following example returns a combinantional instance:

rc:/> gui_selection

/designs/mul_clk/instances_comb/g14

If you enable the toolbar by un-checking Hide Toolbar under the Preferences menu, the
complete path for the last selected object will be displayed.

gui_show

gui_show [-nosync]

Displays the GUI after using gui_hide command.

Options and Arguments

gui_status

gui_status string

Adds the specified text string in the status section of the status bar (window right to the busy
indicator). The text remains until it is overwritten.

This command is usually used to print transient messages (for example, Loading library
name).

gui_update

gui_update

Updates the GUI. This is the same as selecting Synchronize GUI under the File menu.

-nosync Does not synchronize the GUI when the GUI is displayed.
July 2009 108 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
HDL Viewer GUI Text Commands

■ gui_hv_clear on page 110

■ gui_hv_get_file on page 110

■ gui_hv_load_file on page 110

■ gui_hv_set_indicators on page 111
July 2009 109 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_hv_clear

gui_hv_clear

Removes all the data in the HDL Viewer.

gui_hv_get_file

gui_hv_get_file

Returns the name of the file currently loaded in HDL Viewer.

gui_hv_load_file

gui_hv_load_file filename

Loads the specified file name into the HDL Viewer. Same as clicking the Open HDL File
icon in the HDL Viewer.
July 2009 110 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_hv_set_indicators

gui_hv_set_indicators [-clear] line_number column_number

Sets the line and column number indicators. Using this command is useful if you are
writing a script and you want to highlight a specific line in the HDL Viewer.

Options and Arguments

Example

■ The following command highlights the specified line number and sets the line number to
12 and the column number to 10, as shown in Figure 3-1.

rc:/> gui_hv_set_indicators 12 10

■ The following commands sets the line number to 12, the column number to 10, and
removes the highlighting:

rc:/> gui_hv_set_indicators 12 10 -clear

Figure 3-1 Setting Line and Column Numbers in the HDL Viewer

-clear Removes all tag highlighting. If this option is not used, then the
specified line number is highlighted.

column_number Specifies the column number. If the column_number
argument is not specified, then the default is 0.

line_number Specifies the line number.

Setting the line number to 12 and
the column number to 10
July 2009 111 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
Schematic Viewer GUI Text Commands

■ gui_sv_clear on page 113

■ gui_sv_get_instance on page 113

■ gui_sv_grey on page 113

■ gui_sv_highlight on page 114

■ gui_sv_load on page 115
July 2009 112 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_sv_clear

gui_sv_clear

Clears highlighting and selection lists in the Schematic Viewer.

gui_sv_get_instance

gui_sv_get_instance

Returns the objects for the currently displayed hierarchical instance.

gui_sv_grey

gui_sv_grey [on | off]

Controls the grey mode. You can also right-click the mouse button in the Schematic Viewer
and select Grey Mode On or Grey Mode Off.

Options and Arguments

-on Turns on grey mode in the Schematic Viewer.

-off Turns off grey mode in the Schematic Viewer.
July 2009 113 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_sv_highlight

gui_sv_highlight [-append] [-color color] [-center]
[-from {port|pin}] [-to {port|pin}] [-zoomto]
{port|pin|net|instance}

Highlights the specified object in the Schematic Viewer.

Options and Arguments

Examples

■ The following Tcl procedure highlights inverters in the Schematic Viewer

highlight inverters
proc highlight_inverters {idir type odir} {

only proceed if no object under cursor
if {$type != "none"} return
clear any highlight and selection
gui_sv_clear
_find_inverters $idir

}

proc _find_inverters {idir} {
search for inverters
foreach inst [find $idir -maxdepth 2 -instance *comb/*] {

if {[get_attribute inverter $inst] == "true"} {
gui_sv_highlight $inst -append -color green

}
}

}

-append Appends an object to the highlighted list.

-center Centers an object in the Schematic Viewer.

-color color Specifies the color for highlighting an object.

-from {port|pin} Specifies the start point of the highlighted net.

-to {port|pin} Specifies the end point of the highlighted net.

-zoomto Zooms into the specified port, pin, instance or net.
July 2009 114 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
■ The following example highlights the falling clock edge flip-flops

highlight falling clock edge flip-flops
proc highlight_falling_edge_ff {idir type odir} {

only proceed if no object under cursor
if {$type != "none"} return
clear any highlight and selection
gui_sv_clear
_find_falling_edge_ff $idir

}

proc _find_falling_edge_ff {idir} {
search for sequential gates with falling clock edge
foreach inst [find $idir -maxdepth 2 -instance *seq/*] {

set libcell [get_attribute libcell $inst]
if {$libcell == ""} continue
if {[get_attribute flop $libcell] == "true"} {

foreach libpin [find $libcell -libpin *] {
if {[get_attribute output $libpin] == "true"} {

foreach arc [get_attribute incoming_timing_arcs $libpin] {
set liberty [get_attribute liberty_attributes $arc]
if {[lsearch $liberty falling_edge] != -1} {

gui_sv_highlight $inst -append
}

}
}

}

}
}

}

gui_sv_load

gui_sv_load {design | instance}

Specifies an hierarchical instance or design to load into the main Schematic Viewer.
July 2009 115 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
Physical Viewer GUI Text Commands

■ gui_pv_airline_add on page 117

■ gui_pv_airline_delete on page 118

■ gui_pv_airline_display on page 118

■ gui_pv_airline_raw_add on page 119

■ gui_pv_clear on page 119

■ gui_pv_highlight on page 120

■ gui_pv_highlight_update on page 122

■ gui_pv_label on page 122

■ gui_pv_redraw on page 123

■ gui_pv_selection on page 123

■ gui_pv_snapshot on page 123

■ gui_pv_zoom_fit on page 125

■ gui_pv_zoom_in on page 125

■ gui_pv_zoom_out on page 125

■ gui_pv_zoom_to on page 125
July 2009 116 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_pv_airline_add

gui_pv_airline_add -name name
-from {port|instance} -to {port|instance}
[-color color] [-label label] [-nodisplay]

Adds specified airline to the Physical Viewer.

Options and Arguments

Example

■ The following command creates a red airline named test from the g442 port to the
g412 port with the airline label, as shown in Figure 3-2.

gui_pv_airline_add -from g442 -to g412 -color red -label airline -name test

Figure 3-2 Specified Airline in the Physical Viewer

-color color Specifies the airline color.

Default: blue

-from {port|instance}

Specifies the from object.

-label label Specifies a label to place at the center of the airline.

-name name Specifies the airline name.

-nodisplay Specifies not to display the airline.

-to {port|instance}

Draws an airline from the center of the from object to the center
of the to object.
July 2009 117 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_pv_airline_delete

gui_pv_airline_delete name

Deletes airlines from the Physical Viewer with the specified name.

Options and Arguments

Example

■ The following command removes the airline test from the Physical Viewer:

rc:/> gui_pv_airline_delete test

gui_pv_airline_display

gui_pv_airline_display name

Options and Arguments

Displays the specified airline name in the Physical Viewer.

Example

■ The following command removes the airline test from the Physical Viewer:

rc:/> gui_pv_airline_display test

name Specifies the airline name to be deleted.

The airline name must have been added using the
gui_pv_airline_add command.

name Specifies the airline name to be displayed.

The airline name must have been added using the
gui_pv_airline_add command.
July 2009 118 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_pv_airline_raw_add

gui_pv_airline_raw_add [-name name]
[-color color] [-label label]
[-nodisplay] -fx float -fy float
-tx float -ty float

Creates an airline in the Physical Viewer between two points specified by their coordinates.

Options and Arguments

gui_pv_clear

gui_pv_clear [-object_list]

Clears highlighting from the specified object list.

Options and Arguments

-color color Specifies the airline color.

Default: blue

-fx float Specifies the x coordinate of the from object.

-fy float Specifies the y coordinate of the from object.

-label label Specifies a label to place at the center of the airline.

-name name Specifies the airline name.

-nodisplay Specifies not to display the airline.

-tx float Specifies the x coordinate of the to object.

-ty float Specifies the y coordinate of the to object.

-object_list Clears all items in the specified list.
July 2009 119 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_pv_highlight

gui_pv_highlight [-color color] [-collect] [-append]
[-group name] [-label string] [-stipple]
{blockage | gcell | instance | pcell | port | region}...

Highlights objects in the Physical Viewer

Options and Arguments

Examples

■ The following command highlights the g411 port in yellow (see Figure 3-3 on page 121):

rc:/> gui_pv_highlight -color yellow g411

■ The following command adds the g405 port to the highlighted list (see Figure 3-3 on
page 121):

rc:/> gui_pv_highlight -color yellow -append g405

-append Appends the object to highlight.

-collect Collects objects to highlight

-color color Specifies the color for highlighting.

Default: red

{blockage | gcell | instance | pcell | port | region}

Specifies the object to highlight if it is in the scope of the current
Physical Viewer.

-group name Specifies the group name for the object.

-label string Specifies the object label.

-stipple Specifies to use stipple fill pattern to highlight the object.
July 2009 120 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
Figure 3-3 Highlighting an Object in the Physical Viewer

■ The following command specifies the instance eve1 to be highlighted with the
gui_pv_draw_collection command. The -group option indicates that to which
group eve1 should belong. In this case, it is laurence:

rc:/> gui_pv_highlight -collect /designs/bree/instances_hier/eve1/ \
-group laurence

Related Information

Related command: gui_pv_clear on page 119
July 2009 121 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_pv_highlight_update

gui_pv_highlight_update -property string
-value string [-group string]
{blockage | gcell | instance | pcell | port | region}...

Updatea the object highlight in the Physical Viewer.

Options and Arguments

gui_pv_label

gui_pv_label
[-color color] -x float -y float label

Adds a text label at the specified point in the Physical Viewer.

Options and Arguments

{blockage | gcell | instance | pcell | port | region}

Specifies the names of the objects for which to update the
highlight.

-group string Specifies the object group name.

-property value Specifies the property to update.

You can update the colors, the labels, or the stipple pattern.

-value value Specifies the object property value.

-color color Specifies the label color.

Default: white.

label Specifies the label name.

-x float Specifies the x coordinate for the label.

-y float Specifies the y coordinate for the label.
July 2009 122 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_pv_redraw

gui_pv_redraw

Redraws the contents of the Physical Viewer.

gui_pv_selection

gui_pv_selection

Returns the list of selected objects in the Physical Viewer.

Note: You can select multiple objects by pressing the Shift key while drawing a region with
the left mouse button. All objects overlapping that region are selected.

gui_pv_snapshot

gui_pv_snapshot
[-overwrite] [-png] [-utilization] [-congestion] file

Saves a snapshot of the part of the design that is visible in the Physical Viewer.

Options and Arguments

-congestion Overlays a congestion map on top of what is visible in the
Physical Viewer before making a snapshot.

Note: This option eliminates the need to first turn on the display
of the congestion map.

file Specifies the name of the file in which to save the snapshot.

-png Creates the file in PNG format.

Default: JPG format

-overwrite Specifies to overwrite an existing file.

If you forget this option, you’ll get a message that indicates that
the file exists.

-utilization Overlays a utilization map on the part of the design that is
visible in the Physical Viewer before making a snapshot.

Note: This option eliminates the need to first turn on the display
of the utilization map.
July 2009 123 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
Examples

■ The following command saves a snapshot of the utilzation map in the util.png file.

gui_pv_snapshot -png -utilization util.png

■ The following command saves a snapshot of the congestion map in the file with
basename congest. Since the -png option is not specified, the file is specified in JPG
format.

gui_pv_snapshot -congestion congest
July 2009 124 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
gui_pv_zoom_fit

gui_pv_zoom_fit

Performs a “zoom fit” command in the Physical Viewer.

gui_pv_zoom_in

gui_pv_zoom_in

Performs a “zoom in” command in the Physical Viewer.

gui_pv_zoom_out

gui_pv_zoom_out

Performs a “zoom out” command in the Physical Viewer.

gui_pv_zoom_to

gui_pv_zoom_to

Zooms to the bounding box around selected objects in the Physical Viewer.
July 2009 125 Product Version 9.1

Command Reference for Encounter RTL Compiler
GUI Text
July 2009 126 Product Version 9.1

Command Reference for Encounter RTL Compiler
4
Chipware Developer

■ cwd on page 128

■ cwd check on page 129

■ cwd create_check on page 133

■ cwd report_check on page 135

■ hdl_create on page 137

■ hdl_create binding on page 138

■ hdl_create component on page 140

■ hdl_create implementation on page 142

■ hdl_create library on page 144

■ hdl_create operator on page 145

■ hdl_create package on page 146

■ hdl_create parameter on page 148

■ hdl_create pin on page 150
July 2009 127 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
cwd

cwd {check | create_check | report_check}

Controls the ChipWare Developer (CWD) Linter in the ChipWare developer framework.

Options and Arguments

Related Information

check Invokes the CWD Linter.

create_check Registers a check to the Linter.

report_check Reports information about various check names and check
points.

Related commands: cwd check on page 129

cwd create_check on page 133

cwd report_check on page 135
July 2009 128 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
cwd check

cwd check [-effort string]
[-skip
[hdl_lib | hdl_comp | hdl_pack | hdl_oper
| hdl_arch | hdl_impl | hdl_bind | hdl_param
| hdl_pin]...]

[[-summary] [-verbose] | -quiet]
[hdl_lib | hdl_comp | hdl_pack | hdl_oper
| hdl_arch | hdl_impl | hdl_bind | hdl_param
| hdl_pin]...]

[> file]

Exercises checking rules and summarizes the outcome in various degrees of verboseness.
The cwd check command can run on one or more of any of the following hdl_objects:

■ hdl_lib

■ hdl_oper

■ hdl_comp

■ hdl_bind

■ hdl_impl

■ hdl_param

■ hdl_pin

■ hdl_pack

■ hdl_arch

The RTL Compiler path to the hdl_objects to be checked can either be an absolute path:

rc:/> cwd check /hdl_libraries/CW/components/CW_add

Or it can be a relative path with respect to the current working directory:

rc:/> cd /hdl_libraries/CW/components

rc:/> cwd check CW_add

You can use wild cards for specifying multiple hdl_objects:

rc:/> cwd check /hdl_libraries/CW/components/*add*

or:

rc:/> cd /hdl_libraries/CW/components

rc:/> cwd check *add*
July 2009 129 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
You can specify multiple directories at the same time:

rc:/> cwd check {/hdl_libraries/CW /hdl_libraries/DW02}

By default, cwd check checks all hdl_objects underneath the specified set of
hdl_objects. That is, it traverses the directory tree hierarchically and exercises all checks
of all hdl_objects it traverses.

Options and Arguments

-effort string Specifies the effort level. There are two effort levels: low and
medium. The default effort level is low.

Low — CWD linter runs checking rules that are registered as
low effort. That is, it runs those checking rules that do not
require reading any HDL code (of synthesis models).

Medium — CWD linter runs checking rules that are registered
as low and medium effort. That is, it runs those checking rules
that may require parsing HDL code (of synthesis models) but do
not require elaborating it.

With each medium effort level check, the CWD linter
automatically loads the HDL code before performing the check.
For example, a check at this effort level may look at the
hdl_arch of an hdl_impl and examine ordering of pins and
parameters.

file Specifies the filename to store the output of the command.

hdl_lib | hdl_comp | hdl_pack | hdl_oper | hdl_arch | hdl_impl
| hdl_bind | hdl_param | hdl_pin

Specifies the hdl_objects to check.

-quiet Only reports error and warning messages, if any. This is the
recommended verbosity level when CWD linting is part of a
routine process without any error expectations.

-skip {hdl_lib | hdl_comp | hdl_pack | hdl_oper | hdl_arch |
hdl_impl | hdl_bind | hdl_param | hdl_pin}

Specify one or more hdl_objects to skip.

-summary First reports error or warning messages, if any, and then
produces a summary table of the pass/fail count of each
checking rules exercised. This level of detail is the default
verbosity level.
July 2009 130 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
Examples

■ The following example runs checking rules on the CW libraries as well as all the other
hdl_objects under it. The CWD linter will run all default (low-effort) mode checking
rules up to the severity specified by the information_level attribute. A summary will
be produced at the end.

rc:/> get_attribute information_level

1

rc:/> cwd check /hdl_libraries/CW

Check_name Passed Failed

component_location 146 0

component_sim_model_location 128 0

component_syn_model_is_vhdl 146 0

implementation_legality_formula 147 0

implementation_location 147 0

implementation_preelab_script_location 147 0

non_builtin_implementation_location 147 0

package_default_location 1 0

package_default_location_filesize 1 0

parameter_formula 472 0

pin_bit_width 1136 0

pin_parameter_in_bit_width 1114 0

■ The following example runs checking rules on all the hdl_objects under parameters
and produces a verbose report:

rc:/> cwd check /hdl_libraries/CW/components/CW_mult/parameters/* -verbose

checking param wA

Check ::cwd::parameter_formula::check_proc passed on /hdl_libraries/CW/
components/CW_mult/parameters/wA

checking param wB

Check ::cwd::parameter_formula::check_proc passed on /hdl_libraries/CW/
components/CW_mult/parameters/wB

Check_name Passed Failed

parameter_formula 2 0

-verbose Produces a detailed report. In addition to the information
produced by the -summary option, it also reports the pass/fail
status of each check process exercised on each hdl_object.
July 2009 131 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
■ The following example will check the CW_add component, but will skip checking its
bindings and implementations:

rc:/> cd /hdl_libraries/CW/components/CW_add

rc:/> cwd check . -skip { /hdl_libraries/CW/components/CW_add/bindings/* \

/hdl_libraries/CW/components/CW_add/implementations/* }
July 2009 132 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
cwd create_check

cwd create_check
-check_name string
-severity integer
-description string
-checklist string
[-effort string] [-force] [> file]

Registers user-defined checking rules for the CWD linter.

Options and Arguments

-check_name string Specifies an unique name for a new checking rule.

-checklist string Specifies, as a Tcl list of Tcl lists, checkpoint and Tcl proc pairs.
The specification therefore would be in the form:

-checklist {{point_1 proc_1} {point_2 proc_2}}

Every sub-list has two elements. The first element is the name
of a check point, defined by RTL Compiler. The second element
is the name of a Tcl proc, defined by the user.

Each sub-list specifies a check proc that is to be called at a
certain check point. This check proc will be executed every time
the flow reaches this check point.

This Tcl list has one or more sub-lists. One checking rule can
be associated with one or more check points.

The check procs may or may not be allowed to parse or
elaborate the HDL code of the synthesis model, depending on
the effort level of this checking rule.

The check procs may print out error, warning, or info messages.

Each check proc should return a string whose value is either
PASS or FAIL.

-description string

Specifies a character string that concisely describes what this
checking rule examines.
July 2009 133 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
Example

■ The following example defines the name of the check to be arch_pin_order. It is a
medium effort level check: it has to be performed after the HDL code has been loaded.
The severity of the check is 0, which means it is an error if this check fails. This checking
rule is associated with two checkpoints, HDL_ARCH_PINS_SCANNED and
HDL_COMP_PINS_SCANNED. At the HDL_ARCH_PINS_SCANNED checkpoint, a Tcl proc
named check_arch_pin_order is to be called to perform this check. At the
HDL_COMP_PINS_SCANNED checkpoint, a Tcl proc named
check_component_pin_order is to be called to perform this check.

rc> cwd create_check -check_name "arch_pin_order" -effort "medium" \
-severity 0 -description "Check Whether the order of pins specified \
in the synthesis model is consistent with what is defined in the
registration script"
-checklist { {HDL_ARCH_PINS_SCANNED check_arch_pin_order} \
{HDL_COMP_PINS_SCANNED check_component_pin_order} }

-effort string Specifies the effort level. There are two effort levels: low and
medium. The default effort level is low.

Low — The check is not allowed to parse the HDL code of the
synthesis models. It can check correctness, consistency, or
completeness of the CWD registration, including availability of
UNIX files referred to by the location and sim_model
attributes.

Medium — The check can read, load, and parse the HDL code
of the synthesis models, but it cannot elaborate or synthesize
the HDL code. When exercising such a checking rule, the HDL
code is automatically loaded before checking is performed.

file Specifies the filename to store the output of the command.

-force Removes the existing checkname and adds the current
specification. Alternatively, the same checkname will now
correspond to the new definition.

-severity integer Specifies the severity level of the message produced by this
checking rule. The possible values (0 through 10) are the same
as those for the information_level attribute.

-severity 0: It is an error message to violate this rule

-severity 1: It is a warning message to violate this rule

-severity 2: It is a level 2 info message to violate this rule

Severity levels 3 through 10 are all info messages at their
respective levels.
July 2009 134 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
cwd report_check

cwd report_check
[-checkpoint string] [-checkname string]
[-max_width string] [> file]

Reports the registered checking rules. With each checking rule, it lists the:

■ Name of the checking rule

■ Checkpoint(s) the rule is associated with

■ Check proc(s) attached to the associated checkpoint(s)

■ Effort level of the rule

■ Severity level of the rule

■ Description string of the rule

Note: The -checkname and -checkpoint options cannot be both used simultaneously.

Options and Arguments

-checkname string Specifies, by name, a set of checking rules to report.

-checkpoint string This switch specifies a set of checkpoints to report.

-max_width string Limits the width of the columns in the table produced by this
command. Limiting the width of a column to zero means
removing that column from the table.

This option takes a Tcl list of Tcl lists. Each sub-list represents a
column in the table produced by this command. Each sub-list
should have two elements: the first being name of the column
(as seen in the report) and the second being an integer
representing the maximum number of characters allowed for
this column in the table.

file Specifies the filename to store the output of the command.
July 2009 135 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
Examples

■ The following example reports details about the checking rule arch_pin_order, which
uses two check procs to associate with two checkpoints.

rc:/> cwd report_check -checkname {arch_pin_order} -max_width \
{{Check_name 14} {Checkpoint 12} {Check_proc 15} {Effort 3} \
{Severity 4} {Description 20}}

This example reports details about the checking rule arch_pin_order, which uses
two check procs to associate with two checkpoints.

Check_name Checkpoint Check_proc Eff Seve Description

ort rity

arch_pin_order HDL_ARCH_PIN ::cwd::arch_pin med 0 Check whether the

S_SCANNED _order::cwd_pro ium order of pins
c specified in the

synthesis model is
HDL_COMP_PIN ::cwd::componen consistent with
S_SCANNED t_pin_order::ch what is defined in

eck_proc the registration
script

■ The following example reports details about the checkpoint
HDL_OPER_BINDINGS_SCANNED:

rc:/> cwd report_check -checkpoint {HDL_OPER_BINDINGS_SCANNED}
-max_width {{Check_name 10} {Checkpoint 15} {Check_proc 15}
{Effort 3} {Severity 4} {Description 20}}

Check_name Checkpoint Check_proc Eff Seve Description

ort rity

operator_b HDL_OPER_BINDIN ::cwd::operator low 1 check that for
indings GS_SCANNED _bindings::chec every hdl_bindings

k_proc defined for the
hdl_operator there
is at least one
attribute is set to
false

■ The following example reports all checking rules that have been registered:

rc:/> cwd report_check -checkname {*}

■ This reports info about all checkpoints:

rc:/> cwd report_check -checkpoint {*}

■ The following example reports all checking rules whose checkname contains string "pin":

rc:/> cwd report_check -checkname {*pin*}

■ The following example reports information about the arch_pin_order and
arch_parameter_order checking rules:

rc:/> cwd report_check -checkname {arch_pin_order arch_parameter_order}
July 2009 136 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
hdl_create

hdl_create { binding | component | implementation | library
| operator | package | parameter | pin}

Creates an HDL object for ChipWare developer.

Options and Arguments

Related Information

binding Creates a binding between a synthetic operator and a
ChipWare component.

component Creates a ChipWare component.

implementation Creates a synthesis model for a ChipWare component.

library Creates a synthetic library to hold ChipWare components,
bindings, and implementations.

operator Creates a synthetic operator.

package Creates a package in the Design Information Hierarchy to hold
the contents of a VHDL package.

parameter Creates a parameter for a synthetic ChipWare component

pin Creates an input/output/inout pin for a synthetic operator or
component

Related commands: hdl_create binding on page 138

hdl_create component on page 140

hdl_create implementation on page 142

hdl_create library on page 144

hdl_create operator on page 145

hdl_create package on page 146

hdl_create parameter on page 148

hdl_create pin on page 150
July 2009 137 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
hdl_create binding

hdl_create binding binding_name
-operator operator_name
[hdl_comp | bindings]

Creates a binding between a synthetic operator and a synthetic module. A synthetic module
is also known as a ChipWare component.

Tip

You can save run-time if you cd to the component name directory and issue the
command instead of specifying the entire component pathname.

Options and Arguments

Examples

■ The following examples both create a binding named test1 for the MY_MULT_OP
operator. However, the first example will save run-time over the second by cd’ing into the
component name directory and issuing the command.

rc:/hdl_libraries/my_CW/components/my_CW_mult> hdl_create binding \
test1 -operator MY_MULT_OP

rc:/hdl_libraries/my_CW/components/my_CW_mult/bindings> ls

./ test1

■ This example also creates a binding named test1. However, the command is issued
from the root directory and therefore assumes a run-time penalty.

rc:/> hdl_create binding test1 -operator MY_MULT_OP \
/hdl_libraries/my_CW/components/my_CW_mult

rc:/> ls /hdl_libraries/my_CW/components/my_CW_mult/bindings

./ test1

binding_name Specifies the name of the binding that will be created.

hdl_comp | bindings

Specifies the pathname of the component that holds this
binding.

-operator Specifies the synthetic operator that will be bound by this
binding.
July 2009 138 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
Related Information

Related commands: hdl_create component on page 140

hdl_create implementation on page 142

hdl_create library on page 144

hdl_create operator on page 145

hdl_create package on page 146

hdl_create parameter on page 148

hdl_create pin on page 150
July 2009 139 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
hdl_create component

hdl_create component component_name
[hdl_lib | components]

Creates a ChipWare component.

Options and Arguments

Examples

■ The following examples both create a component named CW_sweet_div. However, the
first example will save run-time over the second by cd’ing into the components directory
and issuing the command:

rc:/hdl_libraries/CW/components> hdl_create component CW_sweet_div

rc:/hdl_libraries/CW/components> ls

...

CW_sweet_div

...

■ This example also creates a component named CW_sweet_div. However, the
command is issued from the root directory and therefore assumes a run-time penalty:

rc:/> hdl_create component CW_sweet_div /hdl_libraries/CW/

rc:/> ls /hdl_libraries/CW/components

...

CW_sweet_div

...

component_name Specifies the name of the component that will be created.

hdl_lib | components

Specifies the pathname of the library that holds this component.
July 2009 140 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
Related Information

Related commands: hdl_create binding on page 138

hdl_create implementation on page 142

hdl_create library on page 144

hdl_create operator on page 145

hdl_create package on page 146

hdl_create parameter on page 148

hdl_create pin on page 150
July 2009 141 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
hdl_create implementation

hdl_create implementation implementation_name
[-v1995 | -v2001 | -vhdl87 | -vhdl93]
[hdl_comp | implementations]

Creates an implementation for a ChipWare component. All implementations created with this
command have a default priority of 1. A ChipWare implementation is also known as an
architecture of the component. You must specify a language version.

Options and Arguments

Example

■ Both of the following examples create the krystal implementation in VHDL 1993
format for the CW_sweet_div component. However, the first example will save run-time
over the second by cd’ing into the component name directory and issuing the command:

rc:/hdl_libraries/CW/components/CW_sweet_div> hdl_create implementation \
krystal -vhdl93

rc:/hdl_libraries/CW/components/CW_sweet_div/implementations> ls

./ krystal

■ This example also creates an implementation named krystal for the same component.
However, the command is issued from the root directory and therefore assumes a
run-time penalty:

rc:/> hdl_create implementation krystal -vhdl93 \
/hdl_libraries/CW/components/CW_sweet_div

rc:/> ls /hdl_libraries/CW/components/CW_sweet_div/implementations/

./ krystal

implementation_name

Specifies the name of the implementation that will be created.

hdl_comp | implementation

Specifies the pathname of the component that owns this
implementation.

[-v1995 | -v2001 | -vhdl87 | -vhdl93]

Specifies the language version for the RTL code.
July 2009 142 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
Related Information

Affects this attribute: priority

Related commands: hdl_create binding on page 138

hdl_create component on page 140

hdl_create library on page 144

hdl_create operator on page 145

hdl_create package on page 146

hdl_create parameter on page 148

hdl_create pin on page 150
July 2009 143 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
hdl_create library

hdl_create library library_name

Creates an HDL library. An HDL library can be a library of ChipWare components, a library of
synthetic operators, or a VHDL library.

Options and Arguments

Related Information

library_name Specifies the name of the library that will be created.

Related commands: hdl_create binding on page 138

hdl_create component on page 140

hdl_create implementation on page 142

hdl_create operator on page 145

hdl_create package on page 146

hdl_create parameter on page 148

hdl_create pin on page 150
July 2009 144 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
hdl_create operator

hdl_create operator operator_name
[-signed | -unsigned]

Creates a synthetic operator. The default operator type is unsigned.

Options and Arguments

Related Information

operator_name Specifies the name of the synthetic operator that will be
created.

-signed Specifies the created operator to be a signed operator.

-unsigned Specifies the created operator to be an unsigned operator. This
is the default setting.

Related commands: hdl_create binding on page 138

hdl_create component on page 140

hdl_create implementation on page 142

hdl_create library on page 144

hdl_create package on page 146

hdl_create parameter on page 148

hdl_create pin on page 150
July 2009 145 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
hdl_create package

hdl_create package pkg_name
-path path_to_pkg
[hdl_lib | packages]

Registers a VHDL package in the ChipWare Developer framework. Packages that are not
registered are deleted after elaboration. However, registered packages are never deleted and
their information can be further considered during synthesis as opposed to just during
elaboration.

Registered packages are in the same location within RTL Compiler as non-registered
packages:

/hdl_libraries/library_name/packages/

Options and Arguments

Examples

■ Both of the following examples create the numeric_std package for the ieee library.
However, the first example will save run-time over the second by cd’ing into the library
name directory and issuing the command:

rc:/hdl_libraries/ieee/packages> hdl_create package numeric_std -path \
/home/krystal/vhdl/packages/numeric_std.vhdl

rc:/hdl_libraries/ieee/packages> ls

./ numeric_std

■ This example also creates a package named numeric_std for the same library.
However, the command is issued from the root directory and therefore assumes a
run-time penalty:

rc:/> hdl_create package numeric_std -path /home/krystal/vhdl/packages \
/hdl_libraries/ieee/packages/numeric_std

rc:/> ls /hdl_libraries/ieee/packages/

./ numeric_std

hdl_lib | packages

Specifies the pathname of the library that holds this package.

-path path_to_pkg Specifies the UNIX pathname of the package to register.

pkg_name Specifies the name of the package that will be created.
July 2009 146 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
Related Information

Related commands: hdl_create binding on page 138

hdl_create component on page 140

hdl_create implementation on page 142

hdl_create library on page 144

hdl_create parameter on page 148

hdl_create pin on page 150
July 2009 147 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
hdl_create parameter

hdl_create parameter parameter_name
[-hdl_invisible]
[hdl_comp | parameters]

Creates a parameter for a ChipWare component. The created parameter will be a
hdl_param object type and located under ../component_name/parameters. The
default hdl_parameter attribute value for parameters created with this command will be
true. However, if the -hdl_invisible option is specified, the default value becomes
false.

Options and Arguments

Examples

■ Both of the following examples create the WIDTH parameter for the CW_sweet_div
component. However, the first example will save run-time over the second by cd’ing into
the component name directory and issuing the command:

rc:/hdl_libraries/CW/components/CW_sweet_div> hdl_create parameter WIDTH

rc:/hdl_libraries/CW/components/CW_sweet_div/parameter> ls

./ WIDTH

■ This example also creates a parameter named WIDTH for the same component.
However, the command is issued from the root directory and therefore assumes a
run-time penalty:

rc:/> hdl_create parameter WIDTH /hdl_libraries/CW/components/CW_sweet_div

rc:/> ls /hdl_libraries/CW/components/CW_sweet_div/parameters/

./ WIDTH

hdl_comp | parameters

Specifies the pathname of the component that holds this
parameter.

-hdl_invisible Specifies that the parameter cannot be accessed from the HDL.
The value of the hdl_parameter attribute for this parameter
becomes false with this option.

parameter_name Specifies the name of the parameter that will be created.
July 2009 148 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
Related Information

Affects this attribute: hdl_parameter

Related commands: hdl_create binding on page 138

hdl_create component on page 140

hdl_create implementation on page 142

hdl_create library on page 144

hdl_create operator on page 145

hdl_create package on page 146

hdl_create pin on page 150
July 2009 149 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
hdl_create pin

hdl_create pin pin_name
{-input | -output | -inout}
[pins | hdl_oper | hdl_comp]

Creates a pin for either a ChipWare component or a synthetic operator. You must specify a
pin direction.

Options and Arguments

Examples

■ Both of the following examples create the div_in input pin for the CW_sweet_div
component. However, the first example will save run-time over the second by cd’ing into
the component name directory and issuing the command:

rc:/hdl_libraries/CW/components/CW_sweet_div> hdl_create pin -input div_in

rc:/hdl_libraries/CW/components/CW_sweet_div/pins/> ls

./ div_in

■ This example also creates an input pin named div_in for the same component.
However, the command is issued from the root directory and therefore assumes a
run-time penalty:

rc:/> hdl_create pin -input div_in

rc:/> ls /hdl_libraries/CW/components/CW_sweet_div/pins/

./ div_in

-inout Specifies that the created pin will be an bidirectional pin.

-input Specifies that the created pin will be an input pin.

-output Specifies that the created pin will be an output pin.

pin_name Specifies the name of the pin that will be created.

pins | hdl_oper | hdl_comp

Specifies the pathname of the component or synthetic operator
that holds the created pin.
July 2009 150 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
Related Information

Related commands: hdl_create binding on page 138

hdl_create component on page 140

hdl_create implementation on page 142

hdl_create library on page 144

hdl_create operator on page 145

hdl_create package on page 146

hdl_create parameter on page 148
July 2009 151 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware Developer
July 2009 152 Product Version 9.1

Command Reference for Encounter RTL Compiler

July 2009 153 Product Version 9.1

5
Input and Output

■ decrypt on page 155

■ encrypt on page 156

■ export_critical_endpoints on page 159

■ read_config_file on page 161

■ read_cpf on page 162

■ read_def on page 163

■ read_dfm on page 164

■ read_dft_abstract_model on page 166

■ read_encounter on page 167

■ read_hdl on page 168

■ read_io_speclist on page 172

■ read_netlist on page 173

■ read_saif on page 175

■ read_sdc on page 176

■ read_spef on page 178

■ read_tcf on page 179

■ read_vcd on page 180

■ restore_design on page 181

■ write_atpg on page 183

■ write_bsdl on page 184

■ write_compression_macro on page 185

■ write_config_template on page 186

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 154 Product Version 9.1

■ write_def on page 187

■ write_design on page 188

■ write_dft_abstract_model on page 189

■ write_do_ccd on page 190

■ write_do_ccd compare_sdc on page 191

■ write_do_ccd generate on page 192

■ write_do_ccd validate on page 195

■ write_do_clp on page 196

■ write_do_lec on page 198

■ write_do_verify cdc on page 200

■ write_encounter on page 202

■ write_et_atpg on page 205

■ write_ets on page 209

■ write_ett on page 210

■ write_forward_saif on page 211

■ write_hdl on page 212

■ write_io_speclist on page 215

■ write_saif on page 216

■ write_scandef on page 217

■ write_script on page 218

■ write_sdc on page 221

■ write_sdf on page 224

■ write_set_load on page 227

■ write_spef on page 228

■ write_tcf on page 229

■ write_template on page 230

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 155 Product Version 9.1

decrypt

decrypt [-keydb path] file

Decrypts and evaluates a Tcl file that was encrypted with the encrypt command.

Options and Arguments

Example

The first command encrypts the Tcl file my_script.g. The second command decrypts the
my_script_encr.g file. These commands are normally executed in different RC sessions.

rc:/> encrypt -tcl my_script.g > my_script_encr.g

rc:/> decrypt my_script_encr.g

Related Information

file Specifies the name of the Tcl file to decrypted and evaluated.

-keydb path Sets the NCPROTECT_KEYDB environment variable to the
directory containing the public key needed to decrypt the file.

If you omit this option, you need to set the NCPROTECT_KEYDB
environment variable before you run the decrypt command.

Related command: encrypt on page 156

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 156 Product Version 9.1

encrypt

encrypt inputfile_name
[-vlog | -vhdl | -tcl] [-pragma]
[> file]

Uses the NC Protect protection scheme to encrypt the specified HDL or Tcl files.

Tip

To load encrypted HDL files, use the read_hdl command.

The command to source an encrypted Tcl file depends on the file extension of the
encrypted Tcl file:

❑ If the encrypted file does not have the .etf extension, use the decrypt command.

❑ If the encrypted file has the .etf extension, you can use the source command.

Options and Arguments

Example

■ The following example encrypts the ksable.vhdl VHDL file, with VHDL constructs, to
a file named ksable_encrypted.vhdl. The encrypted file is then loaded.

rc:/> encrypt -vhdl ksable.vhdl > ksable_encrypted.vhdl
rc:/> read_hdl -vhdl ksable_encrypted.vhdl

input_file_name Specifies the file to be encrypted.

file Specifies the name of the encrypted file.

By default, the encrypted file is printed to standard out.

-pragma Specifies to only encrypt the text between the protect begin
and protect end NC Protect pragmas.

-tcl Specifies that the file to be encrypted is a Tcl file. To hide the
body of the Tcl scripts, make sure to code procedures using
hidden_proc.

-vhdl Uses VHDL style comments for NC Protect pragmas.

-vlog Uses Verilog style comments for NC Protect pragmas. This is
the default option.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 157 Product Version 9.1

■ The following example illustrates Verilog code with Verilog style NC Protect pragmas.
You must specify //pragma protect before specifying the beginning (//pragma
protect begin) and ending (//pragma protect end) pragmas.

 module secret_func (y, a, b);
parameter w = 4;
input [w-1:0] a, b;
output [w-1:0] y;

// pragma protect
// pragma protect begin

assign y = a & b;
// pragma protect end
endmodule

Specifying the -vlog and -pragma options together will only encrypt the text between
the pragmas. The following command encrypts the original verilog file (ori.v) that
contained the NC Protect pragmas. The encrypted file is called enc.v.

rc:> encrypt -vlog -pragma org.v > enc.v

■ The following example illustrates VHDL code with VHDL style NC Protect pragmas. You
must specify --pragma protect before specifying the beginning (--pragma
protect begin) and ending (--pragma protect end) pragmas.

entity secret_func is
generic (w : integer := 4);
port (y: out bit_vector (w-1 downto 0);

a, b: in bit_vector (w-1 downto 0));
end;

-- pragma protect
-- pragma protect begin
architecture rtl of secret_func is
begin

y <= a and b;
end;
-- pragma protect end

Specifying the -vhdl and -pragma options together will only encrypt the text between
the pragmas. The following command encrypts the original VHDL file (ori.vhdl) that
contained the NC Protect pragmas. The encrypted file is called enc.vhdl:

rc:/> encrypt -vhdl -pragma org.vhdl > enc.vhdl

■ The following example shows a Tcl script (test.tcl) with two procedures: the first
procedure starting with proc, the second one starting with hidden_proc. When the
script is encrypted, no info will be returned for the im_hidden procedure.

pragma protect
pragma protect begin
proc im_visible {args} {

’info’ command will return data for this proc
}
hidden_proc im_hidden {args} {

’info’ command will not return data for this proc
}
pragma protect end

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 158 Product Version 9.1

rc:/> encrypt -tcl test.tcl > test_enc.tcl
rc:/> info body im_hidden
rc:/> info body im_visible

’info’ command will return data for this proc

Related Information

Related command: decrypt on page 155

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 159 Product Version 9.1

export_critical_endpoints

export_critical_endpoints
-rc_file string -fe_file string
[-group | -no_group] [-verbose]
[-percentage_of_endpoints integer]
[-no_of_bins integer]
[-percentage_difference integer] [-rtl]
[-design string] [> file]

Generates a path adjust file, which allows synthesis to provide better timing closure results
to Encounter.

Options and Arguments

-design string Specifies the module name.

-fe_file string Specifies the First Encounter (FE) slack report that you want to
compare.

file Specifies the name of the file to write the report.

[-group|-nogroup] Specifies whether to groups endpoints into bins for path_adjust
or not.

Default: -group

-no_of_bins integer

Specifies the number of bins to group the endpoints for
compression.

Default:10 bins each for tighten and relax

-percentage_difference integer

Specifies the percentage difference between the endpoints to
be path adjusted (with the path_adjust command).

Default: 70%

-percentage_of_endpoints integer

Specifies the percentage of endpoints to be constrained or
relaxed.

Default: 20%

-rc_file string Specifies the RTL Compiler endpoint report that you want to
compare.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 160 Product Version 9.1

Related Information

Path Adjust Flows in Encounter RTL Compiler Synthesis Flows

-rtl Writes a path adjust file that can be applied to the RTL.

-verbose Specifies a verbose report.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 161 Product Version 9.1

read_config_file

Refer to read_config_file in Chapter 10, “Quality Analyzer.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 162 Product Version 9.1

read_cpf

Refer to read_cpf in Chapter 13, “Advanced Low Power Synthesis.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 163 Product Version 9.1

read_def

Refer to read_def in Chapter 9, “Physical.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 164 Product Version 9.1

read_dfm

read_dfm coefficients_filename

Loads the coefficients file. You can only load one file at a time. After the coefficients file is
loaded, RTL Compiler will annotate the defect probability of any matching cells between the
coefficients file and the timing library.

Options and Arguments

Example

■ A DFM file is described in XML format. The following example shows what a DFM file
might look like:

<?xml version="1.0"?>

<yield_file>
<title> file with probabilities of failure of each library cell </title>

<cell_probability>

<cell> inv1
<instance> 0.000000026309750 </instance>
<systematic> 0.000000000000000 </systematic>

</cell>

<cell> fflopd
<instance> 0.000000153055338 </instance>
<systematic> 0.000000000000000 </systematic>

</cell>
<cell> nand2
<instance> 0.000000044800000 </instance>
<systematic> 0.000000000000000 </systematic>

</cell>

</cell_probability>

</yield_file>

■ The following example loads two coefficient files:

rc:/> read_dfm test1.dfm

rc:/> read_dfm test2.dfm

coefficients_filename

Specifies the name of the coefficients file.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 165 Product Version 9.1

Related Information

Design For Manufacturing Flow in Encounter RTL Compiler Synthesis Flows

Affects these commands: report gates -yield

report yield

Affects this attribute: yield

Related attribute: optimize_yield

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 166 Product Version 9.1

read_dft_abstract_model

Refer to read_dft_abstract_model in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 167 Product Version 9.1

read_encounter

Refer to read_encounter in Chapter 9, “Physical.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 168 Product Version 9.1

read_hdl

read_hdl file_list
[{-v1995 | -v2001 | -sv | -vhdl }
[-library library_name[=library_name2]...]

| -netlist]
[-define macro=value]... file_list

Loads one or more HDL files in the order given into memory. Files containing macro
definitions should be loaded before the macros are used. Otherwise, there are no ordering of
constraints.

If you do not specify either the -v1995, -v2001, -sv or the -vhdl option, the default
language format is that specified by the hdl_language attribute. The default value for the
hdl_language attribute is -v1995.

The HDL files can contain structural code for combining lower level modules, behavioral
design specifications, or RTL implementations.

You can automatically read in or write out a compressed HDL file in gzip format. For example:

read_hdl sample.v.gz
write_hdl -g sample.v.gz

When you load a parameterized Verilog module or VHDL architecture, each parameter in the
module or architecture will be identified as an hdl_param object and located under
../architecture_name/parameters. The default hdl_parameter attribute value for
these parameters will be true.

Use the rc -E -f <your script> command to specify that RTL Compiler automatically
quit if a script error is detected when reading in HDL files instead of holding at the rc> prompt.

Options and Arguments

-define macro=value Defines a Verilog macro with the specified value, which is
equivalent to the ‘define macro value.

Note: You can also define a macro definition list.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 169 Product Version 9.1

file_list Specifies the name of the HDL files to load. If several files
must be loaded, specify them in a string.

Note: The files can be encrypted.

The host directory where the HDL files are looked for is
specified via the hdl_search_path root attribute.

-library library_name[=library_name2]...

Specifies the name of the Verilog or VHDL library in which the
definitions will be stored.

A virtual directory with this name will be created in the
hdl_libraries directory of the design hierarchy if it does
not already exist.

If you specify multiple libraries, they become multiple names
(aliases) of one library. In this case, separate the names with
the equal sign (=). Only one of the library names in the list
becomes a virtual directory in the hdl_libraries directory.

The library definitions remain in effect until elaboration, after
which all library definitions are deleted.

By specifying Verilog and VHDL library names, you can read
in multiple Verilog modules and VHDL entities (and VHDL
packages) with the same name without overwriting each
other. See Examples.

Note: You can type -lib or -library.

-netlist Reads structural input files when parts of the input design is in
the form of a structural netlist. You can read partially structural
files provided the structural part of the input design is in the
form of structural Verilog-1995 constructs and is contained in
separate files from the non-structural (RTL) input.

See Reading a Partially Structural Design in Using
Encounter RTL Compiler for detailed information on using
the -netlist option to read and elaborate a partially
structural design.

Note: If this option is specified, all the following options are
ignored: -v1995,-v2001,-vhdl, -sv.

-sv Specifies that the HDL files conform to SystemVerilog 3.1.a.

-v1995 Specifies that the HDL files conform to Verilog-1995.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 170 Product Version 9.1

Examples

■ The following example first loads the example1.v file, then the example2.v file:

rc:/> read_hdl {example1.v example2.v}

■ The following commands with macro definitions are equivalent:

❑ read_hdl -define "A B=4 C"

❑ read_hdl -define A -define B=4 -define C ...

■ The following command loads a single VHDL file and specifies a single VHDL library.

read_hdl -vhdl -library lib1 test1.vhdl

■ The following commands read structural Verilog files when the design includes RTL
(VHDL or Verilog) files:

read_hdl file1_bhv.vhdl

read_hdl file2_bhv.v

read_hdl -netlist file3_str.v

elaborate

■ In the following command, the -v1995 option is ignored. Both rtl.v and struct.v are
parsed in the structural mode.

read_hdl -v1995 rtl.v -netlist struct.v

■ The following command defines VHDL libraries lib1, lib2 as aliases for lib3.

read_hdl -vhdl -library lib1=lib2=lib3 test1.vhdl

■ The following commands read in two Verilog files that each contain a Verilog module with
the same name (compute) but with different functionality. To store both definitions, the
-lib option indicates in which library to store the definition.

read_hdl -v2001 -library lib1 test_01_1.v
read_hdl -v2001 -library lib2 test_01_2.v

Inspection of the design hierarchy shows:

rc:/> ls /hdl_libraries/
/hdl_libraries:
./ DP/ DW04/ GB/ STD/ lib2/
AMBIT/ DW01/ DW05/ GTECH/ SYNERGY/ synthetic/
CADENCE/ DW02/ DW06/ IEEE/ SYNOPSYS/

-v2001 Specifies that the HDL files conform to Verilog-2001.

-vhdl Specifies that the HDL files are VHDL files. The
hdl_vhdl_read_version root attribute value specifies the
standard to which the VHDL files conform.

Default: VHDL-1993

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 171 Product Version 9.1

CW/ DW03/ DWARE/ IEEE_SYNERGY/ lib1/

rc:/> ls /hdl_libraries/lib1/architectures/
/hdl_libraries/lib1/architectures:
./ compute/
rc:/> ls /hdl_libraries/lib2/architectures/
/hdl_libraries/lib2/architectures:
./ compute/

Related Information

Reading a Partially Structural Design in Using Encounter RTL Compiler.

Affects this command: elaborate on page 284

Related command: read_netlist

Affects this attribute: hdl_parameter

Affected by these attributes: hdl_search_path

hdl_language

hdl_preserve_dangling_output_nets

hdl_verilog_defines

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 172 Product Version 9.1

read_io_speclist

Refer to read_io_speclist in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 173 Product Version 9.1

read_netlist

read_netlist file_list
[-top top_module_name]
[-define macro=value]...

Reads and elaborates a Verilog 1995 structural netlist when the design does not include
behavioral (VHDL or Verilog) modules.

A structural Verilog file contains only structural Verilog-1995 constructs, such as module and
gate instances, concurrent assignment statements, references to nets, bit-selects,
part-selects, concatenations, and the unary ~ operator. Using the read_hdl -netlist
command uses less memory and runtime to load a structural file than the read_hdl
command.

Use the read_netlist command to read and elaborate a design and create a generic
netlist that is ready to be synthesized. You do not need to use the elaborate command

Use the read_hdl -netlist command to read in a design that includes behavioral (VHDL
or Verilog) files.

Options and Arguments

-define macro=value

Defines a Verilog macro with the specified value, which is
equivalent to the ‘define macro value.

file_list Specifies the name of the HDL files to load. If several files
must be loaded, specify them in a string.

The host directory where the HDL files are looked for is
specified via the hdl_search_path root attribute.

-top top_module_name

Specifies the top-level structural Verilog module to be read
and elaborated.

 If you do not specify this option and multiple top-level
modules are found in the loaded netlist, the tool randomly
selects one of them and deletes the remaining top-level
modules.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 174 Product Version 9.1

Related Information

Reading and Elaborating a Structural Netlist Design and Reading a Partially Structural
Design in Using Encounter RTL Compiler.

Related Commands: read_hdl -netlist

Affected by these attributes: hdl_preserve_dangling_output_nets

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 175 Product Version 9.1

read_saif

Refer to read_saif in Chapter 12, “Low Power Synthesis.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 176 Product Version 9.1

read_sdc

read_sdc file
[-stop_on_errors] [-no_compress]
[-mode mode_name]

Reads a constraints file in Synopsys Design Constraint (SDC) format into RTL Compiler. RTL
Compiler creates a cost group for each clock defined in the file. It does not create false paths
between these clocks.

You must first elaborate the design before you can read the design constraints.

If you use the read_sdc command for loading a subset of timing constraints that includes
native RTL Compiler commands, such as adding exceptions (path_delays), the
write_sdc command will write these exceptions out in the SDC file.

After using the read_sdc command, if you make hierarchy changes in RTL Compiler using
the ungroup or group commands, and there are pin specific constraints, then the
write_sdc command will reflect the change in the hierarchy. For example, if you have
constraints on the hierarchy pins you have ungrouped, then the constraints are moved to
buffers (that are automatically inserted by RTL Compiler when ungrouping). The SDC file will
have constraints reflecting these buffers.

Unsupported Constraints

Not all SDCs are supported. For those that are not supported, RTL Compiler will issue a
warning message but store them for output for the write_sdc command. RTL Compiler will
only store the SDCs and not manipulate any data with them.

The following SDCs are not supported:

set_max_area

set_propagated_clock

set_scan_style

set_signal_type

set_test_methodology

set_wire_load_min_block_size

get_references

set_data_check

get_reference

set_connection_class

set_critical_range

set_fix_multiple_port_nets

set_local_link_library

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 177 Product Version 9.1

Options and Arguments

Related Information

Applying Design Constraints in Using Encounter RTL Compiler

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

file Specifies the name constraints file to read.

You can also specify a file that was compressed with gzip (.gz
extension).

-mode mode_name Reads mode specific constraints for a design.

-no_compress Turns off advanced compression.

-stop_on_errors Stops reading the remainder of the script if an error is
encountered during reading of the SDC file.

Affects this command: synthesize on page 294

create_mode on page 237

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 178 Product Version 9.1

read_spef

Refer to read_spef in Chapter 9, “Physical.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 179 Product Version 9.1

read_tcf

Refer to read_tcf in Chapter 12, “Low Power Synthesis.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 180 Product Version 9.1

read_vcd

Refer to read_vcd in Chapter 12, “Low Power Synthesis.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 181 Product Version 9.1

restore_design

restore_design
-db_dir string -design_name design
[-def file] [-worst_corner string]

Loads the database written out by the Encounter® tool in the RTL Compiler tool.

Options and Arguments

Example

The following command reads the Encounter database from the fe_db_dat directory,
specifies that the name of the design is test. The assumptions are that a test.def or
test.def.gz file is part of the fe_db_dat directory and that the design is a non-MMMC
design.

restore_design -db_dir fe_db_1.dat -design test

-db_dir string Specifies the path to the Encounter database directory.

-def file Specifies the path to the DEF file.

If this option is not specified, the tool searches for a
design.def or design.def.gz file in the Encounter
database directory. If neither file is found, an error message is
issued.

-design_name design

Specifies the name of the design.

The design name is the base filename for the output files
generated by Encounter tool.

-worst_corner string

Specifies the worst case delay corner of all corners defined in
the viewdefinitions.tcl file.

This option is required for multi-mode multi-corner designs.

Note: The libraries and captable for the worst corner will be
loaded in the RTL Compiler tool.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 182 Product Version 9.1

Related Information

Affects this command: synthesize on page 294

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 183 Product Version 9.1

write_atpg

Refer to write_atpg in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 184 Product Version 9.1

write_bsdl

Refer to write_bsdl in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 185 Product Version 9.1

write_compression_macro

Refer to write_compression_macro in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 186 Product Version 9.1

write_config_template

Refer to write_config_template in Chapter 10, “Quality Analyzer.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 187 Product Version 9.1

write_def

See write_def on page 462 in Chapter 9, “Physical.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 188 Product Version 9.1

write_design

write_design
[-basename string] [-gzip_files]
[-encounter] [design]

Generates all the files needed to reload the session in RTL Compiler (for example, .g, .v.
and .tcl files). If you want to generate all the files that are need to loaded in both a RTL
Compiler and Encounter® session, use the -encounter option.

Options and Arguments

Example

■ The following example writes both the RTL Compiler and Encounter files as well as
specifies the path and basename to be test/top:

rc:/> write_design -encounter -basename test/top

unix> ls /home/mydir/test

top.conf

top.g

top.rc_setup.tcl

top.v

top.enc_setup.tcl

top.mode

top.sdc

Related Information

Generating Design and Session Information in Using Encounter RTL Compiler

Saving and Restoring a Session in RTL Compiler in Using Encounter RTL Compiler

-basename string Specifies the path and basename for the generated files.

design Specifies the top-level design in RTL Compiler.

-encounter Generates the additional files needed for Encounter.

-gzip_files Compresses the generated files in gzip format.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 189 Product Version 9.1

write_dft_abstract_model

Refer to write_dft_abstract_model in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 190 Product Version 9.1

write_do_ccd

write_do_ccd {compare_sdc | generate | propagate | validate}

Translates RTL Compiler settings to Conformal’s Constraint Designer (CCD) commands for
the Validate and Generate flows. In the Validate flow, by default the command compares
the SDC to the RTL

For more information, see Validating and Generating Constraints in Interfacing Between
RTL Compiler and Conformal.

Options and Arguments

Related Information

compare_sdc Generates a dofile to compare two SDC files.

generate Generates a dofile for the Generate flow.

propagate Generates a dofile to create a chip-level SDC file.

validate Generates a dofile for the Validate flow.

Related commands: write_do_ccd compare_sdc on page 191

write_do_ccd generate on page 192

write_do_ccd propagate on page 193

write_do_ccd validate on page 195

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 191 Product Version 9.1

write_do_ccd compare_sdc

write_do_ccd compare_sdc
[-design string] [-logfile file
-golden_sdc file -revised_sdc file
[-detail] [-netlist file] [-no_exit] [> file]

Writes a dofile for the Encounter® Conformal® Constraint Designer (CCD) tool to compare
two SDC files and report any differences between the two files.

Options and Arguments

Example

The following command compares the test.sdc and revised.sdc files.

write_do_ccd compare_sdc -golden_sdc test.sdc -revised_sdc revised.sdc

Related Information

Comparing SDC Constraint Files in Interfacing Between Encounter RTL Compiler and
Encounter Conformal

-design string Specifies the top-level design in RTL Compiler.

-detail Requests a detailed comparison report.

file Specifies the file to which the report must be written.

-golden_sdc file Specifies the UNIX path to the golden SDC file.

-logfile file Specifies the name of the CCD logfile. You must specify the
UNIX path to the file.

-netlist file Specifies the UNIX path to the netlist. By default, the tool uses
the RTL.

-no_exit Suppresses the exit command at the end of the dofile.

-revised_sdc file Specifies the UNIX path to the revised SDC file.

Related command: compare_sdc on page 322

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 192 Product Version 9.1

write_do_ccd generate

write_do_ccd generate [-design string] [-logfile string]
[-netlist string] [-slack integer] [-report string]
-in_sdc string [-out_sdc string] [-trv] [-fpgen]
[-dfpgen] [-no_exit] [> file]

Writes a dofile for the Encounter ® Conformal ® Constraint Designer (CCD) tool for the
Generate flow, which generates additional false paths based on critical path timing reports.

Options and Arguments

Related Information

-design string Specifies the top-level design in RTL Compiler.

file Redirects all the output to the specified file.

-dfpgen Generates a dofile for the directed false path flow.

-fpgen Generates a dofile for the false path flow.

-in_sdc string Specifies the list of SDC files to load.

-logfile string Specifies the name of the CCD logfile.

-netlist string Specifies the UNIX path to the netlist. This option compares
the SDC to the specified netlist instead of the RTL.

-out_sdc string Specifies the filename to which the identified false paths will
be written.

-report string Specifies the name of the timing report file to be generated.
The report will be in CCD format.

-sdc string Specifies the list of SDC files.

-slack integer Specifies the slack value in picoseconds. Only paths below
this slack value will be used to generate the timing report.
This option should be used with the -report option.

-trv Generates a dofile for the timing report validation flow.

Affected by this attribute: wccd_threshold_percentage

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 193 Product Version 9.1

write_do_ccd propagate

write_do_ccd propagate
-block_sdc string
[-glue_sdc string]
[-partial_chip_sdc string]
[-out_sdc string] [-netlist string]
[-rule_instance_file string]
[-rule_instance_template string]
[-no_exit]
[-design design] [-logfile string] [> file]

Generates a dofile for the Encounter® Conformal® Constraint Designer (CCD) tool to
propagate block-level constraints to the top-level and integrate them with the glue constraints
to generate a chip-level SDC file.

Options and Arguments

-block_sdc string Specifies a list of block names with their associated block-level
SDC files in the following format:

{{block_name block_sdc_file}...}

-design string Specifies the top-level design in RTL Compiler.

file Specifies the file to which the report must be written.

-glue_sdc string Specifies the name of a glue SDC file. This file contains a set of
constraints for the top-level module only (without covering any
block-level constraints).

-logfile string Creates a separate CCD logfile. You must specify the UNIX
path to the file.

-netlist string Specifies the UNIX path to the netlist. By default, the tool uses
the RTL.

-no_exit Suppresses the exit command at the end of the dofile.

-out_sdc string Specifies the name of the constraints file that is generated after
propagation and integration of the block and glue constraints.

Default: chip.sdc

-partial_chip_sdc string

Specifies the name of the partial SDC file that corresponds to
the top-level of the design.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 194 Product Version 9.1

Example

■ The following command creates a do file to propagate the block-level SDC files i1.sdc
and i2.sdc to the top level.

rc:/> write_do_ccd propagate -block_sdc {{i1 i1.sdc} {i2 i2.sdc}} \
-out_ sdc ./my_chip.sdc rule_instance_file my_rules -logfile ccd.log

The generated dofile will be similar to:

read library -statetable -liberty ./slow.lib

add search path -design .

read design -verilog ./ti1.v -lastmod -noelab

elaborate design

dofile ./my_rules

read hierarchical sdc \
-sdc_design i1 i1.sdc \
-sdc_design i2 i2.sdc

set system mode verify

integrate -all ./chip.sdc -replace

report rule check

report environment

-rule_instance_file string

Specifies the name of the file which defines the rule instances
for the Encounter ® Conformal ® Constraint Designer (CCD)
tool.

-rule_instance_template string

Creates a template integration rule instances file.

You can modify this file according to the design. To use this file
as input for the Encounter ® Conformal ® Constraint Designer
(CCD) tool, specify the file as value of the
-rule_instance_file option.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 195 Product Version 9.1

write_do_ccd validate

write_do_ccd validate [-design string] [-logfile string]
[-netlist string] -sdc string
[-init_sequence_file string] [-no_exit]
[> file]

Writes a Conformal Constraint Designer (CCD) dofile for the Validate flow, which validates
the constraints and false path exceptions.

Options and Arguments

-design string Specifies the top-level design in RTL Compiler.

file Redirects all the output to the specified file.

-init_sequence_file string

Specifies the UNIX path to the initialization sequence file for
multi-cycle path validation.

-logfile string Specifies the name of the CCD logfile.

-netlist string Specifies the UNIX path to the netlist. This option compares
the SDC to the specified netlist instead of the RTL.

-no_exit Suppresses the exit command at the end of the dofile.

-report string Specifies the name of the timing report file to be generated.
The report will be in CCD format.

-sdc string Specifies the list of SDC files.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 196 Product Version 9.1

write_do_clp

write_do_clp
[-design design] [-netlist string]
[-logfile file] [-env_var string]
[-add_iso_cell string] [-clp_out_report string]
[-ignore_ls_htol] [-no_exit] [-verbose]
[-tmp_dir string] [> file]

Writes the required dofile for Conformal Low Power (CLP). This command will issue an error
and will not proceed if you have multiple Common Power Format (CPF) files.

Options and Arguments

-add_iso_cell string

Specifies the standard cells that CLP should recognize as
isolation cells.

-clp_out_report string

Writes the output of the report rule check Encounter®

Conformal® Equivalence Checking command to this specified
file.

-design design Specifies the top-level design in RTL Compiler.

-env_var string Specifies the names and values of UNIX environment
variables to be used in the library, design, and logfile names in
the generated dofile.

file Redirects all the output to the specified file.

-ignore_ls_htol Indicates whether to ignore the high to low level shifter check.
If this option is specified, the following CLP directive will be
added to the dofile:

set lowpower option -ignore_high_to_low

-logfile file Specifies the name of the CLP logfile.

-netlist path Specifies the UNIX path that contains the netlist containing all
the design’s low power features (for example, level shifters,
isolation cells and SRPG flops).

Default: RTL

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 197 Product Version 9.1

Example

■ The following Encounter Conformal Equivalence Checking commands is an example of
a CLP dofile:

set log file log_file_name -replace
set lowpower option -netlist_style logical

read library -statetable -liberty bn65lplvt_121a/tcbn65lplvtwcl0d90d72.lib \
read design -verilog -sensitive netlist.v

read cpf file cpf_file_name

analyze power domain
rep rule check ISO* LSH* RET* -verbose
exit -force

Related Information

-no_exit Indicates whether to skip the exit command at the end of the
dofile. If this option is specified, the following command will be
omitted from the dofile:

exit -force

-tmp_dir string Specifies the name of the directory to which the generated
files must be written. Its contents will be CLP native
commands.

Default: RC_CLP_design_name_out.do

-verbose Indicates whether the generated dofile will be verbose. If this
option is specified, the report rule check command
should write out the intermediate dofile for CLP and then
include that file.

Affected by these attributes: wclp_lib_statetable

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 198 Product Version 9.1

write_do_lec

write_do_lec [-top string]
[-golden_design string] [-revised_design string]
[-sim_lib string] [-sim_plus_liberty]
[-logfile string] [-env_var string]
[-hier] [-flat] [-no_exit]
[-save_session string] [-tmp_dir string]
[-verbose] [> file]

Translates RTL Compiler settings to Encounter® Conformal® Equivalence Checking
commands.

This command works with the Common Power Format (CPF) flow: if it detects a CPF file then
it will output this information to the Conformal LEC dofile.

Options and Arguments

-env_var string Specifies the names and values of UNIX environment
variables to be used in library, design, and log filenames in the
dofile.

file Redirects all the output to the specified file.

-flat Performs a flattened Conformal LEC comparison.

-golden_design string

Specifies the UNIX path to an alternative golden design.

If the file was loaded into RTL Compiler (using either
read_hdl or read_netlist), the tool knows the language
format of the file.

Otherwise, the tool assumes that the format of the file is
Verilog-1995.

-hier Performs a hierarchical Conformal LEC comparison.

-logfile string Specifies the name of the Conformal LEC logfile.

-no_exit Does not add the exit command to the end of the dofile.

-revised_design string

Specifies the UNIX path to the revised design.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 199 Product Version 9.1

Related Information

Interfacing with Encounter Conformal Logical Equivalence Checker in Interfacing Between
Encounter RTL Compiler and Encounter Conformal

-save_session string

Specifies the filename to save the LEC session.

-sim_lib string Specifies the simulation library in Verilog 1995.

-sim_plus_liberty Specifies that the simulation library is an addition to the
synthesis library.

-tmp_dir string Specifies the name of the directory to which the generated
files must be written.

-top string Specifies the name of the top-level design in RTL Compiler.

-verbose Generates a dofile with verbose reporting.

Affected by these attributes: boundary_optimize_invert_hier_pins

wlec_add_noblack_box_retime_subdesign

wlec_analyze_abort

wlec_analyze_setup

wlec_auto_analyze

wlec_compare_threads

wlec_cut_point

wlec_hier_comp_threshold

wlec_lib_statetable

wlec_set_cdn_synth_root

wlec_skip_iso_check_hier_compare

wlec_skip_lvl_check_hier_compare

wlec_uniquify

wlec_use_lec_model

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 200 Product Version 9.1

write_do_verify cdc

write_do_verify cdc -sdc string
[-design string]
[-categorize | -validate] [-no_exit]
[-logfile string] [> file]

Generates a dofile for Conformal Extended Clock Domain Crossing Checks. Use the dofile
for either the Categorization or Validate flows. In the Categorization flow, no synchronization
rules are defined. RTL Compiler automatically identifies and categorizes the clock domain
crossing paths. In the Validate flow, you define the synchronization rules that specify the valid
synchronization structures in the design.

Options and Arguments

Examples

■ The following example writes a dofile for the Categorization flow:

rc:/> write_do_verify cdc -sdc /home/test/general.sdc -logfile my.log \
-categorize

■ The following example writes a dofile for the Validate flow:

write_do_verify cdc -sdc /home/test/general.sdc -logfile my.log \
-validate

[-categorize | -validate]

Specifies whether to generate a dofile for the Categorization
flow or the Validate flow.

-design string Specifies the name of the top-level design in RTL Compiler.

file Specifies a specific dofile filename.

-logfile string Specifies a specific logfile name.

-no_exit Suppresses the exit command in the dofile.

-sdc string Specifies a list of the SDC files.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 201 Product Version 9.1

Related Information

Interfacing with Encounter Conformal Extended Checks in Interfacing Between Encounter
RTL Compiler and Encounter Conformal

Affected by these attributes: wcdc_clock_dom_comb_propagation

wcdc_synchronizer_type

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 202 Product Version 9.1

write_encounter

write_encounter design [-basename string]
[-gzip_files] [-reference_config_file config_file]
[-ignore_scan_chains] [-ignore_msv]
[-floorplan string] [-lef lef_files] [design]

Writes Encounter® input files to a single directory. The command will only convert library
domains into power domains for Encounter if power domains exist in RTL Compiler. If power
domains do not exist, the -ignore_msv option is implied. The command also supports the
Common Power Format (CPF) files by directly passing them to Encounter.

The generated files are all required Encounter input files and include the following files:

■ Netlist (.v)

■ Encounter configuration file (.conf),

■ SDC constraints (.sdc)

■ Tcl script (.enc_setup.tcl)

■ Mode file (.mode)

■ Scan DEF file (.scan.def)

■ MSV-related files (.msv.tcl, .msv.vsf)

■ Multiple timing mode (.mmode.tcl)

The .enc_setup.tcl file can simultaneously load all the necessary Encounter data in an
Encounter session. This eliminates the need to load each of the necessary files sequentially.

The .mode file contains all the Encounter setMode settings. For example, the file would
contain the setAnalysisMode and setPlaceMode settings.

The full DEF file that is outputted is the exact same DEF file that was loaded or generated by
predict_qos. However, RTL Compiler generates the information for the Scan DEF file
(.scan.def).

Note: The MSV (multiple supply voltage) library domain setup commands require Encounter
version 4.2 or later. Multiple timing mode is supported in Encounter version 5.2 or later.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 203 Product Version 9.1

Options and Arguments

-basename string Specifies the directory pathname and base filename for the
output data.The default directory is ./rc_enc_des and the
default filename without the extension is rc.

design Specifies a particular design for which to write out information.
Only one design can be specified at a time.

-floorplan string Specifies the extension for the file containing the floorplan.
The valid extensions are:

.def—DEF

.pde—PDEF

.fp—Encounter floorplan

-gzip_files Compresses the netlist and constraints in .gz format. The
floorplan, if one was read, will be untouched. That is, if it was
read in uncompressed, it will be outputted uncompressed and
vice versa.

-ignore_scan_chains

If specified, the scan DEF file will not be written and the scan
reorder directives will not be included in the setup file.

-ignore_msv If specified, the MSV setup file and the shifter table file will not
be written out. This option is useful if the library domains in
RTL Compiler are not being used for modeling power
domains.

-lef lef_files Specifies a particular physical library or libraries to use. The
physical libraries will have the .lef extension. The contents
of the LEF library that was specified with the lef_library
attribute will be used if this option is not specified.

-reference_config_file config_file

Specifies a reference Encounter configuration file to use as a
template for the generated configuration file.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 204 Product Version 9.1

Examples

■ The following example writes all the Encounter input files for the test07 design to the
directory TEST. The basename for the files are specified to be test1.

rc:/> write_encounter design test07 -basename TEST/test1

unix> ls TEST/

test1.conf test1.enc_setup.tcl test1.mode test1.sdc test1.v

■ The following example compresses the netlist and constraints with the -gzip_files
option:

rc:/> write_encounter design -gzip_files

unix> ls rc_enc_des

rc.conf rc.def rc.enc_setup.tcl rc.mode rc.sdc.gz rc.v.gz

Related Information

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Export to Place and Route in The Multiple Supply Voltage Flow in Low Power in Encounter
RTL Compiler.

Related commands: create_mode on page 237

read_encounter on page 167

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 205 Product Version 9.1

write_et_atpg

Refer to write_et_atpg in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 206 Product Version 9.1

write_et_bsv

Refer to write_et_bsv in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 207 Product Version 9.1

write_et_mbist

Refer to write_et_mbist in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 208 Product Version 9.1

write_et_rrfa

Refer to write_et_rrfa in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 209 Product Version 9.1

write_ets

write_ets [-default] [-ocv]
[-pre_include string] [-post_include string]
[-netlist string]
[-sdc string] [-sdf string] [-spef string]
[> file]

Generates an Encounter® Timing System (ETS) run script.

Options and Arguments

-default Generates a simple ETS run script. The script will contain the
following ETS commands: read_lib, read_verilog,
set_top_module, read_sdc, and report_timing.

file Redirects the output to the specified file.

-netlist string Specifies the UNIX path of the file containing the gate-level
netlist.

-ocv Adds an extra set_timing_derate command into the ETS
run script. This option can only be specified with the -sdf
option.

-post_include string

Specifies the UNIX path of the include file that contains ETS
commands that need to be added after the report_timing
command in the run file generated by write_ets.

-pre_include string

Specifies the UNIX path of the include file that contains ETS
commands that need to be added before the report_timing
command in the run file generated by write_ets.

-sdc string Specifies the UNIX path of the SDC file.

-sdf string Specifies the UNIX path of the SDF file. If this option is
specified, the read_sdf, set_analysis_mode, and
set_op_cond commands will be added to the ETS run script.

-spef string Specifies the UNIX path of the SPEF file. If this option is
specified, the read_spef, set_analysis_mode, and
set_op_cond commands will be added to the ETS run script.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 210 Product Version 9.1

write_ett

write_ett
[-strict | -dc | -ett]
[-version {1.1|1.3|1.4}]
[design] [> file]

Generates constraints for Encounter® True Time.

Some constraints (such as set_input_delay, set_output_delay, and so on) are
written out in SDC (Synopsys Design Constraints) format while others (such as
set_false_path, set_disable_timing) are written out in Encounter test format.

Options and Arguments

design Specifies the design for which the constraints must be
generated.

file Specifies the name of the file to which the constraints must be
written.

-dc Writes the constraints that are DC and PT compatible, which
means that commands not listed in the SDC specification may
be written out.

-ett Writes an Encounter True Time Clock Constraints file.

-strict Writes only constraints in SDC format.

-version {1.1|1.3|1.4}

Specifies the SDC version to use to write SDC constraints.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 211 Product Version 9.1

write_forward_saif

Refer to write_forward_saif in Chapter 12, “Low Power Synthesis.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 212 Product Version 9.1

write_hdl

write_hdl {design|subdesign}...
[-suffix string]
[-abstract] [-generic] [-depth integer]
[-equation] [-lec] [> file]

Generates one of the following design implementations in Verilog format:

■ A structural netlist using generic logic

■ A structural netlist using mapped logic

You can automatically read in or write out a gzip compressed Verilog file. For example:

read_hdl sample.v.gz
write_hdl > sample.v.gz

Options and Arguments

-abstract Generates an empty top-level Verilog module definition of the
specified design or subdesign that defines the I/O pins and
bit-width for all top-level functional and scan-related ports in the
design or subdesign. This empty module description is further
referred to as logic abstract model.

-depth integer Specifies the number of hierarchy levels to be written out,
starting from the top level. A value of 0, writes out only the
top-level module.

Default: infinite

{design | subdesign}

Specifies the design or subdesign for which the design
implementation must be generated.

-equation Writes out a logic equation in an assign statement for each
Verilog primitive gate.

file Specifies the file to which the output must be written.

Default: Output is written to the screen.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 213 Product Version 9.1

Examples

■ The following example writes out the logic abstract model definition of design test:

rc:/> write_hdl -abstract

// Generated by Cadence RTL Compiler-D (RC) version

module test(in1, in2, out1, out2, clk1, clk2, clk3, se1, se2);
input [3:0] in1;
input [7:0] in2;
input clk1, clk2, clk3, se1, se2;
output [3:0] out1;
output [7:0] out2;

endmodule

■ The following example writes out the design as generic logic regardless of its current
mapped state:

rc:/> write_hdl -generic > design_rtl.v

■ You can write out a netlist for a specific module. For example, the following commands
writes out the middle module:

rc:/> set_attr unresolved true [get_attr instance [get_attr subdesign bottom]]
rc:/> write_hdl [find / -subdesign middle]

■ The following example writes out a design that instantiates cells from the target
technology library reflecting the current state of the design (mapped state):

rc:/> read_hdl design.v
rc:/> ...
rc:/> synthesize -to_mapped
rc:/> ...
rc:/> write_hdl

-generic Generates an unoptimized generic logic implementation of the
design that uses the generic logic gates specified within the
Verilog language.

Any parts of the design that are mapped will be unmapped for
the write_hdl command without affecting the design in
memory.

Once the synthesize command has been run, you cannot
recover the version of the design that was generated using this
option prior to synthesis.

-lec Generates additional information to facilitate formal verification
with Encounter® Conformal® Equivalence Checking.

-suffix Specifies the string to be appended to the name of all defined
modules in the generated netlist.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 214 Product Version 9.1

■ The following example replaces each Verilog primitive gate by an equivalent Verilog
assign statement:

rc:/> write_hdl -equation design.v

■ The following example writes out the design as generic logic regardless of its current
mapped state:

rc:/> write_hdl -generic > design_rtl.v

Related Information

Writing Out the Design Netlist in Using Encounter RTL Compiler.

Affects this command: synthesize on page 294

Affected by these commands: elaborate on page 284

synthesize on page 294

Affected by these attributes: write_sv_port_wrapper

write_vlog_bit_blast_bus_connections

write_vlog_bit_blast_constants

write_vlog_bit_blast_mapped_ports

write_vlog_bit_blast_tech_cell

write_vlog_convert_onebit_vector_to_scalar

write_vlog_declare_wires

write_vlog_empty_module_for_logic_abstract

write_vlog_line_wrap_limit

write_vlog_no_negative_index

write_vlog_port_association_style

write_vlog_preserve_net_name

write_vlog_top_module_first

write_vlog_unconnected_port_style

write_vlog_wor_wand

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 215 Product Version 9.1

write_io_speclist

Refer to write_io_speclist in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 216 Product Version 9.1

write_saif

Refer to write_saif in Chapter 12, “Low Power Synthesis.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 217 Product Version 9.1

write_scandef

Refer to write_scandef in Chapter 11, “Design for Test.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 218 Product Version 9.1

write_script

write_script [-hdl]
[-analyze_all_scan_chains [-dont_overlay_segments]]
[design] [> file]

Generates a script that contains the timing for all modes and the design rule constraints of
the design. If you used DFT functionality, the script will also contain any test constraints that
were applied, as well as any objects that were created in the design as a result of inserting
DFT logic such as boundary scan, building the fullscan chains, and inserting scan chain
compression logic.

The resulting script can subsequently be used to examine the current design constraints, or
it can be read back into RTL Compiler to perform analysis or optimization at a later time.

The write_script command can also compress the output using the gzip (.gz extension).

The script contains the following:

■ The attributes connected with the wire_load models

■ Clock objects and their reference to the pins of the design blocks

■ External_delay on all inputs and outputs

■ Timing exceptions

■ max_fanout / max_capacitance and similar design rule constraints applied

■ All user defined attributes that were created with the define_attribute command

The script can also include DFT constraints or commands, such as:

■ DFT constraints created (or tool inferred) using any of the following:
define_dft shift_enable, define_dft test_mode, define_dft
test_clock, define_dft scan_chain

■ DFT constraints created with set_attribute dft_dont_scan

■ DFT objects created by the user or by the tool with set_attribute user_defined
and set_attribute dft_auto_created

■ check_dft_rules

Note: The write command writes out only the design itself while the write_script
command writes out the constraints for the design.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 219 Product Version 9.1

Options and Arguments

Examples

■ The following example saves the design and its constraints:

rc:/> write_hdl > mapped.v
rc:/> write_script > mapped.g

The design and script is subsequently read into another RTL Compiler session. You must
specify any .lib, LEF, or cap table files: these files are process specific as opposed to
design specific and therefore are not automatically loaded.

rc:/> set_attribute library areid.lib
rc:/> set_attribute lef_library areid.lef
rc:/> set_attribute cap_table_file areid.cap
rc:/> read mapped.v
rc:/> elaborate
rc:/> source mapped.g

■ The following example automatically compresses the output file using the .gz extension:

rc:/> write_script > foo.g.gz

-analyze_all_scan_chains

Writes out all chains in the dft/report/
actual_scan_chains directory using the following notation:

define_dft scan_chain -name name... -sdo sdo -analyze

When running the script in a new RTL Compiler session, the
RC-DFT engine analyzes the existing scan chains (traces the
connectivity of the chains) and restores this information into the
dft/report/actual_scan_chains directory.

design Specifies the name of the design for which to write a script.

-dont_overlay_segments

Adds the -dont_overlay option to the scan chains it is
writing out with the -analyze option.

Note: You can only specify this option when you specify the
-analyze_all_scan_chains option.

file Specifies the name of the file to which to write the constraints.

-hdl Writes out the architecture/entity filename information to the
output file.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 220 Product Version 9.1

Related Information

Affected by these commands: create_mode on page 237

define_clock on page 240

define_cost_group on page 245

define_dft scan_chain on page 560

external_delay on page 248

multi_cycle on page 254

path_adjust on page 259

path_delay on page 263

path_disable on page 266

path_group on page 269

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 221 Product Version 9.1

write_sdc

write_sdc [-version {1.1|1.3|1.4|1.5|1.5rc}]
[-strict] [-mode mode_name] [-no_split] [design] [> file]

Writes out the current design constraints in Synopsys Design Constraint (SDC) format. The
write_sdc command can also compress the SDC constraints with gzip (.gz extension).

When using the write_sdc command, RTL Compiler replaces the / character with the @
character when the / character is used in the name of objects. This could happen when the
design is ungrouped or when the / character is used as the ungroup_separator.
To prevent this problem, write out the constraints using an SDC version less than 1.3 to avoid
the hsc specification. For example: rc:/> write_sdc -version 1.1.

For those SDCs that are not supported, RTL Compiler will issue a warning message but store
them for output for the write_sdc command. RTL Compiler will only store the SDCs and not
manipulate any data with them.

Note: Using the write_sdc command may not capture all the design information necessary
to recreate the image of a design’s constraints.

Options and Arguments

design Specifies the name of the design for which to write the SDC
constraints.

file Specifies the name of the file to which to write the SDC
constraints.

-mode mode Writes out mode specific constraints for a design.

-no_split Prevents printing the SDC commands over several lines.

-strict Writes out commands that are specifically listed in the SDC
specification. If you do not use this option, the write_sdc
command outputs commands that are DC and PT compatible,
which means that commands not listed in the SDC specification
may be written out. See Examples for the difference in results
when using the -strict option.

-version {1.1|1.3|1.4|1.5|1.5rc}

Specifies the SDC version to use. Version 1.5rc includes the
set_time_unit and set_load_unit commands.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 222 Product Version 9.1

Examples

■ The following example writes out the SDC constraints to the my_des.sdc file:

rc:/> write_sdc /designs/my_des > my_des.sdc

■ The following example shows the results you may get if you do not specify the -strict
option with the write_sdc command.

##

 ...

##

set sdc_version 1.4
Set the current design
current_design add

set_wire_load_mode "enclosed"
set_wire_load_selection_group "ALUMINUM" -library "tutorial"
set_dont_touch [get_designs Madd_addinc]
set_dont_touch [get_cells flop1]

■ The following example shows the results you may get if you do specify the -strict
option with the write_sdc command.

##

 ...

###

set sdc_version 1.4

Set the current design
current_design add

set_wire_load_mode "enclosed"
set_wire_load_selection_group "ALUMINUM" -library "tutorial"

■ The following example shows how to write out mode-specific constraints:

write_sdc -mode mode1 mode1.sdc

■ The following examples show the effect of the -no_split option.

Assume that the write_sdc command would write out the following command in the
SDC file:

set_false_path -from [list \
[get_clocks in1] \
[get_clocks in2]] -to [get_clocks in3]

If you specify the write_sdc command with the -no_split option, the SDC
command would be written as:

set_false_path -from [list [get_clocks in1] [get_clocks in2]] -to [get_clocks in3]

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 223 Product Version 9.1

Related Information

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affected by this command: create_mode on page 237

read_sdc on page 176

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 224 Product Version 9.1

write_sdf

write_sdf [-version {OVI 3.0 | OVI 2.1}]
[-precision non_negative_integer]
[-timescale {ps | ns}] [-delimiter character]
[-celltiming {all | none | nochecks}]
[-interconn {port | interconnect [-no_empty_cells]}]
[-edges {edged | check_edge}] [-condelse]
[-nonegchecks] [-no_escape] [-nosplit_timing_check]
[-no_input_port_nets] [-no_output_port_nets]
[-design] [> file}

The command generates a Standard Delay Format (SDF) file that analysis and verification
tools or timing simulation tools can use for delay annotation. The SDF file specifies the delay
of all the cells and interconnects in the design in the Standard Delay Format. Specifically, it
includes the delay values for all the timing arcs of a given cell in the design.

Note: Use the write_sdf command after technology mapping (after the synthesize
-to_mapped command).

Options and Arguments

-celltiming {all | none | nochecks}

Specifies which cells delays and timing checks to write out.

all—Writes all cell delays and timing checks to the SDF file.

none—Excludes cell delays and timing checks from being
written into the SDF file.

nochecks—Only excludes the timing checks.

Default: all

-condelse Writes CONDELSE constructs with the default value when a
COND construct is written.

-delimiter character

Specifies the hierarchy divider character to be used in the SDF
file. The valid options are the “/” and “.” characters.

-design Specifies the design name for which the SDF file has to be
generated.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 225 Product Version 9.1

-edges {edged | check_edge}

Specifies the edges values.

■ check_edge—Keeps edge specifiers on timing check arcs
but does not add edge specifiers on combinational arcs.

■ edged—Keeps edge specifiers on timing check arcs as well
as combinational arcs.

Default: edged

file Specify the SDF file name.

-interconn {port | interconnect}

Specifies the construct to use for writing out net delays.

port—Writes out the net delays using the PORT construct.

interconnect—Writes out the net delays using the
INTERCONNECT construct.

Default: port

-no_escape Writes out object names without escaping the special
characters such as “[“ or “]”.

-nonegchecks Converts all negative timing check values to 0.0.

-no_empty_cells

Suppresses writing out empty cell descriptions.

-no_input_port_nets

Suppresses writing out nets connected to input ports.

-no_output_port_nets

Suppresses writing out nets connected to output ports.

-nosplit_timing_check

Does not split the TIMINGCHECK delays (SETUP/HOLD/
RECOVERY/REMOVAL delays). Instead, the maximum delay
values are used.

-precision non_negative_integer

Specifies the number of digits appearing after the decimal point
in the output SDF file.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 226 Product Version 9.1

Examples

■ The following example writes out the SDF file, areid.sdf, with the “/” delimiting
character:

rc:/> synthesize -to_mapped

rc:/> write_sdf -delimiter "/" > areid.sdf

■ The following report illustrates two TIMINGCHECK examples: the first only
writes out the maximum delays while the second writes out all the
delays.

(TIMINGCHECK

(HOLD D (posedge CK) (::0.0))

(SETUP D (posedge CK) (::0.452))

)

(TIMINGCHECK

(HOLD (negedge D) (posedge CK) (::0.0))

(HOLD (posedge D) (posedge CK) (::0.0))

(SETUP (negedge D) (posedge CK) (::0.452))

(SETUP (posedge D) (posedge CK) (::0.181))

)

To write out only the maximum TIMINGCHECK delays (the first report above), use the
-nosplit_timing_check option:

rc:/> write_sdf -nosplit_timing_check > areid.sdf

-timescale {ps | ns}

Specifies the timescale setting of the SDF file in either
nanoseconds or picoseconds.

Default: ps.

-version {OVI 3.0 | OVI 2.1}

Specifies whether to generate SDF version 2.1 or 3.0.

Default: OVI 3.0.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 227 Product Version 9.1

write_set_load

write_set_load [design] [> file]

Generates a set of load values, which were obtained from the physical layout estimator (PLE)
or wire-load model, for all the nets in the specified design. This command is useful when
performing timing correlation across various synthesis and timing tools. The
write_set_load command can be used to reproduce PLE based timing in external timing
analyzers.

Options and Arguments

Example

■ The following example shows that the load values on all the nets is .0103:

rc:/> write_set_load

set_load 0.0103 [get_nets inst1/out1[3]]

set_load 0.0103 [get_nets inst1/out1[2]]

set_load 0.0103 [get_nets inst1/out1[1]]

set_load 0.0103 [get_nets inst1/out1[0]]

design Generates the load values for the specified design.

file Specifies the file to which to write the load values.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 228 Product Version 9.1

write_spef

See write_spef in Chapter 9, “Physical.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 229 Product Version 9.1

write_tcf

Refer to write_tcf in Chapter 12, “Low Power Synthesis.”

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 230 Product Version 9.1

write_template

write_template
[-dft] [-power] [-cpf] [-retime] [-physical]
[-area] [-no_sdc] [-n2n] [-yield]
[-full] [-simple] [-split]
[-multimode] -outfile string

Generates a template script with the commands and attributes needed to run RTL Compiler.
Use the command options to include specific commands and attributes in the script.

Options and Arguments

-area Writes out a template script for area-critical designs.

-checkpoint Writes out a template for the (old) checkpoint flow.

Note: The basic template created with the write_template
command contains the necessary commands and attribute
settings to verify the synthesized netlist with the Encounter®

Conformal® Logical Equivalence Checker (LEC) tool. Use the
-checkpoint option only if you need to revert to the old flow.

-cpf Writes out a template script for the Common Power Format
(CPF) based flow and a template CPF file (template.cpf).
The template CPF file is read in the template script with the
read_cpf command.

-dft Writes out a template script for the test synthesis (DFT) flow.

The template contains commands and attributes needed for
basic and advanced DFT features.

-full Writes out DFT, power, and retiming commands and attributes
along with the basic template.

-multimode Writes out a template script for multi-mode analysis.

-n2n Writes out the template script for netlist to netlist optimization in
RTL Compiler. Use with the -dft and -power options to
include the DFT and power attributes and commands.

-no_sdc Writes out clock delays and input and output delays in the RTL
Compiler format using the define_clock and the
external_delay commands.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 231 Product Version 9.1

Examples

■ The following example writes out the basic template file with the constraints in SDC
format:

rc:/> write_template -outfile template.g

■ The following example writes out the basic template file with the constraints in the RTL
Compiler format using the define_clock and the external_delay commands:

rc:/> write_template -no_sdc -outfile template.g

■ The following example adds both the DFT and power related attributes to the template.g
file written out:

rc:/> write_template -dft -power -outfile template.g

■ The following example writes out the template script with the DFT attributes and
commands for netlist to netlist optimization:

rc:/> write_template -dft -n2n -outfile template.g

-outfile string Specifies the name of the file to which the template script is to
be written.

-physical Writes out a template script for the physical flow.

-power Writes out power attributes and commands.

-retime Writes out retiming attributes and commands.

-simple Writes out a simple template script.

You cannot use this option with the -split, -area, -dft,
-cpf, -multimode, -physical, -power, -retime, or
-full options.

-split Writes out a template script with a separate setup file which
contains the root attributes and setup variables.

If you specified the -dft option with the -split option, an
additional file is created which contains the DFT design
attributes, test clock and scan chain information.

If you specified the -power option with the -split option, an
additional file is created which contains the leakage and
dynamic power, and clock-gating setup information.

-yield Writes out a template script for yield.

Command Reference for Encounter RTL Compiler
Input and Output

July 2009 232 Product Version 9.1

■ The following example writes out the template script template.g and the setup file
setup_template.g that contains all the root attributes and setup variables and
includes it in the template.g file:

rc:/> write_template -split -outfile template.g

■ The following example writes out the template.g template script, a
setup_template.g setup file, a dft_template.g file, and a
power_template.g file and includes them in the appropriate template.g file:

write_template -split -dft -power -outfile template.g

■ The following example writes out a simple template script with no path and cost groups
and without any variables, power, or DFT related attributes:

write_template -simple -outfile template.g

■ The following example writes out a template script for area critical designs:

write_template -area -outfile template.g

Command Reference for Encounter RTL Compiler
6
Constraints

■ clock_uncertainty on page 234

■ create_mode on page 237

■ define_clock on page 240

■ define_cost_group on page 245

■ derive_environment on page 246

■ external_delay on page 248

■ generate_constraints on page 252

■ multi_cycle on page 254

■ path_adjust on page 259

■ path_delay on page 263

■ path_disable on page 266

■ path_group on page 269

■ propagate_constraints

■ specify_paths on page 274

■ validate_constraints on page 280
July 2009 233 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
clock_uncertainty

clock_uncertainty
[-fall | -rise]
[-from_edge <string>] [-to_edge <string>]
[-from clock_list | -fall_from clock_list |
-rise_from clock_list]

[-to clock_list | -fall_to clock_list |
-rise_to clock_list]

[-hold | -setup]
[-clock clock_list] uncertainty
[clock|port|instance|pin]...

Specifies the uncertainty on the clock network. You specify either a simple or an inter-clock
uncertainty.

■ Simple uncertainties are defined directly on a clock, port, pin, or instance.These
uncertainty values are stored in attributes.

■ The inter-clock uncertainties (defined using options such as -from, -to, -rise_from,
-rise_to) are modeled as path_adjust exceptions. These uncertainties take
precedence over the simple uncertainty values.

Options and Arguments

{clock | pin | port | instance}

Specifies the clocks, pins, ports and instances to which the
specified uncertainty value applies. In case of instances, the
uncertainty is applied on the input pins of the instance.

Note: These arguments only apply to simple uncertainties.

-clock clock_list Specifies the clock(s) to which the uncertainty value applies.

If this option is not specified, it applies to all clocks propagating
to that pin or port.

Note: This option only applies to simple uncertainties.

-fall | -rise Specifies to apply the uncertainty to the falling or rising edge of
the capture clock pin.

If neither option is specified, the uncertainty value applies to
both edges.

Note: These options only apply to inter-clock uncertainties.
July 2009 234 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following command sets a (simple) setup uncertainty of 0.4 sdc units for all paths
ending at reg1 and captured by the rising transition of all clocks propagating to reg1/
CK.

clock_uncertainty -setup -rise 0.4 [find / -pin reg1/CK]

■ The following command sets a (simple) setup uncertainty of 0.4 sdc units for all paths
ending at reg1 and captured by the rising transition of clk1.

clock_uncertainty -setup -rise -clock clk1 0.4 [find / -pin reg1/CK]

-from clock_list | -fall_from clock_list | -rise_from clock_list

Applies the uncertainty value to the specified list of launching
clocks.

Note: These options only apply to inter-clock uncertainties.

-from_edge {rise | fall | both}

Specifies the edge type of the launch clock.

Note: This option only applies to inter-clock uncertainties and
cannot be specified with either -fall_from or -rise_from.

-hold | -setup Specifies that the clock uncertainty applies to hold or setup
checks.

If neither option is specified, the uncertainty value applies to
both checks.

Note: These options apply to both types of uncertainties.

-to clock_list | -fall_to clock_list | -rise_to clock_list

Applies the uncertainty value to the specified list of capture
clocks.

Note: These options only apply to inter-clock uncertainties.

-to_edge {rise | fall | both}

Specifies the edge type of the capture clock.

Note: This option only applies to inter-clock uncertainties and
cannot be specified with either -fall_to or -rise_to.

uncertainty Specifies the uncertainty value for the clock(s). Use a floating
value.
July 2009 235 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
■ The following command sets a (inter clock) setup uncertainty of 0.5 sdc units for all paths
launched by clk2 and captured by clk1.

clock_uncertainty -setup -from clk2 -to clk1 0.5

Related Information

Affects this command: path_adjust

Related command: dc::set_clock_uncertainty

Sets these attributes: clock_hold_uncertainty

clock_setup_uncertainty

hold_uncertainty_by_clock

setup_uncertainty_by_clock
July 2009 236 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
create_mode

create_mode -name mode_list
[-default] [-design design]

Specifies the mode for power and timing analysis and optimization. Use this command after
loading and elaborating the design, before reading in an SDC file, and before using any of the
following constraints: define_clock, external_delay, multi_cycle, path_adjust, path_delay,
path_disable, path_group, and specify_paths.

After creating modes, use the -mode option with the read_sdc command.

The command returns the directory path to the mode object that it creates. You can find the
objects created by the create_mode command in:

/designs/design/modes

Options and Arguments

Examples

■ The following example creates multiple modes for one design using one create_mode
command:

rc:/>create_mode -name "mode1 mode2" -design design_name

■ The following example creates two modes using multiple create_mode commands, and
declares one of them as the default mode.

rc:/> create_mode -name a
/designs/design_name/modes/a
rc:/>create_mode -name b -default
/designs/design_name/modes/b

-default Designates the specified mode as the default mode.

In this case, you can specify only mode with the -name option.

-design design Specifies the name of the design for which you want to create a
mode.

-name mode_list Specifies the names of the modes to be created. Unless a
mode is assigned to be the default mode using the -default
option, the first mode specified will be the default.
July 2009 237 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
■ The following example illustrates the recommended flow.

read_hdl test.v
elaborate
create_mode -name {a b}
read_sdc -mode a a.sdc
read_sdc -mode b b.sdc

Related Information

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler for detailed information.

Affects these commands: define_clock on page 240

external_delay on page 248

multi_cycle on page 254

path_adjust on page 259

path_delay on page 263

path_disable on page 266

path_group on page 269

specify_paths on page 274

read_sdc on page 176

report clocks on page 347

report timing on page 437

write_sdc on page 221

Related commands: derive_environment on page 246

report summary on page 435

write_encounter on page 202

write_script on page 218

Sets this attribute: default
July 2009 238 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Related attributes: (instance) disabled_arcs_by_mode

(pin/port) external_delays_by_mode

(design/instance) latch_borrow_by_mode

(design/instance/pin) latch_max_borrow_by_mode

(pin/port) propagated_clocks_by_mode

(design/pin/port/cost group) slack_by_mode

(pin/port) timing_case_computed_value_by_mode

(instance) timing_case_disabled_arcs_by_mode

(pin/port) timing_case_logic_value_by_mode
July 2009 239 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
define_clock

define_clock -name string
-period integer [-divide_period integer]
[-rise integer] [-divide_rise integer]
[-fall integer] [-divide_fall integer]
[-domain string] [-mode mode_name]
[-design design] [pin|port]...

Defines a clock waveform. A clock waveform is a periodic signal with one rising edge and one
falling edge per period. The command returns the directory path to the clock object that it
creates.

Note: Clock waveforms that are not applied to objects in your design are referred to as
“external” clocks and are only used as references for external delay values (see the
external_delay command).

Options and Arguments

-design design Specifies the name of the top module for which you want to
define a clock waveform.

This option is required for external clocks when there are
multiple top designs or user netlists.

-divide_fall integer

Determines together with the -fall option the time that the
falling edge occurs with respect to the beginning of the clock
period. The time is specified as a fraction of the period and is
derived by dividing -fall by -divide_fall.

Default: 100

-divide_period integer

Determines together with the -period option the clock period
interval. The clock period is specified in picoseconds and is
derived by dividing -period by -divide_period.

Default: 1
July 2009 240 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
-divide_rise integer

Determines, together with the -divide_rise option, the time
that the rising edge occurs with respect to the beginning of the
clock period. The time is specified as a fraction of the period
and is derived by dividing -rise by -divide_rise.

Default: 100

-domain string Specifies the name of the clock domain. A clock domain groups
clocks that are synchronously related to each other, allowing
timing analysis to be performed between these clocks. RTL
Compiler only computes timing constraints between clocks in
the same clock domain.

Paths between clocks in different domains are unconstrained by
default. To constrain these paths, use the path_delay
command.

Default: domain_1

-fall integer Determines, together with the -divide_fall option, the time
that the falling edge occurs with respect to the beginning of the
clock period. The time is specified as a fraction of the period
and is derived by dividing -fall by -divide_fall.

Default: 50 (falling edge is halfway through the period)

-mode mode_name Defines a clock waveform for a mode.

-name string Specifies the name of the clock that is being defined.

Each clock object in your design must have a unique name. If
you define a new clock with the same name as an existing
clock, then the new clock replaces the old one.

The clock name allows you to search for the clock later (through
the find command) or to recognize it in reports.

Default: Name of the first pin or port object specified.

-period integer Determines, together with the -divide_period option, the
clock period interval. The clock period is specified in
picoseconds and is derived by dividing -period by
-divide_period.
July 2009 241 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following example defines a clock for a design with top module alu.

rc:/> define_clock -period 10000 -name 100MHz -design /designs/alu

The clock period is 10,000 picoseconds.

■ The following example defines a 300 MHz clock that applies to all sequential logic within
a design:

rc:/> define_clock -period 10000 -name 300MHz -divide_period 3 [clock_ports]

The clock period is 10,000/3 picoseconds. This allows RTL Compiler to compute that
there are exactly 3 periods of clock 300MHz to every period of 100MHz.

If you had specified a period of 3,333 picoseconds for the 300 MHz clock, RTL Compiler
would compute a different relationship between the clocks (3333 periods of one clock to
10000 periods of the other) and the timing analysis of the design would be different.

■ The following example defines clock 100MHz with a rising edge after 20 percent of the
period and a falling edge after 80 percent:

rc:/> define_clock -period 10000 -name 100MHz -rise 20 -fall 80

■ The following example defines clock 100MHz with the falling edge1/3 and the rising edge
2/3 of the way through the period:

rc:/> define_clock -period 10000 -name 100MHz -rise 2 -divide_rise 3 \
==> -fall 1 -divide_fall 3

Note: The -divide_rise and -divide_fall options allow you to precisely define
when the clock transitions occur. In some cases RTL Compiler needs this precise
definition to compute the correct timing constraints for paths that are launched by one
clock and captured by another.

{pin | port} Specifies the clock input pin or port.

You can apply clock waveforms to input ports of your design,
hierarchical pins, clock pins of sequential cells in your design, a
combination, or to no objects at all.

-rise integer Determines together with the -divide_rise option the time
that the rising edge occurs with respect to the beginning of the
clock period. The time is specified as a fraction of the period
and is derived by dividing -rise by -divide_rise.

Default: 0 (rising edge is at the start of the period)
July 2009 242 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
■ The following examples create a clock domain system and assign the original 100 MHz
and 300 MHz clocks to it:

rc:/> define_clock -domain "system" -period 10000 -name 100MHz

rc:/> define_clock -domain "system" -period 10000 -name 300MHz \
==> -divide_period 3 [clock_ports]

■ The following example saves the directory path to the clock that is defined in variable
clock1:

rc:/> set clock1 [define_clock -period 10000 -name 100MHz]

Alternatively, the find command can be used to perform a search at a later time.

■ The following example removes the clock whose definition you saved in variable clock1:

rc:/> rm $clock1

Note: When you remove a clock object, any external delays that reference it are also
removed. Timing exceptions referring to the clock object are also removed if they can't
be satisfied without the clock.

■ The following example searches for a clock object by name:

rc:/> find / -clock 100MHz

■ The following example examines the attributes of a clock object:

rc:/> ls -a [find / -clock 100MHz]

Note: The clock object is identified by its directory path.

Related Information

Defining the Clock Period in Setting Constraints and Performing Timing Analysis in
Encounter RTL Compiler.

Affects these commands: clock_ports on page 321

external_delay on page 248

multi_cycle on page 254

path_adjust on page 259

path_delay on page 263

path_disable on page 266

path_group on page 269

report clocks on page 347
July 2009 243 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
report qor on page 419

specify_paths on page 274

read_sdc on page 176

report clocks on page 347

report summary on page 435

report timing on page 437

synthesize on page 294

write_encounter on page 202

write_script on page 218

write_sdc on page 221

Related commands: create_mode on page 237

Affects these attributes: divide_fall

divide_period

divide_rise

fall

period

rise

propagated_clocks_by_mode
July 2009 244 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
define_cost_group

define_cost_group -name string
[-weight integer]
[-design design]

Defines a cost group. The command returns the directory path to the object that it creates.

Options and Arguments

Examples

The following example assigns a weight factor of 1 to cost group I2O for the top-level design.

rc:/> define_cost_group -name I2O -weight 1
/designs/.../timing/exceptions/path_groups/I20

Related Information

Creating Path Groups and Cost Groups in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler.

-design design Specifies the name of the design for which you want to define
the cost group.

-name string Specifies the name of the cost group.

Default: grp_x

-weight integer Specifies the weight of the cost group. The higher the weight
factor, the higher the effort used to optimize the paths in this
group.

Default: 1

Affects these commands: path_group on page 269

report timing on page 437

synthesize on page 294

write_script on page 218

Sets this attribute: weight
July 2009 245 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
derive_environment

derive_environment [-name string] [-sdc_only] instance

Creates a new design from the specified instance and creates timing constraints for all modes
for this design based on the timing constraints that the instance had in the original design.

This command does not perform time-budgeting. The slack at each pin in the new design
matches the slack at the corresponding pin in the original design.

Note: By default, the derive_environment command uses RTL Compiler’s more powerful
constraint language that produces a more accurate timing view, but is not understood by other
tools. Use the -sdc_only option to specify that RTL Compiler only apply constraints to the
new design that can be expressed in SDC.

If you use the derive_environment command to generate constraints for a subdesign
then try to write them out, often the constraints cannot be expressed in SDC and you will get
the following error message:

Error : The design contains constraints which have no SDC equivalent.[SDC-19]

: The design is /designs/Madd_addinc.

: If the design constraints were created using the ’derive_environment’
command, use the ’-sdc_only’ option so that only constraints that can be expressed
in SDC are generated. By default the ’derive_environment’command uses the more
powerful RC constaints, which cannot always be converted to SDC.

Options and Arguments

instance Specifies the name of the instance whose environment
(constraints) you want to derive.

-name string Specifies the name of the target design.

-sdc_only Specifies that the tool only apply constraints to the new design
that can be expressed in SDC.

Using this option makes the new constraints less accurate, but
makes it possible to use the constraints in flows between
different tools that support SDC.

By default, the derive_environment command uses RTL
Compiler’s more powerful constraint language that produces a
more accurate timing view, but is not understood by other tools.
July 2009 246 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Related Information

Affected by this command: path_adjust on page 259

create_mode on page 237

Affects these commands: report timing on page 437

synthesize on page 294

Sets this attribute: precluded_path_adjusts
July 2009 247 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
external_delay

external_delay
{-input min_rise min_fall max_rise max_fall
|-output min_rise min_fall max_rise max_fall}
[-clock object] [-edge_fall | -edge_rise]
[-level_sensitive] [-accumulate]
[-mode mode_name] [-name string] {port|pin}...

Constrains ports and pins within your design. Timing is specified as either an input or output
delay, and is specified relative to a clock edge.

External delays are most often specified on top-level ports of your design.

Options and Arguments

-accumulate Indicates that more than one external delay can be specified
per clock per phase.

-clock object Specifies the reference clock. Input and output delays are
defined relative to this clock.

For an input delay, the reference clock is called the launching
clock.

For an output delay, the reference clock is called the capturing
clock.

The reference clock must have been defined with the
define_clock command.

[-edge_rise | -edge_fall]

Specifies to use the rising or falling edge of the reference clock
as reference edge.

Default: -edge_rise
July 2009 248 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
-input min_rise min_fall max_rise max_fall

Specifies an input delay. That is the time between the reference
edge of the launching clock and the time when the input signal
at the specified ports or pins becomes stable.

You can specify one, two, or four integers. If you specify one
value, that value is used for all four delay values. If you specify
two values, the first value defines the (minimum and maximum)
rise delays, while the second value defines the (minimum and
maximum) fall delays.

The minimum rise (fall) delays are used for hold analysis.The
maximum rise (fall) delays are used for setup analysis.

Note: RTL Compiler does not support hold analysis.

The (minimum and maximum) rise delays are measured with
respect to the rising edge of the input signal.

The (minimum and maximum) fall delays are measured with
respect to the falling edge of the input signal.

-level_sensitive Used with the -input option, it specifies the constraint coming
from a level-sensitive latch.

Used with the -output option, it specifies the constraint to a
level-sensitive latch.

-mode mode_name Constrains ports and pins by mode in a design.

-name string Associates a name with the specified timing constraint. If
another timing constraint already exists with that name, the
existing timing constraint is replaced with the new one.

The name may be useful for later finding the constraint (with the
find command) and for recognizing the constraint in reports.

Default: xx_n
July 2009 249 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following example specifies an input delay of 300 picoseconds on all bits of port a
relative to the falling edge of clock clock1:

rc:/> external_delay -input 300 -edge_fall -clock [find / -clock clock1] \
[find / -port a*]

RTL Compiler interprets this as a worst-case upper bound constraint, that is, the latest
time to set up the data on a D pin of an edge-triggered flop.

Applying delays to individual bits of multibit ports or busses is possible since each bit of
a port is accessible individually within the directory structure of the design.

■ The following example specifies an output delay of 1300 picoseconds on all bits of port
a relative to the rising edge (default) of clock clock1:

rc:/> external_delay -output 1300 -clock [find / -clock clock1] \
[find / -port a*]

RTL Compiler interprets this as a minimum setup time for external logic.

-output min_rise min_fall max_rise max_fall

Specifies an external output delay. That is the delay between
the time when the output signal at the specified ports or pins
becomes stable and the reference edge of the capturing clock.

You can specify one, two, or four integers. If you specify one
value, that value is used for all four delay values. If you specify
two values, the first value defines the (minimum and maximum)
rise delays, while the second value defines the fall delays.

The minimum rise (fall) delays are used for hold analysis.The
maximum rise (fall) delays are used for setup analysis.

Note: RTL Compiler does not support hold analysis.

The (minimum and maximum) rise delays are measured with
respect to the rising edge of the output signal.

The (minimum and maximum) fall delays are measured with
respect to the falling edge of the output signal.

{pin | port} Specifies delay for timing startpoints and endpoints, which can
be primary ports, pins of sequential instances, and pins of
unresolved references.

Use the break_timing_paths attribute to make a
non-startpoint/endpoint a startpoint/endpoint, which then can
be used with the external_delay command.
July 2009 250 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Related Information

Setting Output Delays in Setting Constraints and Performing Timing Analysis in
Encounter RTL Compiler.

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affected by this command: define_clock on page 240

Affects these commands: report qor on page 419

report timing on page 437

synthesize on page 294

write_encounter on page 202

write_sdc on page 221

write_script on page 218

Related commands: create_mode on page 237

define_clock on page 240

derive_environment on page 246

multi_cycle on page 254

path_adjust on page 259

path_delay on page 263

path_disable on page 266

path_group on page 269

specify_paths on page 274

Affects these attributes: External Delay Attributes

Related attributes: (pin/port) external_delays_by_mode
July 2009 251 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
generate_constraints

generate_constraints [-rtl] [-netlist string]
[-slack integer] [-report string]
[-in_sdc string] [-out_sdc string]
[-trv] [-fpgen] [-dfpgen] [> file]

Verifies the false paths and multi-cycle paths in the SDC files against the RTL or netlist and
then generates any missing functional false paths or multi-cycle paths. The command can be
used any time after elaboration. If you do not specify either the -rtl, -netlist, or -in_sdc
options, RTL Compiler will internally generate the SDC constraints and verify them against
the design at its current state. RTL Compiler will generate any missing constraints.

Use this command in the False Path Generation, Directed False Path Generation, and Timing
Report Validation flows. Refer to The Generate Flow without Dofiles section in the
Validating and Generating Constraints chapter in the Interfacing Between Encounter
RTL Compiler and Conformal guide for more information on these flows.

Options and Arguments

-dfpgen Generates the false paths from Directed False Path Generation
flow.

file Specifies the name of the file to write the report.

-fpgen Generates the false paths from False Path Generation flow.

-in_sdc string Specifies the UNIX path to the SDC files.

-logfile string Creates a separate CCD logfile. You must specify the UNIX
path to the file.

-netlist string Specifies the UNIX path to the netlist.

-out_sdc string Specifies the name for the RTL Compiler generated SDC file.

Default: cfp.sdc

-report string Specifies the name of the timing report file to be generated for
the design. The file will be in the CCD format.

-rtl Indicates that the verification should happen against the RTL.

-slack integer Specifies a slack value in picoseconds. Only paths below this
slack value will be used for generating the timing report. This
must be used with the -report option.
July 2009 252 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following command generates the false path from the False Path Generation flow,
verifies against the RTL, specifies the input SDC file top.sdc, and specifies the output
SDC file top_out.sdc:

rc:/> generate_constraints -fpgen -rtl -in_sdc /home/test/top.sdc \
-out_sdc /home/cody/top_out.sdc

■ The following command generates the false path from the Directed False Path
Generation flow, verifies against the netlist generic.nl.v, specifies the input SDC file
top.sdc, specifies the slack (2 picoseconds), specifies the report name, and specifies
the output SDC file top_out.sdc:

rc:/> generate_constraints -dfpgen -netlist generic.nl.v -in_sdc top.sdc \
-report top_out.rep -slack 2 -out_sdc top_out.sdc

Related Information

-trv Generates the false paths from the Timing Report Validation
flow.

Affected by this attribute: wccd_threshold_percentage

Related command: validate_constraints on page 280
July 2009 253 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
multi_cycle

multi_cycle
{ {-from {instance|external_delay|clock|port|pin}...
|-through {instance|port|pin}...[-through...]...
|-to {instance|external_delay|clock|port|pin}...}...
|-paths string}

[-launch_shift integer] [-capture_shift integer]
[-setup] [-hold]
[-lenient] [-mode mode_name] [-name string]

Creates a timing exception object that overrides the default clock edge relationship for paths
that meet the path selection criteria. Paths can be selected using the -from, -through,
-to, or -paths options. You must provide at least one of these four options. The -paths
option cannot be used in conjunction with any of the other three path selection options. The
command returns the directory path to the object that it creates.

RTL Compiler normally computes timing constraints for paths based on the launching clock
waveforms and capturing clock waveforms. The default timing constraint is the smallest
positive difference that exists between a launching clock edge and a capturing clock edge.

Options and Arguments

-capture_shift integer

Specifies the capture clock shift value.

An ordinary two-cycle path would be specified using
-capture_shift 2. Incrementing the -capture_shift
value adds a cycle to the path by shifting the capture edge one
period later.

Default: 1

-hold Specifies that the exception is for hold timing analysis only.

Default: setup

-from {instance| external_delay| clock | port | pin}

Specifies a Tcl list of start points for the paths. The start points
can be input ports of your design, clock pins of flip-flops, clock
objects, a combination of these, instances, or input ports to
which the specified external delay timing exception applies.

Only paths that start at one of the ports or pins, or paths that
are launched by one of the clock objects will have the timing
exception applied to them.
July 2009 254 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
-launch_shift integer

Specifies the launch clock shift value. Incrementing the
-launch_shift value adds a cycle to the path by shifting the
launch edge one period earlier.

Adjusting the launch edge is only useful if the launch and
capture clocks have different periods. Otherwise an equivalent
timing relationship can be achieved by shifting the capture clock
instead.

Default: 0

-lenient Converts an invalid start or endpoint into a through point and
issues a warning message. Without this option, an invalid start
or endpoint results in an error message.

-mode mode_name Creates a timing exception object for a mode that overrides the
default clock edge relationship for paths that meet the path
selection criteria.

-name string Associates a name with the specified timing exception. If
another timing exception already exists with that name, the
existing timing exception is replaced with the new one.

The name can be useful for later finding the exception (with the
find command) and for recognizing the exception in reports.

Default: mc_n

-paths string Specifies the paths to which the exception should be applied.
The string argument should be created using the
specify_paths command. The -paths option cannot be
used in conjunction with any of the other three path selection
options (-from, -through, -to).

-setup Specifies that the exception is for setup timing analysis only.

Default: setup
July 2009 255 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following example requires a path to first pass through object a, then end on object b:

rc:/> multi_cycle -through a -to b

■ The following example requires a path to pass through either object a or b.

rc:/> multi_cycle -through {a b}

■ The following example requires a path to first pass through object a or b, then pass
through object c or d.

multi_cycle -through {a b} -through {c d}

The candidate paths would be:

ac ad bc bd

■ The following example requires a path that goes through object a, b, and c in that order:

rc:/> multi_cycle -through a -through b -through c

■ The following example uses a Tcl variable to save the timing exception for future
reference:

rc:/> set two_cycle [multi_cycle -capture_shift 2 -from [find / -port a]]

-through {instance | port | pin}

Specifies a Tcl list of a sequence of points that a path must
traverse. Points to traverse can be ports, hierarchical pins, pins
on a sequential/mapped combinational cells, or sequential/
mapped combinational instances.

You can repeat the -through option to require that a path first
must traverse one of the objects in the first set, then pass
through one of the objects in the second set, and so on.

-to {instance | external_delay | clock | port | pin}

Specifies a Tcl list of endpoints for the paths. The endpoints can
be output ports of your design, input pins of flip-flops, clock
objects, or a combination of these, instances, or output ports to
which the specified external delay timing exception applies.

Only paths that end at one of the ports or pins, or paths that are
captured by one of the clock objects, have the exception applied
to them.
July 2009 256 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
The following example removes the timing exception that you saved in the two_cycle
variable:

rc:/> rm $two_cycle

■ The following example searches for a timing exception that you defined earlier:

rc:/> multi_cycle -capture_shift 2 -from [find / -port a] -name two_cycle
/designs/alu/timing/exceptions/multi_cycles/two_cycle
...
...
rc:/> find / -exception two_cycle
/designs/alu/timing/exceptions/multi_cycles/two_cycle

■ The following example lists multi cycle timing exception objects using the ls command.

rc:/> ls -l timing/exceptions/multi_cycles

■ The following examples are equivalent and apply to paths starting from (clock) pin clk1:

multi_cycle -from clk1

multi_cycle -paths [specify_paths -from clk1]

Related Information

Setting Timing Exceptions in Setting Constraints and Performing Timing Analysis in
Encounter RTL Compiler.

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affects these commands: report qor on page 419

report timing on page 437

specify_paths on page 274

synthesize on page 294

write_encounter on page 202

write_sdc on page 221

write_script on page 218
July 2009 257 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Related commands: create_mode on page 237

define_clock on page 240

external_delay on page 248

path_adjust on page 259

path_delay on page 263

path_disable on page 266

path_group on page 269

specify_paths on page 274

Sets these attributes: Exception Attributes
July 2009 258 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
path_adjust

path_adjust -delay integer
{ {-from {instance|external_delay|clock|port|pin}...
|-through {instance|port|pin}...[-through...]...
|-to {instance|external_delay|clock|port|pin}...}...
|-paths string }

[-lenient] [-mode mode_name] [-name string]

Modifies path constraints. Paths can be selected using the -from, -through, -to, or
-paths options. You must provide at least one of these four options. The -paths option
cannot be used in conjunction with any of the other three path selection options.

These path constraints could have been

■ Computed by the timing engine using the launching and capturing waveforms

■ Set explicitly with the path_delay command

The command returns the directory path to the object that it creates.

The constraints specified with the path_adjust command can co-exist with other timing
exceptions, such as path_delay, multi_cycle, as well as path_adjust (it is possible
to have multiple path_adjust constraints on a path).

The constraints created by the path_adjust commands can be found in:

/designs/../timing/exceptions/path_adjusts

Options and Arguments

-delay integer Specifies the delay constraint value, in picoseconds, by which
the path has to be adjusted. A positive adjustment relaxes the
clock constraint and a negative adjustment tightens it.

-from {instance| external_delay | clock | port | pin}

Specifies a Tcl list of start points for the paths. The start points
can be input ports of your design, clock pins of flip-flops, clock
objects, a combination of these, instances, or input ports to
which the specified external delay timing exception applies.

Only paths that start at one of the ports or pins, or paths that
are launched by one of the clock objects will have the timing
exception applied to them.
July 2009 259 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
-lenient Converts an invalid start or endpoint into a through point and
issues a warning message. Without this option, an invalid start
or endpoint results in an error message.

-mode mode_name Modifies path constraints for a specified mode.

-name string Associates a name with the specified timing exception. If
another timing exception already exists with that name, the
existing timing exception is replaced with the new one.

The name may be useful for later finding the exception (with the
find command) and for recognizing the exception in reports.

Default: adj_n

-paths string Specifies the paths to which the exception should be applied.
The string argument should be created using the
specify_paths command. The -paths option cannot be
used in conjunction with any of the other three path selection
options (-from, -through, -to).

-through {instance | port | pin}

Specifies a Tcl list of a sequence of points that a path must
traverse. Points to traverse can be ports, hierarchical pins, pins
on a sequential/mapped combinational cells, or sequential/
mapped combinational instances.

You can repeat the -through option to require that a path first
must traverse one of the objects in the first set, then pass
through one of the objects in the second set, and so on.

-to {instance | external_delay | clock | port | pin}

Specifies a Tcl list of endpoints for the paths. The endpoints can
be output ports of your design, input pins of flip-flops, clock
objects, or a combination of these, instances, or output ports to
which the specified external delay timing exception applies.

Only paths that end at one of the ports or pins, or paths that are
captured by one of the clock objects, have the exception applied
to them.
July 2009 260 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following example removes the timing exception that you saved in the override
variable:

rc:/> set override [path_adjust -to $clock -delay -500]

rc:/> rm $override

■ The following example searches for a timing exception that you defined earlier:

rc:/> path_adjust -to $clock -delay -500 -name override
/designs/alu/timing/exceptions/path_adjusts/override
...
rc:/> find / -exception override
/designs/alu/timing/exceptions/path_adjusts/override

■ The following examples are equivalent and apply to paths starting from (clock) pin clk1:

path_adjust -from clk1

path_adjust -paths [specify_paths -from clk1]

Related Information

Modifying Path Constraints in Setting Constraints and Performing Timing Analysis in
Encounter RTL Compiler.

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affects these commands: report timing on page 437

report qor on page 419

report timing on page 437

specify_paths on page 274

synthesize on page 294

write_script on page 218

write_encounter on page 202

write_sdc on page 221

write_script on page 218
July 2009 261 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Related commands define_clock on page 240

external_delay on page 248

multi_cycle on page 254

path_delay on page 263

path_disable on page 266

path_group on page 269

specify_paths on page 274

Sets these attributes: Exception Attributes
July 2009 262 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
path_delay

path_delay -delay integer
{ {-from {instance|external_delay|clock|port|pin}...
|-through {instance|port|pin}...[-through...]...
|-to {instance|external_delay|clock|port|pin}...}...
|-paths string}

[-lenient] [-mode mode_name] [-name string]

Creates a timing exception object that allows you to specify the timing constraint for paths that
meet the path selection criteria. Paths can be selected using the -from, -through, -to, or
-paths options. You must provide at least one of these four options. The -paths option
cannot be used in conjunction with any of the other three path selection options. The
command returns the directory path to the object that it creates.

RTL Compiler normally computes timing constraints for paths based on the launching clock
waveforms and capturing clock waveforms. The default timing constraint is the smallest
positive difference that exists between a launching clock edge and a capturing clock edge.

The constraints created by the path_delay commands can be found in:

/designs/../timing/exceptions/path_delays

Options and Arguments

-delay integer Specifies the delay constraint value, in picoseconds, for paths
that meet the path selection criteria.

-from {instance | external_delay | clock | port | pin}

Specifies a Tcl list of start points for the paths. The start points
can be input ports of your design, clock pins of flip-flops, clock
objects, a combination of these, instances, or input ports to
which the specified external delay timing exception applies.

Only paths that start at one of the ports or pins, or paths that
are launched by one of the clock objects will have the timing
exception applied to them.

-lenient Converts an invalid start or endpoint into a through point and
issues a warning message. Without this option, an invalid start
or endpoint results in an error message.

-mode mode_name Creates a timing exception object for the specified mode that lets
you specify the timing constraint for paths that meet the path
selection criteria.
July 2009 263 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following example specifies a path delay of 5000 ps for all paths starting from port a.

rc:/> path_delay -delay 5000 -from [find / -port a]

-name string Associates a name with the specified timing exception. If
another timing exception already exists with that name, the
existing timing exception is replaced with the new one.

The name may be useful for later finding the exception (with the
find command) and for recognizing the exception in reports.

Default: del_n

-paths string Specifies the paths to which the exception should be applied.
The string argument should be created using the
specify_paths command. The -paths option cannot be
used in conjunction with any of the other three path selection
options (-from, -through, -to).

-through {instance | port | pin}

Specifies a Tcl list of a sequence of points that a path must
traverse. Points to traverse can be ports, hierarchical pins, pins
on a sequential/mapped combinational cells, or sequential/
mapped combinational instances.

You can repeat the -through option to require that a path first
must traverse one of the objects in the first set, then pass
through one of the objects in the second set, and so on.

-to {instance | external_delay | clock | port | pin}

Specifies a Tcl list of endpoints for the paths. The endpoints can
be output ports of your design, input pins of flip-flops, clock
objects, or a combination of these, instances, or output ports to
which the specified external delay timing exception applies.

Only paths that end at one of the ports or pins, or paths that are
captured by one of the clock objects, have the exception applied
to them.
July 2009 264 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
■ The following command defines path delay my_delay of 4000ps for all paths ending at
port b.

rc:/> path_delay -delay 4000 -to [find / -port b] -name my_delay
/designs/alu/timing/exceptions/path_delays/my_delay

The following command searches for the timing exception my_delay defined earlier:

rc:/> find / -exception my_delay
/designs/alu/timing/exceptions/path_delays/my_delay

■ The following examples are equivalent and define a path delay for all paths starting from
(clock) pin clk1:

path_delay -from clk1

path_delay -paths [specify_paths -from clk1]

Related Information

Modifying Path Constraints in Setting Constraints and Performing Timing Analysis in
Encounter RTL Compiler.

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affects these commands: report qor on page 419

report timing on page 437

specify_paths on page 274

synthesize on page 294

write_script on page 218

write_sdc on page 221

Related commands: create_mode on page 237

define_clock on page 240

external_delay on page 248

multi_cycle on page 254

path_adjust on page 259

path_disable on page 266

path_group on page 269

specify_paths on page 274

Sets these attributes: Exception Attributes
July 2009 265 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
path_disable

path_disable
{ {-from {instance|external_delay|clock|port|pin}...
|-through {instance|port|pin}...[-through...]...
|-to {instance|external_delay|clock|port|pin}...}...
|-paths string}

[-lenient] [-mode mode_name] [-name string]

Creates a timing exception object that allows you to unconstrain paths. The command returns
the directory path to the object that it creates. Paths can be selected using the -from,
-through, -to, or -paths options. You must provide at least one of these four options. The
-paths option cannot be used in conjunction with any of the other three path selection
options.

RTL Compiler computes timing constraints for paths based on the launching clock waveforms
and the capturing clock waveforms. The default timing constraint is the smallest positive
difference that exists between a launching clock edge and a capturing clock edge.

Options and Arguments

-from {instance | external_delay | clock | port | pin}

Specifies a Tcl list of start points for the paths. The start points
can be input ports of your design, clock pins of flip-flops, clock
objects, a combination of these, instances, or input ports to
which the specified external delay timing exception applies.

Only paths that start at one of the ports or pins, or paths that
are launched by one of the clock objects will have the timing
exception applied to them.

-lenient Converts an invalid start or endpoint into a through point and
issues a warning message. Without this option, an invalid start
or endpoint results in an error message.

-mode mode_name Creates a timing exception object for the specified mode that lets
you unconstrain paths.
July 2009 266 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following example uses a Tcl variable to save the timing exception for future
reference:

rc:/> set false_path [path_disable -from [find / -port a]]

■ The following example removes the timing exception that you saved in variable
false_path:

rc:/> rm $false_path

-name string Associates a name with the specified timing exception. If
another timing exception already exists with that name, the
existing timing exception is replaced with the new one.

The name may be useful for later finding the exception (with the
find command) and for recognizing the exception in reports.

Default: dis_n

-paths string Specifies the paths to which the exception should be applied.
The string argument should be created using the
specify_paths command. The -paths option cannot be
used in conjunction with any of the other three path selection
options (-from, -through, -to).

-through {instance | port | pin}

Specifies a Tcl list of a sequence of points that a path must
traverse. Points to traverse can be ports, hierarchical pins, pins
on a sequential/mapped combinational cells, or sequential/
mapped combinational instances.

You can repeat the -through option to require that a path first
must traverse one of the objects in the first set, then pass
through one of the objects in the second set, and so on.

-to {instance | external_delay | clock | port | pin}

Specifies a Tcl list of endpoints for the paths. The endpoints can
be output ports of your design, input pins of flip-flops, clock
objects, or a combination of these, instances, or output ports to
which the specified external delay timing exception applies.

Only paths that end at one of the ports or pins, or paths that are
captured by one of the clock objects, have the exception applied
to them.
July 2009 267 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
■ The following example lists timing exception objects using the ls command.

rc:/> ls -l timing/exceptions/path_disables

■ The following examples are equivalent and apply to paths starting from (clock) pin clk1:

path_disable -from clk1

path_disable -paths [specify_paths -from clk1]

Related Information

Specifying a False Path in Setting Constraints and Performing Timing Analysis in
Encounter RTL Compiler.

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affects these commands: report qor on page 419

report timing on page 437

specify_paths on page 274

synthesize on page 294

write_encounter

write_script on page 218

write_sdc on page 221

Affected by these commands: define_clock on page 240

multi_cycle on page 254

Related commands: create_mode on page 237

define_clock on page 240

external_delay on page 248

path_adjust on page 259

path_delay on page 263

path_group on page 269

specify_paths on page 274

Sets these attributes: Exception Attributes
July 2009 268 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
path_group

path_group
{{-from {instance|external_delay|clock|port|pin}...
|-through {instance|port|pin}...[-through...]...
|-to {instance|external_delay|clock|port|pin}...}...
|-paths string}
[-group string]
[-lenient] [-mode mode_name] [-name string]

Assigns paths that meet the path selection criteria to a cost group. Paths can be selected
using the -from, -through, -to, or -paths options. You must provide at least one of these
four options. The -paths option cannot be used in conjunction with any of the other three
path selection options.

Options and Arguments

-from {instance | external_delay | clock | port | pin}

Specifies a Tcl list of start points for the paths. The start points
can be input ports of your design, clock pins of flip-flops, clock
objects, a combination of these, instances, or input ports.

-group string Specifies the name of the cost group (defined with
define_cost_group) to which the path is added.

-lenient Converts an invalid start or endpoint into a through point and
issues a warning message. Without this option, an invalid start
or endpoint results in an error message.

-mode mode_name Assigns paths for a specified mode that meet the path selection
criteria to a cost group.

-name string Associates a name with the specified timing exception.

-paths string Specifies the paths to which the exception should be applied.
The string argument should be created using the
specify_paths command. The -paths option cannot be
used in conjunction with any of the other three path selection
options (-from, -through, -to).
July 2009 269 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following example assigns the paths from all inputs to all outputs to the group called
I2O, which was previously defined by a define_cost_group command:

path_group -from /designs/*/ports_in/* -to /designs/*/ports_out/* -group I2O

■ The following examples are equivalent and apply to paths starting from (clock) pin clk1:

path_group -from clk1

path_group -paths [specify_paths -from clk1]

Related Information

Creating Path Groups and Cost Groups in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler.

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

-through {instance | port | pin}

Specifies a Tcl list of a sequence of points that a path must
traverse. Points to traverse can be ports, hierarchical pins, pins
on a sequential/mapped combinational cells, or sequential/
mapped combinational instances.

You can repeat the -through option to require that a path first
must traverse one of the objects in the first set, then pass
through one of the objects in the second set, and so on.

-to {instance | external_delay | clock | port | pin}

Specifies a Tcl list of endpoints for the paths. The endpoints can
be output ports of your design, input pins of flip-flops, clock
objects, or a combination of these, instances, or output ports.

Affects these commands: define_cost_group on page 245

report qor on page 419

report timing on page 437

specify_paths on page 274

synthesize on page 294
July 2009 270 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
write_encounter on page 202

write_script on page 218

write_sdc on page 221

Related commands: create_mode on page 237

define_clock on page 240

external_delay on page 248

multi_cycle on page 254

path_adjust on page 259

path_delay on page 263

path_disable on page 266

specify_paths on page 274

Sets these attributes: Exception Attributes
July 2009 271 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
propagate_constraints

propagate_constraints
-block_sdc string
[-glue_sdc string]
[-partial_chip_sdc string]
[-out_sdc string] [-netlist string]
[-rule_instance_file string]
[-rule_instance_template string]
[-logfile string] [> file]

Propagates the block-level constraints to the top-level and integrates them to generate a
chip-level constraints. Propagating and integrating of the design constraints requires to
analyze the provided block-level and glue constraints, and to check them against any existing
chip-level constraints to determine whether to ignore or promote them to the top-level.

Options and Arguments

-block_sdc string Specifies a list of block names with their associated block-level
SDC files in the following format:

{{block_name block_sdc_file}...}

Note: You need to specify the path to the SDC files. If the paths
contain Tcl variables, use the format shown in the Examples on
page 273.

file Specifies the file to which the report must be written.

-glue_sdc string Specifies the name of a glue SDC file. This file contains a set of
constraints for the top-level module only (without covering any
block-level constraints).

-logfile string Creates a separate CCD logfile. You must specify the UNIX
path to the file.

-netlist string Specifies the UNIX path to the netlist. By default, the tool uses
the RTL.

-out_sdc string Specifies the name of the constraints file that is generated after
propagation and integration of the block and glue constraints.

Default: chip.sdc

-partial_chip_sdc string

Specifies the name of the partial SDC file that corresponds to
the top-level of the design.
July 2009 272 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following command creates a top-level SDC file, chip.sdc, which integrates the
block-level SDC files i1.sdc and i2.sdc.

rc:/> propagate_constraints -block_sdc {{i1 i1.sdc} {i2 i2.sdc}}

The internally generated CCD dofile will be similar to:

read library -statetable -liberty ./tech/slow.lib

add search path -design .

read design -verilog ./ti1.v -lastmod -noelab

elaborate design

dofile ./default_rule_instances.do

read hierarchical sdc \
-sdc_design i1 i1.sdc \
-sdc_design i2 i2.sdc

set system mode verify

integrate -all ./chip.sdc -replace

report rule check

report environment

■ The following example shows the use of Tcl variables to specify the paths to the SDC
files:

propagate_constraints -block_sdc "{block1 $WORKINGDIR/block1.sdc} \
{block2 $WORKINGDIR/block2.sdc} ..."

or

propagate_constraints -block_sdc [list \
[list block1 ${WORKINGDIR}/block1.sdc] \
[list block2 ${WORKINGDIR}/block2.sdc] \] ...

-rule_instance_file string

Specifies the name of the file which defines the rule instances
for the Encounter ® Conformal ® Constraint Designer (CCD)
tool.

-rule_instance_template string

Creates a template with the default rules. You can modify this
file according to the design. To use this file as input for the
Encounter ® Conformal ® Constraint Designer (CCD) tool,
specify the file as value of the -rule_instance_file option.
July 2009 273 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
specify_paths

specify_paths [-mode mode_name] [-domain clock_domain]
[-from {pin|port|clock|external_delay|instance}...
| -from_rise_clock {pin|port|clock|external_delay|instance}...
| -from_fall_clock {pin|port|clock|external_delay|instance}...
| -from_rise_pin {pin|port|clock|external_delay|instance}...
| -from_fall_pin {pin|port|clock|external_delay|instance}...]
[-through {pin|port|instance}...
| -through_rise_pin {pin|port|instance}...
| -through_fall_pin {pin|port|instance}...] ...
[-to {pin|port|clock|external_delay|instance}... |
| -to_rise_clock {pin|port|clock|external_delay|instance}...
| -to_fall_clock {pin|port|clock|external_delay|instance}...
| -to_rise_pin {pin|port|clock|external_delay|instance}...
| -to_fall_pin {pin|port|clock|external_delay|instance}...]
[-capture_clock_pins pin...
| -capture_clock_pins_rise_clock pin...
| -capture_clock_pins_fall_clock pin...
| -capture_clock_pins_rise_pin pin...
| -capture_clock_pins_fall_pin pin...]
[-lenient]

Creates a string that indicates the path of a particular timing exception. You must use the
specify_paths command as an argument to the -paths option in any of the timing
exception commands. Paths can be selected using the -from, -through, -to, or -paths
options. You must provide at least one of these three options.

The specify_paths command gives you more detailed control when specifying timing
exceptions than the -from, -through, -to options in these timing exceptions could
provide.

Options and Arguments

-capture_clock_pins pin

Specifies a Tcl list of sequential clock pins that capture data.
This option can be useful with complex sequential cells such as
RAMs that have multiple clock pins.

-capture_clock_pins_fall_clock pin

Specifies a Tcl list of sequential clock pins that capture data at
the falling edge of the ideal clock waveform. This option can be
useful with complex sequential cells such as RAMs that have
multiple clock pins.
July 2009 274 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
-capture_clock_pins_fall_pin pin

Specifies a Tcl list of sequential clock pins that capture data at
the fall transitions of the specified sequential clock pin. This
option can be useful with complex sequential cells such as
RAMs that have multiple clock pins.

-capture_clock_pins_rise_clock pin

Specifies a Tcl list of sequential clock pins that capture data at
the rising edge of the ideal clock waveform.

-capture_clock_pins_rise_pin pin

Specifies a Tcl list of sequential clock pins that capture data at
the rise transitions of the specified sequential clock pin.

-domain clock_domain

Specifies a clock domain the paths should be restricted to.

-from {pin | port | clock | external_delay | instance}

Specifies a Tcl list of start points for the paths. The start points
can be input ports of your design, clock pins of flip-flops, clock
objects, a combination of these, instances, or input ports to
which specified external delay timing exceptions apply.

Also, if you specify both the -from option on an enable pin of a
latch and the -lenient option, the paths starting on the D pin
will also be included in the timing exception.

-from_fall_clock {pin | port | clock | external_delay | instance}

Specifies a Tcl list of start points for the paths. The paths are
restricted to launch at the falling edge of an ideal clock
waveform. The start points can be input ports of your design,
clock pins of flip-flops, clock objects, a combination of these,
instances, or input ports to which specified external delay timing
exceptions apply.

-from_fall_pin {pin | port | clock | external_delay | instance}

Specifies a Tcl list of start points for the paths. The paths are
restricted to fall transitions at the start points. The start points
can be input ports of your design, clock pins of flip-flops, clock
objects, a combination of these, instances, or input ports to
which specified external delay timing exceptions apply.
July 2009 275 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
-from_rise_clock {pin | port | clock | external_delay | instance}

Specifies a Tcl list of start points for the paths. The paths are
restricted to launch at the rising edge of an ideal clock
waveform. The start points can be input ports of your design,
clock pins of flip-flops, clock objects, a combination of these,
instances, or input ports to which specified external delay timing
exceptions apply.

-from_rise_pin {pin | port | clock | external_delay | instance}

Specifies a Tcl list of start points for the paths. The paths are
restricted to rise transitions at the start points. The start points
can be input ports of your design, clock pins of flip-flops, clock
objects, a combination of these, instances, or input ports to
which specified external delay timing exceptions apply.

-lenient Also, if you specify both the -from option on an enable pin of a
latch and the -lenient option, the paths starting on the D pin
will also be included in the timing exception.

If a -from option is provided that is not a valid startpoint or a
-to option is provided that is not a valid endpoint, then a
warning is issued but the rest of the command succeeds. These
invalid points are stored in the exception, but will not affect
timing analysis results. A warning is also issued when using the
report timing -lint command in this situation.

-mode mode_name Indicates the path of a particular timing exception for a specified
mode.

-through {pin | port | instance}

Specifies a Tcl list of points that a path must traverse. Points to
traverse can be ports, hierarchical pins, pins on a sequential/
mapped combinational cells, or sequential/mapped
combinational instances.

You can repeat the -through option to require that a path first
must traverse one of the objects in the first set, then pass
through one of the objects in the second set, and so on.
July 2009 276 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
-through_fall_pin {pin | port | instance}

Specifies a Tcl list of points that a path must traverse. The path
is restricted to fall transitions at the indicated points. Points to
traverse can be ports, hierarchical pins, pins on a sequential/
mapped combinational cells, or sequential/mapped
combinational instances.

You can repeat the -through option to require that a path first
must traverse one of the objects in the first set, then pass
through one of the objects in the second set, and so on

-through_rise_pin {pin | port | instance}

Specifies a Tcl list of points that a path must traverse. The path
is restricted to rise transitions at the indicated points. Points to
traverse can be ports, hierarchical pins, pins on a sequential/
mapped combinational cells, or sequential/mapped
combinational instances.

You can repeat the -through option to require that a path first
must traverse one of the objects in the first set, then pass
through one of the objects in the second set, and so on

-to {pin | port | clock | external_delay | instance}

Specifies a Tcl list of endpoints for the paths. The endpoints can
be output ports of your design, input pins of flip-flops, clock
objects, or a combination of these, instances, or output ports to
which specified external delay timing exceptions apply.

-to_fall_clock {pin | port | clock | external_delay | instance}

Specifies a Tcl list of endpoints for the paths. The paths are
restricted to capture at the falling edge of an ideal clock
waveform. The endpoints can be output ports of your design,
input pins of flip-flops, clock objects, or a combination of these,
instances, or output ports to which specified external delay
timing exceptions apply.

-to_fall_pin {pin | port | clock | external_delay | instance}

Specifies a Tcl list of endpoints for the paths. The paths are
restricted to fall transitions at the endpoints. The endpoints can
be output ports of your design, input pins of flip-flops, clock
objects, or a combination of these, instances, or output ports to
which specified external delay timing exceptions apply.
July 2009 277 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Examples

■ The following example specifies the paths for the path_disable timing exception, by
specifying a clock pin as startpoint without any other restrictions:

rc:/> path_disable -paths [specify_paths -from clk1]

■ The following example creates a group containing paths that are launched by clock clk1
and which start with a rise pin transition at their startpoint:

rc:/> path_group -paths [specify_paths -from_rise_pin clk1] -group I20

■ The following example uses the -to_fall_clock option with a pin object:

rc:/> path_disable -paths [specify_paths -to_fall_clock ff1/D]

The above example specifies that the path_disable command should be applied to
paths that end at pin ff1/D and are captured by a falling edge of an ideal clock
waveform.

■ Consider an input pin of a RAM that has setup arcs from both pin CK1 and CK2. The
following example applies a timing exception to paths using the setup arcs from CK1, but
not to paths using the setup arcs from CK2:

rc:/> path_disable -paths [specify_paths -capture_clock_pins RAM/CK1]

-to_rise_clock {pin | port | clock | external_delay | instance}

Specifies a Tcl list of endpoints for the paths. The paths are
restricted to capture at the rising edge of an ideal clock
waveform. The endpoints can be output ports of your design,
input pins of flip-flops, clock objects, or a combination of these,
instances, or output ports to which specified external delay
timing exceptions apply.

-to_rise_pin {pin | port | clock | external_delay | instance}

Specifies a Tcl list of endpoints for the paths. The paths are
restricted to rise transitions at the endpoints. The endpoints can
be output ports of your design, input pins of flip-flops, clock
objects, or a combination of these, instances, or output ports to
which specified external delay timing exceptions apply.
July 2009 278 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Related Information

Specifying Timing Exceptions in Setting Constraints and Performing Timing Analysis in
Encounter RTL Compiler.

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affects these commands: multi_cycle on page 254

path_adjust on page 259

path_delay on page 263

path_disable on page 266

path_group on page 269

report qor on page 419

report timing on page 437

write_encounter on page 202

write_script on page 218

write_sdc on page 221

Related commands: create_mode on page 237

define_clock on page 240

external_delay on page 248

Affects this attribute: paths
July 2009 279 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
validate_constraints

validate_constraints [-rtl] [-netlist string]
[-init_sequence_file string] [-sdc string]
[-logfile file] [> file]

Validates the SDCs specified in the SDC files against the RTL or netlist. The command can
be used any time after elaborating the design. If you do not specify either the -rtl,
-netlist, or -sdc options, RTL Compiler will validate the internally generated constraints
against the design at its current state.

Use this command in the False Path and Multi-cycle Path validation flows. Refer to The
Validate Flow with Dofiles section in the Validating and Generating Constraints chapter
in the Interfacing Between Encounter RTL Compiler and Conformal guide for more
information on these flows.

Options and Arguments

Examples

■ The following command validates the SDCs in the top.sdc file against the RTL:

rc:/> validate_constraints -rtl -sdc /home/test/top.sdc

■ The following command validates the generic.nl.v netlist against the lane.sdc:

rc:/> validate_constraints -netlist /home/cody/design/netlist.nl.v \
-sdc /home/cody/lane.sdc

file Specifies the name of the file to write the report.

-init_sequence_file string

Specifies the UNIX path to the initialization sequence file for
MCP validation.

-logfile string Creates a separate CCD logfile. You must specify the UNIX
path to the file.

-netlist string Specifies the UNIX path to the netlist. This option also indicates
that the validation should happen against the netlist (as
opposed to the RTL).

-rtl Indicates that the validation should happen against the RTL (as
opposed to the netlist).

-sdc string Specifies the UNIX path to the SDC files.
July 2009 280 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
Related Information

Related command: generate_constraints on page 252
July 2009 281 Product Version 9.1

Command Reference for Encounter RTL Compiler
Constraints
July 2009 282 Product Version 9.1

Command Reference for Encounter RTL Compiler
7
Elaboration and Synthesis

■ elaborate on page 284

■ remove_assigns_without_optimization on page 286

■ remove_inserted_sync_enable_logic on page 288

■ retime on page 289

■ set_remove_assign_options on page 291

■ synthesize on page 294
July 2009 283 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
elaborate

elaborate [-parameters string] [top_module_name]...
[-libpath path]... [-libext extension]...

Creates a design from a Verilog module or from a VHDL entity and architecture. Undefined
modules and VHDL entities are labeled “unresolved” and treated as blackboxes.

The command returns the directory path to the top-level design(s) that it creates.

Note: Before elaborating a design, load your library using the library attribute and load
your design using the read_hdl command into the rc shell.

Options and Arguments

-libext extension Specifies the extension of the Verilog library files.

Note: User-specified extensions overwrite the default
extensions.

Default: .v and .V

-libpath path Specifies the search path to be used to look for unresolved
Verilog module instances.

You can specify a relative path with respect to the working
directory (.) or an absolute path.

Note: ~ is currently not supported.

module Specifies the name of the top-level module to elaborate.

If module is not specified, all top-level modules are elaborated.

Note: When reading in a structural file using the read_hdl
-netlist command, use this option to specify the top module
name.

-parameters string

Changes the values of Verilog parameters or VHDL generics
that are used within the top level code to the specified values.

Specify the new values in the same sequence as the parameter
definitions appear in the code to ensure proper substitution
during elaboration.
July 2009 284 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
Examples

■ In the following example, the top-level code contains the following parameters in this
order:

parameter data_width1 = 8 ;
parameter data_width2 = 12 ;
parameter averg_period = 4 ;

The following command changes data_width1 to 14, data_width2 to 12, and
averg_period to 8 during elaboration:

rc:/>elaborate -parameters {14 12 8} TOP

■ The following example reads in file top.v which has an instance of module sub, but file
top.v does not contain a description of module sub.

set_attr hdl_search_path { ../src ../incl }

elaborate -libpath ../mylibs -libpath /home/verilog/libs -libext ".h"
-libext ".v" top.v

The latter command is equivalent to

elaborate -libpath { ../mylibs /home/verilog/libs } -libext { ".h" ".v" } top.v

First, elaborate looks for the top.v file in the directories specified through the
hdl_search_path attribute. After top.v is parsed, elaborate looks for undefined
modules (such as sub) in the directories specified through the -libpath option. First,
the tool looks for a file that corresponds to the name of the module appended by the first
specified file extension (sub.h). Next, it looks for a file that corresponds to the name of
the module appended by the next specified file extension (sub.v), and so on.

Related Information

You can specify a parameter positionally, as an integer in the
parameter list, or by name, as a two-element Tcl list. The first
element is the name and the second element is the value. For
example, you can do either:

■ elaborate -parameters {5 10}

elaborate -parameters {{width 5} {depth 10}}

Affected by this command: read_hdl on page 168

Affected by this attribute: library
July 2009 285 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
remove_assigns_without_optimization

remove_assigns_without_optimization
[-buffer_or_inverter <libcell>]
 [-ignore_preserve_map_size_ok]
[-ignore_preserve_setting]
[-respect_boundary_optimization]
[-preserve_dangling_nets]
[-skip_unconstrained_paths]
[-verbose]
[-design {subdesign|design}]

Controls the aspects of the replacement of assign statements in the design with buffers or
inverters without performing incremental optimization.

To avoid incremental optimization when removing assign statements, make sure that the
remove_assigns attribute is set to false, and specify this command after synthesis.

Options and Arguments

-buffer_or_inverter libcell

Specifies the buffer or inverter to be used to replace the
assign statements. The specified cell must be part of a library
that was loaded.

If this option is omitted, RTL Compiler will determine which
buffers or inverters to insert. If a particular library domain does
not have any buffers or inverters, no buffers or inverters will be
added in that domain. However, buffers or inverters will be
added in other domains depending on availability.

-design {design | subdesign}

Indicates that the specified command options apply to the
specified design or subdesign. If neither is specified, the
options apply to the entire design.

-ignore_preserve_map_size_ok

Allows assign statements in the module to be removed if the
preserve attribute on the module is set to map_size_ok.
July 2009 286 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
Related Information

-ignore_preserve_setting

Allows assign statements in the module to be removed
independent of the setting of the preserve attribute on the
module.

-no_buffers_use_inverters

Specifies to search for inverters and to use them in case the
library or library domain does not have any buffers. If buffers
exist they will be used, irrespective of whether the library has
inverters or not.

-preserve_dangling_nets

Specifies to preserve a net that is driven by a buffer or inverter
that is inserted when assign statements are replaced and if that
net does not have a fanout in the next level of hierarchy and was
not driven by a constant before adding the buffer or inverter.

-respect_boundary_optimization

Prevents RTL Compiler from looking beyond the boundary of
the subdesign, when considering subports driven by constants,
if the boundary_opto attribute on the subdesign was set to
false.

-skip_unconstrained_paths

Prevents RTL Compiler from removing assigns on
unconstrained paths. These paths can be paths driven by a
constant, false paths with assigns, or paths without any timing
constraints.

-verbose Displays all messages during assign removal.

Affected by this attribute: remove_assigns
July 2009 287 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
remove_inserted_sync_enable_logic

remove_inserted_sync_enable_logic [> file]

Removes timing critical synchronous enable logic from flops.

Tools like PowerPro™ from Calypto™ can insert synchronous enable logic for sequential
clock-gating in the RTL code and write out optimized RTL. However if the synchronous enable
logic is inserted on a timing critical path, RTL Compiler can remove the synchronous enable
logic to improve overall timing of the design.

Use the remove_inserted_sync_enable_logic command after mapping and before
incremental or after incremental optimization.

By disconnecting the synchronous enable, some sequential instances can become unloaded.
Run incremental optimization (synthesize -incremental) to remove these unloaded
sequential instances.

Options and Arguments

Related Information

file Specifies the name of the file to which RTL Compiler must write
the list of flops from which the synchronous enable pins were
removed.

Related command: synthesize on page 294
July 2009 288 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
retime

retime [-prepare] [-min_area] [-min_delay]
[-effort {medium | low | high}]
[design | subdesign]...

Improves the performance of the design by either optimizing the area or the clock period
(timing) of the design. If no option is specified, the -min_delay option is implied.
Optimization is realized through appropriately moving registers. The area optimization will not
be done at the expense of timing. That is, optimizing the area will not degrade the timing.

Options and Arguments

design|subdesign Specifies the name of the design or subdesign you want to
retime.

-effort {medium | low | high}

The effort levels are only available for the min_delay option.

■ high — RTL Compiler consumes as much time as
necessary to provide the optimum timing solution.

■ low — Provides a rough retiming estimate. This effort level
provides the quickest results among the three effort levels.

■ medium — Provides results that are approximately within
1% of the optimum solution.

Default: medium

-min_area Optimizes the design for area by minimizing the number of
registers without degrading the critical path in the design.

-min_delay Optimizes the design for timing. For the best results, you should
first issue the retime -prepare command separately before
issuing the retime -min_delay command.

-prepare Prepares the design for retiming and then synthesizes the
design. Specifically, the retime -prepare command
prepares the design by constraining paths according to the path
delays through registers (from inputs to outputs) as opposed to
register to register. There is no need to separately issue the
synthesize command after issuing the retime -prepare
command.
July 2009 289 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
Examples

■ The following example retimes the design to optimize for timing:

...

rc:/> retime -prepare
rc:/> retime -min_delay
...

Related Information

Related command: synthesize on page 294

Affected by these attributes: dont_retime

retime

retime_async_reset

retime_effort_level

retime_hard_region

retime_move_mux_loop_with_reg

retime_optimize_reset

Related attributes: retime_original_registers

retime_reg_naming_suffix

retime_verification_flow

trace_retime
July 2009 290 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
set_remove_assign_options

set_remove_assign_options
[[-buffer_or_inverter libcell]
[-no_buffers_use_inverters]
[-ignore_preserve_setting]
[-ignore_preserve_map_size_ok]
[-preserve_dangling_nets]
[-respect_boundary_optimization]
[-skip_unconstrained_paths] [-verbose]

| -reset]
[-design {design | subdesign}]

Controls the aspects of the replacement of assign statements in the design with buffers or
inverters, which is controlled by the remove_assigns root attribute. The actual replacement
happens during the next incremental optimization run.

The replacement of assign statements is performed

■ Only on the objects (design or subdesigns) specified with the -design option

■ Only once during each incremental optimization run operation

If your script contains multiple occurrences of the set_remove_assign_options
command with different settings for the same object, the last settings before the next
synthesize command will prevail.

■ On the objects in the order of their corresponding set_remove_assign_options
commands.

The specified options apply to all subsequent incremental optimization runs unless you reset
the options with the -reset option.

Options and Arguments

-buffer_or_inverter libcell

Specifies the buffer or inverter to be used to replace the
assign statements. The specified cell must be part of a library
that was loaded.

If this option is omitted, RTL Compiler will determine which
buffers or inverters to insert. If a particular library domain does
not have any buffers or inverters, no buffers or inverters will be
added in that domain. However, buffers or inverters will be
added in other domains depending on availability.
July 2009 291 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
-design {design | subdesign}

Indicates that the specified command options apply to the
specified design or subdesign. If neither is specified, the
options apply to the entire design.

-ignore_preserve_map_size_ok

Allows assign statements in the module to be removed if the
preserve attribute on the module is set to map_size_ok.

-ignore_preserve_setting

Allows assign statements in the module to be removed
independent of the setting of the preserve attribute on the
module.

-no_buffers_use_inverters

Specifies to search for inverters and to use them in case the
library or library domain does not have any buffers. If buffers
exist they will be used, irrespective of whether the library has
inverters or not.

-preserve_dangling_nets

Specifies to preserve a net that is driven by a buffer or inverter
that is inserted when assign statements are replaced and if
that net does not have a fanout in the next level of hierarchy and
was not driven by a constant before adding the buffer or
inverter.

-respect_boundary_optimization

Prevents RTL Compiler from looking beyond the boundary of
the subdesign, when considering subports driven by constants,
if the boundary_opto attribute on the subdesign was set to
false.

-reset Specifies to use the command with the default settings.

-skip_unconstrained_paths

Prevents RTL Compiler from removing assign statements on
unconstrained paths. These paths can be paths driven by a
constant, false paths with assigns, or paths without any timing
constraints.

-verbose Displays all messages during assign removal.
July 2009 292 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
Examples

■ The following command specifies to use buffer BUFX2 to replace assign statements in
subdesign med.

rc:/> set_remove_assign_options -buffer BUFX2 [find / -subdesign med]

■ In the following example, the subdesigns bottom and top represent two different library
domains. Two different kinds of buffers are specified for each domain.

rc:/> set_remove_assign_options -buffer BUFX2 [find / -subdesign bottom]

rc:/> set_remove_assign_options -buffer BUFX7 [find / -subdesign top]

■ In the following example, several settings are specified for subdesign sub before the
synthesize command.

set_remove_assign_options -buffer_or_inverter [find / -libcell buf1] \
-design {find / -subdesign sub]
set_remove_assign_options -buffer_or_inverter [find / -libcell inv] \
-design sub
synthesize -incr

Only the second set_remove_assign_options command is taken into account
during the next optimization run and no assign removals are performed at the top level.

■ In the following example, several incremental optimization runs are performed.

set_remove_assign_options -skip_unconstrained_paths -design top
synthesize -incr

set_remove_assign_options -reset -design top
synthesize -incr

During the first opimization run, unconstrained paths remain untouched in design top.
However, before the second optimization run starts the options have been reset for
design top and assign statement can now be removed from the unconstrained paths.

Related Information

Affects this command: synthesize

Affected by this attribute: remove_assigns
July 2009 293 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
synthesize

synthesize [-effort {medium | low | high}]
[-to_generic] [-to_mapped] [-to_placed] [-spatial]
[[-auto_identify_shift_register]
[-shift_register_min_length integer]
[-shift_register_max_length integer]]

[-incremental | -no_incremental] [design]...

Determines the most suitable design implementation using the given design constraints
(clock cycle, input delays, output delays, technology library, and so on).

The synthesize command takes a list of top-level designs, synthesizes the RTL blocks,
optimizes the logic, and performs technology mapping.

Options and Arguments

-auto_identify_shift_register

Automatically identifies functional shift register segments.

design Specifies the name of the design to synthesize.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used. If multiple top-level
designs exist, all are synthesized.

-effort {medium | low | high}

Specifies the effort to use during optimization.

Default: medium

-incremental Incrementally optimizes mapped gates. Allows the mapper to
preserve the current implementation of the design and perform
incremental optimizations if and only if the procedure
guarantees an improvement in the overall cost of the design.

Note: This option only works with an already mapped design.

-no_incremental Disables incremental optimization.

-shift_register_max_length integer
July 2009 294 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
Specifies the maximum sequential length of the shift register for
auto-identification.

Note: This option applies only when you specify
-auto_identify_shift_register.

Default: Longest detected shift register segment

-shift_register_min_length integer

Specifies the minimum sequential length of the shift register for
auto-identification.

Note: This option applies only when you specify
-auto_identify_shift_register.

Default: 2

-to_generic Performs RTL optimization.

This is the default option if the RTL design has not been
optimized yet.

-to_mapped Maps the specified design(s) to the cells described in the
supplied technology library and performs logic optimization.
The aim of the optimization is to provide the smallest possible
implementation of the synthesized design that still meets the
supplied timing goal.

This is the default option when the design is in the generic or
mapped state.

-to_placed Invokes and runs the predict_qos command and performs
post-placement optimizations.

-spatial Performs a quick placement to optimize the mapped gates.

Note: You must have access to the Encounter® place and route
tool to run this command option.
July 2009 295 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
Examples

■ The following example synthesizes and optimizes all of the top-level designs below the
current position in the design hierarchy into generic logic.

rc:/> synthesize

The following table shows which actions are performed, depending on the state of the
design.

Table 7-1 Actions Performed with No Option Specified

■ The following example limits synthesis to a single design main:

rc:/> synthesize main

■ The following example maps multiple designs at the same time:

rc:/> synthesize -to_mapped design1 design2

■ After the following example, the design in memory will be at the Boolean (generic) level
of abstraction:

rc:/> synthesize -to_generic

The following table shows the actions that are performed for the -to_generic option
depending on the state of the design.

Table 7-2 Actions Performed with -to_generic Option Specified

Current Design State

RTL Generic Mapped

■ RTL Optimization ■ Map

■ Incremental
Optimizations

■ Unmap

■ Remap

■ Incremental
Optimizations

(same as -to_generic) (same as -to_mapped) (same as -to_mapped)

Current Design State

RTL Generic Mapped

■ RTL Optimization ■ nothing ■ Unmap design
July 2009 296 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
■ The following example requests mapping of the design:

rc:/> synthesize -to_mapped

The following table illustrates how the -to_mapped option affects the design:

Table 7-3 Actions Performed with -to_mapped Option Specified

■ Table 7-4 on page 297 illustrates how the -incremental option affects the design:

Table 7-4 Actions Performed with -incremental Option Specified

■ The following example predicts and optimizes the design for silicon:

rc:/> synthesize -to_placed

The following table illustrates how the -to_placed option affects the design:

Current Design State

RTL Generic Mapped

■ RTL Optimization

■ Mapping

■ Incremental
Optimizations

■ Mapping

■ Incremental
Optimizations

■ Unmap

■ Remap

■ Incremental
Optimizations

Options
Current Design State

RTL/Generic Mapped

-to_generic -incremental Disable -incremental
and proceed

Unmap design

-to_mapped -incremental Disable -incremental
and proceed

Incremental Optimization

-incremental Disable -incremental
and proceed

Incremental Optimization
July 2009 297 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
Table 7-5 Actions Performed with -to_placed Option Specified

Related Information

Options
Current Design State

RTL Generic Mapped

-to_placed RTL Optimization

Mapping

Incremental
Optimization

predict_qos &
post-placement
incremental
optimizations

Mapping

Incremental
Optimization

predict_qos &
post-placement
incremental
optimizations

predict_qos &
post-placement
incremental
optimizations

-to_placed
-incremental

N/A N/A post-placement
incremental
optimizations

Affects these commands: report area on page 332

report clock_gating on page 342

report datapath on page 350

report design_rules on page 355

report gates on page 374

report power on page 404

report summary on page 435

report timing on page 437

Related Command remove_assigns_without_optimization on page 286

Affected by these attributes: iopt_force_constant_removal

iopt_sequential_resynthesis

iopt_sequential_resynthesis_min_effort
July 2009 298 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
July 2009 299 Product Version 9.1

Command Reference for Encounter RTL Compiler
Elaboration and Synthesis
July 2009 300 Product Version 9.1

Command Reference for Encounter RTL Compiler

July 2009 301 Product Version 9.1

8
Analysis and Report

■ all_connected on page 304

■ all des on page 305

■ all des inps on page 306

■ all des insts on page 307

■ all des outs on page 308

■ all des seqs on page 309

■ all lib on page 311

■ all lib bufs on page 312

■ all lib ties on page 313

■ analyze_library_corners on page 314

■ check_design on page 316

■ clock_ports on page 321

■ compare_sdc on page 322

■ fanin on page 323

■ fanout on page 326

■ report on page 328

■ report area on page 332

■ report boundary_opto on page 334

■ report buskeepers on page 335

■ report cdn_loop_breaker on page 336

■ report cell_delay_calculation on page 338

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 302 Product Version 9.1

■ report checks on page 339

■ report clock_gating on page 342

■ report clocks on page 347

■ report congestion on page 349

■ report datapath on page 350

■ report design_rules on page 355

■ report dft_chains on page 356

■ report dft_registers on page 361

■ report dft_setup on page 365

■ report dft_violations on page 370

■ report disabled_transparent_latches on page 373

■ report gates on page 374

■ report hierarchy on page 377

■ report instance on page 379

■ report isolation on page 381

■ report level_shifter on page 384

■ report memory on page 388

■ report memory_cells on page 389

■ report messages on page 391

■ report net_cap_calculation on page 393

■ report net_delay_calculation on page 394

■ report net_res_calculation on page 395

■ report nets on page 396

■ report operand_isolation on page 400

■ report ple on page 402

■ report port on page 403

■ report power on page 404

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 303 Product Version 9.1

■ report power_domain on page 416

■ report qor on page 419

■ report scan_power on page 422

■ report sequential on page 426

■ report slew_calculation on page 428

■ report spare_instances on page 429

■ report state_retention on page 430

■ report summary on page 435

■ report timing on page 437

■ report yield on page 445

■ timestat on page 446

■ validate_timing on page 447

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 304 Product Version 9.1

all_connected

all_connected {net | pin | port}...

If the specified object is a net, the command returns the list of all the pins connected to the
net. If the object is a pin or a port, the command returns the net connected to the pin or the
port.

Options and Arguments

net Specifies a net. The ensuing list will return a list of all the pins
connected to this net.

pin Specifies a pin. The ensuing list will return the net connected to
the pin.

port Specifies a port. The ensuing list will return the net connected
to the port.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 305 Product Version 9.1

all des

all des {inps | insts | outs | seqs}

Generates a Tcl list based on the specified object. For more information on specific all des
commands, see Related Information.

Options and Arguments

Related Information

inps Generates a list of all input ports of the specified clock or clock
domain.

insts Generates a list of all the instances in the design.

outs Generates a list of all output ports of the specified clock or clock
domain.

seqs Generates a list of all the sequential instances in the design.

Related commands: all des inps on page 306

all des insts on page 307

all des outs on page 308

all des seqs on page 309

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 306 Product Version 9.1

all des inps

all des inps
[-clock clock...] [-clock_domains clock_domain...]
[design]

Generates a Tcl list of all input ports of the specified clock or clock domain.

Options and Arguments

Example

■ The following example returns all the input ports for the clock named clock1:

rc:/> all des inps -clock clock1

{/designs/PENNY/ports_in/in1[3]} {/designs/PENNY/ports_in/in1[2]}
{/designs/PENNY/ports_in/in1[1]} {/designs/PENNY/ports_in/in1[0]}
{/designs/PENNY/ports_in/in2[3]} {/designs/PENNY/ports_in/in2[2]}
{/designs/PENNY/ports_in/in2[1]} {/designs/PENNY/ports_in/in2[0]}

-clock clock Returns a list of input ports for the specified clock or clocks.

-clock_domains clock_domain

Returns a list of input ports for the specified clock domain or
domains.

design Returns a list of input ports for the specified design. If a design
is not specified, the input ports for the current design will be
returned.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 307 Product Version 9.1

all des insts

all des insts [-unresolved] [design]

Generates a Tcl list of all instances in the specified design. You can return a list of only
unresolved instances by specifying the -unresolved option.

Options and Arguments

Example

■ The following example returns a list of all instances in the design named STONE:

rc:/> all des insts STONE

/designs/STONE/instances_hier/inst1
/designs/STONE/instances_hier/inst1/instances_comb/g1
/designs/STONE/instances_hier/inst1/instances_comb/g2
/designs/STONE/instances_hier/inst1/instances_comb/g3
/designs/STONE/instances_hier/inst1/instances_comb/g4
/designs/STONE/instances_hier/inst2
/designs/STONE/instances_hier/inst2/instances_comb/g1
/designs/STONE/instances_hier/inst2/instances_comb/g2
/designs/STONE/instances_hier/inst2/instances_comb/g3
/designs/STONE/instances_hier/inst2/instances_comb/g4

design Returns a list of instances for the specified design. If a design is
not specified, the instances for the current design will be
returned.

-unresolved List only unresolved instances and omit everything else.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 308 Product Version 9.1

all des outs

all des outs
[-clock clock...] [-clock_domains clock_domain...]
[design]

Generates a Tcl list of all output ports of the specified clock or clock domain.

Options and Arguments

Example

■ The following example returns all the output ports for the clock named clock1:

rc:/> all des outs -clock clock1

{/designs/STONE/ports_out/out1[1]} {/designs/STONE/ports_out/out1[0]}
{/designs/STONE/ports_out/out2[3]} {/designs/STONE/ports_out/out2[2]}
{/designs/STONE/ports_out/out2[1]} {/designs/STONE/ports_out/out2[0]}
/designs/STONE/ports_out/out3 /designs/STONE/ports_out/out4

-clock clock Returns a list of output ports for the specified clock or clocks.
This option is to find the ports with respect to a clock waveform,
not a clock input port. It is valid only after you constrain the
input and output ports.

-clock_domains clock_domain

Returns a list of output ports for the specified clock domain or
domains.

design Returns a list of output ports for the specified design. If a design
is not specified, the output ports for the current design will be
returned.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 309 Product Version 9.1

all des seqs

all des seqs
[-clock clock...] [-clock_domains clock_domain...]
[-exclude instance...]
[-level_sensitive | -edge_triggered]
[-no_hierarchy]
[-data_pins] [-output_pins] [-clock_pins]
[-master_slave] [-slave_clock_pins]
[-inverted_output] [design...]

Generates a Tcl list of all the flip-flops and latches in the design. Use the
-level_sensitive option to return only the latches in the design.

Options and Arguments

-clock clock Returns a list of sequential instances for the specified clock or
clocks.

-clock_domains clock_domain

Returns a list of sequential instances for the specified clock
domain or domains.

-clock_pins Returns the clock pins in the design.

-data_pins Only returns a list of data pins.

design Returns a list of sequential instances for the specified design. If
a design is not specified, the sequential instances for the
current design will be returned.

-edge_triggered Only returns a list of flip-flops in the design.

-exclude instance Specifies a list of instances to be excluded.

-inverted_output Returns sequential instances that have an inverted output
(Qbar)

-level_sensitive Only returns a list of latches in the design.

-master_slave Returns the master slave flops.

-no_hierarchy Returns sequential elements only at the top-level.

-output_pins Returns the output pins in the design.

-slave_clock_pins Returns the slave clock pins of master slave flops.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 310 Product Version 9.1

Examples

■ The following example returns all the sequential instances for the design named REID:

rc:/> all des seqs REID

{/designs/REID/instances_hier/accum1/instances_seq/r_reg[1]}
{/designs/REID/instances_hier/accum1/instances_seq/r_reg[2]}
{/designs/REID/instances_hier/accum1/instances_seq/r_reg[3]}

■ The following example returns all the data pins for the design named REID:

rc:/> all des seqs REID -data_pins

{/designs/cpu/instances_hier/accum1/instances_seq/r_reg[1]/pins_in/d}
{/designs/cpu/instances_hier/accum1/instances_seq/r_reg[2]/pins_in/d}
{/designs/cpu/instances_hier/accum1/instances_seq/r_reg[3]/pins_in/d}

■ The following example returns the master slave clock with the -master_slave option
and then the slave clock pins of that master slave clock with the -slave_clock_pins
option. If you are using the map_to_master_slave_lssd attribute, you must specify
it before loading any libraries.

rc:/> set_attribute map_to_master_slave_lssd true

rc:/> set_attribute library jess.lib

...

rc:/> all des seqs -master_slave

/designs/summers/instances_seq/flop

rc:/> all des seqs -slave_clock_pins

/designs/summers/instances_seq/flop/pins_in/t0

Related Information

Related attributes: lssd_master_clock

map_to_master_slave_lssd

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 311 Product Version 9.1

all lib

all lib {bufs | ties}

Generates a Tcl list of library cell objects based on the specified object. For more information
on specific all lib commands, see Related Information.

Options and Arguments

Related Information

bufs Generates a list of all the buffers in the loaded library.

ties Generates a list of all the tie-cells in the loaded library.

Related commands: all lib bufs on page 312

all lib ties on page 313

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 312 Product Version 9.1

all lib bufs

all lib bufs

Generates a Tcl list of all the buffers in the loaded library or libraries.

Example

■ The following example returns all the buffers that were defined in the loaded library:

rc:/> all lib bufs

/libraries/slow/libcells/BUFX1 /libraries/slow/libcells/BUFX12
/libraries/slow/libcells/BUFX16 /libraries/slow/libcells/BUFX2

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 313 Product Version 9.1

all lib ties

all lib ties {-lo | -hi | -hilo}

Generates a Tcl list of all the tie-cells in the loaded library.

Options and Arguments

Example

■ The following example returns a list of all tie-hi cells in the library named LUX:

rc:/> all lib ties -hi

/libraries/LUX/libcells/TIEHI /libraries/LUX/libcells/ANTENNA

-hi Returns only a list of tie-hi cells (1 value tie cells).

-hilo Returns only a list of tie-hi-lo cells (0 and 1 value tie cells).

-lo Returns only a list of tie-lo cells (0 value tie cells).

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 314 Product Version 9.1

analyze_library_corners

analyze_library_corners
{-libraries list | -cpf file}
[-buffer_libcell libcell]
[-fanout integer] [-fanin integer]
 [> file]

Reads in the specified multi-corner libraries and determines the slowest corner. Multi-corner
libraries have the same libcells but are each characterized for a specific set of operating
conditions resulting in different delay and slew values.

For each libcell the tool takes into account a given load at the input pins (specified through
the number of buffers at the input) and a given load at the output pins (specified through the
number of buffers at the output). Given that configuration, the tool calculates all timing arcs
for the libcells for each corner and reports the average delay per corner. In addition, it reports
the list of libcells whose delay exceeds the delay of the corresponding cell in the slowest
library.

Important

This command should be the only command run in the synthesis session.

Options and Arguments

-buffer_libcell cell

Specifies the libcell to be used as buffer.

-cpf file Specifies the name of the CPF file that has the libraries for the
multi corners.

-fanin integer Specifies the number of buffers to consider in the fanin of the
input pins of each libcell.

Default: 2

-fanout integer Specifies the number of buffers to consider in the fanout of the
output pins of each libcell

Default: 10

-libraries list Specifies the list of multi-corner libraries.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 315 Product Version 9.1

Example

The following command reads in the libraries from the CPF file. There are 8 libraries. The
report shows the average delay for each library (corner) and indicates that library XS in set4
has the largest delay.
analyze_library_corners -cpf test.cpf

 Library filename Average delay

/libraries/library_domains/set8/MF 170
/libraries/library_domains/set7/MS 176
/libraries/library_domains/set6/XF 100
/libraries/library_domains/set4/XS 352
/libraries/library_domains/set2/F 162
/libraries/library_domains/set5/S 193
/libraries/library_domains/set3/VF 115
/libraries/library_domains/set1/VS 335

The slowest library : /libraries/library_domains/set4/XS
The average delay for this lib : 352

Libcell Library Delay Slowest Library Delay
--

AO22XA /lib*/library_domains/set1/VS 354 /lib*/library_domains/set4/XS 346
--

AND2CSXA /lib*/library_domains/set1/VS 283 /lib*/library_domains/set4/XS 280
--

BUFCSXA /lib*/library_domains/set1/VS 241 /lib*/library_domains/set4/XS 239
--

NAND3BXA /lib*/library_domains/set1/VS 356 /lib*/library_domains/set4/XS 349
--

NAND3BNXA /lib*/library_domains/set1/VS 315 /lib*/library_domains/set4/XS 311
--
......
......
--

BUFXA /lib*/library_domains/set1/VS 241 /lib*/library_domains/set4/XS 239
--

AND3XA /lib*/library_domains/set1/VS 343 /lib*/library_domains/set4/XS 338
--

OA22XA /lib*/library_domains/set1/VS 348 /lib*/library_domains/set4/XS 340
--

Note: In the report, libraries was replaced with lib* to fit the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 316 Product Version 9.1

check_design

check_design [-lib_lef_consistency]
[-undriven [-threshold_fanout]] [-multidriven]
[-unloaded] [-unresolved]
[-constant [-threshold_fanout]] [-assigns]
[-preserved] [-report_scan_pins]
[-only_user_hierarchy]
[-vname] [-all] [design] [> file]

Provides information on undriven and multi-driven ports and pins, unloaded sequential
elements and ports, unresolved references, constants connected ports and pins, any assign
statements and preserved instances in the given design. In addition, the command can report
any cells that are not in both .lib and the physical libraries (LEF files).

By default, if you do not specify an option, the check_design command reports a summary
table with this information.

Options and Arguments

-all Reports all the information for the design with a summary at the
end.

-assigns Reports assign statements in the design.

-constant Reports ports and pins in the design that are connected to a
constant.

design Specifies the name of the design to write the report.

file Specifies the name of the file to write the report.

-lib_lef_consistency

Reports the cells that are present in .lib but not in the LEF file(s)
and vice versa.

-multidriven Reports ports and pins in the design that are multi-driven.

-only_user_hierarchy

Skips the tool generated internal hierarchies (such as Mux and
Adders) when performing checks and only reports checks on
user-created hierarchies.

-preserved Reports all hierarchical and leaf instances in the design for
which the preserve attribute is set to true.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 317 Product Version 9.1

Examples

■ The following example shows a sample report given when the command is executed
without any options:
rc:/> check_design
Checking the design.

Check Design Report

Summary

 Name Total

Unresolved References 0
Empty Modules 0
Unloaded Port(s) 0
Unloaded Sequential Pin(s) 0
Assigns 0
Undriven Port(s) 0
Undriven Leaf Pin(s) 0
Undriven hierarchical pin(s) 1
Multidriven Port(s) 0
Multidriven Leaf Pin(s) 0
Multidriven hierarchical Pin(s) 0
Multidriven unloaded net(s) 0
Constant Port(s) 0
Constant Leaf Pin(s) 0
Constant hierarchical Pin(s) 0
Preserved leaf instance(s) 5
Preserved hierarchical instance(s) 1
Libcells with no LEF cell 601
Physical (LEF) cells with no libcell 846

Done Checking the design.

-report_scan_pins Includes the scan (DFT-related) pins in the checks and reports.

-threshold_fanout Filters undriven or constant pins and ports with a fanout below
the specified threshold.

-undriven Reports ports and pins in the design that are undriven.

-unloaded Reports ports and sequential elements in the design that are
unloaded.

-unresolved Reports unresolved references and empty modules in the
design.

-vname Uses the Verilog names instead of RTL Compiler design
hierarchy path names in the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 318 Product Version 9.1

■ The following example reports all the possible information on the design.

rc:\> check_design -all
Check Design Report

Unresolved References & Empty Modules

No unresolved references in design 'm1'
design 'm1' has the following empty module(s)
sub
Total number of empty modules in design 'm1' : 1
Unloaded Pin(s), Port(s)

design 'm1' has the following unloaded sequential elements:
/designs/m1/instances_seq/bx_reg
Total number of unloaded sequential elements in design 'm1' : 1
No unloaded port in 'm1'
Assigns

Encountered an assign statement at subport '/designs/m1/instances_hier/sub/
subports_out/out[1]' in subdesign sub
Encountered an assign statement at subport '/designs/m1/instances_hier/sub/
subports_out/out[0]' in subdesign sub
Total number of assign statements in design 'm1' : 2
Undriven Port(s)/Pin(s)

The following combinational pin(s) in design 'm1' are undriven
/designs/m1/instances_comb/g22/pins_in/A
/designs/m1/instances_comb/g24/pins_in/A
Total number of combinational undriven pins in design 'm1' : 2

The following sequential pin(s) in design 'm1' are undriven
/designs/m1/instances_seq/bx_reg5/pins_in/D
/designs/m1/instances_seq/bx_reg7/pins_in/D
Total number of sequential undriven pins in design 'm1' : 2

The following port(s) in design 'm1' are undriven
/designs/m1/ports_out/co
/designs/m1/ports_out/fo
Total number of undriven port(s) in design 'm1' : 2

Multidriven Port(s)/Pin(s)

No multidriven combinational pin in 'm1'
No multidriven sequential pin in 'm1'
No multidriven ports in 'm1'
Constant Pin(s)

No constant combinational pin(s) in design 'm1'
design 'm1' has the following constant input sequential pin(s)
/designs/m1/instances_seq/bx_reg3/pins_in/D
/designs/m1/instances_seq/bx_reg4/pins_in/D
Total number of constant sequential pins in design 'm1' : 2
No constant connected ports in design 'm1'

Preserved instances(s)

No preserved combinational instance(s) in design ’m1’
No preserved sequential instance(s) in design ’m1’
No preserved hierarchical instance(s) in design ’m1’

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 319 Product Version 9.1

Libcells with no corresponding LEF

No libcell(s) found.

LEF cells with no corresponding libcell

No physical (LEF) cells found.

Summary

Name Total
--
Unresolved References 0
Empty Modules 1
Unloaded Port(s) 0
Unloaded Pin(s) 1
Assigns 2
Undriven Port(s) 2
Undriven Pin(s) 4
Multidriven Port(s) 0
Multidriven Pin(s) 0
Multidriven unloaded net(s) 0
Constant Port(s) 0
Constant Pin(s) 2
Preserved leaf instance(s) 0
Preserved hierarchical instance(s) 0
Libcells with no LEF cell 0
Physical (LEF) cells with no libcell 0

Done Checking the design.

■ The following example reports the preserved instances in your design.

rc:/> check_design -preserved
Checking the design.

Check Design Report

Preserved instances(s)

design ’test1’ has the following preserved combinational instance(s)
/designs/test1/instances_comb/and1
/designs/test1/instances_comb/and2
/designs/test1/instances_comb/and3
/designs/test1/instances_hier/U1/instances_comb/and4
Total number of preserved combinational instances in design ’test1’ : 4
design ’test1’ has the following preserved sequential instance(s)
/designs/test1/instances_seq/dff1
Total number of preserved sequential instances in design ’test1’ : 1
design ’test1’ has the following preserved hierarchical instance(s)
/designs/test1/instances_hier/U1
Total number of preserved hierarchical instances in design ’test1’ : 1

Done Checking the design.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 320 Product Version 9.1

■ The following command reports the cells which are only in .lib or in the physical library
(LEF files).

rc:/> check_design -lib_lef_consistency
Checking the design.

Check Design Report

Libcells with no corresponding LEF

/libraries/mylib.slow/libcells/ACCSHCINX2
...
/libraries/mylib.slow/libcells/p_SMDFFHQX8

Total number of cell(s) with only library (.lib) info : 601

LEF cells with no corresponding libcell

/libraries/physical_cells/libcells/AN2D0
...
/libraries/physical_cells/libcells/XOR4D4
Total number cell(s) with only physical (LEF) Info : 846

Done Checking the design.

■ The following command reports all undriven pins including the DFT-related pins
(highlighted in the report below).

rc:/> check_design -report_scan_pins -undriven
Checking the design.

Check Design Report

Undriven Port(s)/Pin(s)

The following combinational pin(s) in design ’test1’ are undriven
/designs/test1/instances_comb/and3/pins_in/A
Total number of combinational undriven pins in design ’test1’ : 1

The following sequential pin(s) in design ’test1’ are undriven
/designs/test1/instances_seq/dff1/pins_in/D
/designs/test1/instances_seq/dff1/pins_in/SE
/designs/test1/instances_seq/dff1/pins_in/SI
Total number of sequential undriven pins in design ’test1’ : 3

The following hierarchical pin(s) in design ’test1’ are undriven
/designs/test1/instances_hier/U1/pins_in/A (fanout : 0)
Total number of hierarchical undriven pins in design ’test1’ : 1

No undriven port in ’test1’

 Done Checking the design.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 321 Product Version 9.1

clock_ports

clock_ports [design]

Returns input ports of your design that are clock inputs.

Note: Only input ports at the top level are listed. Gated clocks and clock pins that are present
in the hierarchical design internally (typical PLL outputs) will not be identified.

Note: This command is useful when you are working with an unfamiliar design.

Options and Arguments

Examples

■ The following example finds all of the clock ports of a design:

rc:/> clock_ports
/designs/alu/ports_in/clock

■ In the following example, the clock_ports command is embedded within a
define_clock command to apply a clock waveform to all clock input ports of the
design:

rc:/> define_clock -period 3000 -name clock1 [clock_ports]

Related Information

design Specifies the design for which you want to list the clock input
ports.

Affected by this command: define_clock on page 240

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 322 Product Version 9.1

compare_sdc

compare_sdc [-design string] [-rtl | -netlist file]
-golden_ sdc files [-revised_sdc files]
[-logfile file] [-detail] [> file]

Compares two (or two sets of) SDC files for a design and generates a report containing
differences.

To run this command you need to have access to the Encounter ® Conformal ® Constraint
Designer (CCD) software.

Options and Arguments

Related Information

Comparing SDC Constraint Files in Interfacing between Encounter RTL Compiler and
Encounter Conformal

-design string Specifies the top-level design in RTL Compiler.

-detail Requests a detailed comparison report.

file Specifies the file to which the report must be written.

-golden_sdc files Specifies the UNIX path to the golden (original) SDC files.

-logfile file Specifies the name of the CCD logfile. You must specify the
UNIX path to the file.

-netlist file Specifies the UNIX path to the netlist.

By default, the tool uses the RTL.

-revised_sdc files Specifies the UNIX path to the revised SDC files.

If this option is not specified, the tool internally generates an
SDC file for the current state of the design and uses this file for
the comparison.

-rtl Specifies to use the RTL as input.

Related command: write_do_ccd compare_sdc on page 191

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 323 Product Version 9.1

fanin

fanin
[-min_logic_depth integer] [-max_logic_depth integer]
[-min_pin_depth integer] [-max_pin_depth integer]
[-startpoints] [-structural] {pin | port | subport}...

Returns all the pins, ports, and subports in the fanin cone for the specified pins and ports.

Options and Arguments

-max_logic_depth integer

Specifies the maximum number of logic levels to go back to
report the fanin cone information.

Default: Infinity

-max_pin_depth integer

Specifies the maximum number of pin levels to go back to
report the fanin cone information.

Default: Infinity

-min_logic_depth integer

Specifies the minimum number of logic levels to go back to
report the fanin cone information.

Default: 0

-min_pin_depth integer

Specifies the minimum number of pin levels to go back to report
the fanin cone information.

Default: 0

{pin | port} Specifies the name of a pin or port for which you want the fanin
cone information.

-startpoints Returns only timing start points in the fanin cone.

-structural Specifies a structural trace based on connectivity instead of a
timing trace, which is based on timing arcs.

Note: If there are missing timing arcs, for example, when using
the SDC set_case_analysis command, the traces may
report different results.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 324 Product Version 9.1

Examples

■ Consider the design below.

The following example returns all the pins in the fanin cone for port out:

rc:/> fanin out
/designs/test/instances_seq/out_reg/pins_out/Q
/designs/test/instances_seq/out_reg/pins_in/CK

■ The following example specifies to only return the startpoint for port out shown in the
design above:

rc:/> fanin out -startpoint out
/designs/test/instances_seq/out_reg/pins_in/CK

■ The following example executes a path disable from all the start points that fan out to
reg1/D:

rc:/> path_disable -from [fanin -startpoint reg1/D]

■ The following example queries the fanin of the output pin S of the combinational instance
adder shown in Figure 8-1.

rc:/> fanin -startpoint S

In this case, the command returns input port IN and clock pin CK

■ Use the ls -dir command to format the output:

rc:/designs/malexander/ports_in> ls -dir [fanin in1[0]]

/designs/malexander/instances_hier/inst1/instances_comb/g43/pins_in/A

/designs/malexander/instances_hier/inst1/instances_comb/g43/pins_out/Y

/designs/malexander/ports_out/out1[1]

/designs/malexander/ports_out/out3

out_regvar1_reg var2_reg var3_reg

a

b

ck

en

g169 g170
out

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 325 Product Version 9.1

■ Use the ls -dir command with the redirect arrow to redirect the output to the specified
file:

rc:/designs/malexander/ports_in> ls -dir [fanin in1[0]] > malexander.txt

You can also use the append arrows (">>").

Figure 8-1 Example Design for fanin

■ The following example queries the fanin of the output pin S of the combinational instance
adder shown in Figure 8-1, but without using the -startpoint option.

rc:/> fanin S

In this case, the command returns in addition to the input port IN and clock pin CK, pins
A and Q.

QD

CK

+
A

B

S

IN

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 326 Product Version 9.1

fanout

fanout
[-min_logic_depth integer] [-max_logic_depth integer]
[-min_pin_depth integer] [-max_pin_depth integer]
[-endpoints] [-structural] {pin | port}...

Returns all the pins and ports in the fanout cone for the specified pins and ports.

Options and Arguments

-endpoints Returns only timing end points in the fanout cone.

-max_logic_depth integer

Specifies the maximum number of logic levels to go back to
report the fanout cone information.

Default: Infinity

-max_pin_depth integer

Specifies the maximum number of pin levels to go back to
report the fanout cone information.

Default: Infinity

-min_logic_depth integer

Specifies the minimum number of logic levels to go back to
report the fanout cone information.

Default: 0

-min_pin_depth integer

Specifies the minimum number of pin levels to go back to report
the fanout cone information.

Default: 0

{pin | port} Specifies the name of a pin or port for which you want the
fanout cone information.

-structural Specifies a structural trace based on connectivity instead of a
timing trace, which is based on timing arcs.

Note: If there are missing timing arcs, for example, when using
the SDC set_case_analysis command, the traces may
report different results.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 327 Product Version 9.1

Examples

■ The following example returns all the pins in the fanout cone of port en in the design
shown in Figure 8-2 on page 327:

rc:/> fanout en
/designs/test/instances_comb/g170/pins_in/SL
/designs/test/instances_comb/g170/pins_out/Z
/designs/test/instances_seq/var2_reg/pins_in/D
/designs/test/instances_comb/g169/pins_in/A1
/designs/test/instances_comb/g169/pins_out/Z
/designs/test/instances_seq/out_reg/pins_in/D

Figure 8-2 Example Design for fanout

■ The following example executes a path disable on all the endpoints to which reg1/CK
fans out:

rc:/> path_disable -to [fanout -endpoint reg1/CK]

■ The following example returns all pins in the fanout cone up to two logic levels forward
from the specified pin:

rc:/> fanout -max_logic_depth 2

/designs/top/instances_hier/m1/instances_comb/g2/pins_in/in_0

■ Use the ls -dir command to format the output:

rc:/designs/malexander/ports_in> ls -dir [fanout in1[0]]

/designs/malexander/instances_hier/inst1/instances_comb/g43/pins_in/A

/designs/malexander/instances_hier/inst1/instances_comb/g43/pins_out/Y

/designs/malexander/ports_out/out1[1]

/designs/malexander/ports_out/out3

■ Use ls -dir with the redirect arrow to redirect the output to the specified file:

rc:/designs/malexander/ports_in> ls -dir [fanout in1[0]] > malexander.txt

You can also append arrows (">>").

out_regvar1_reg var2_reg var3_reg

a

b

ck

en

g169 g170
out

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 328 Product Version 9.1

report

report {area | boundary_opto | cdn_loop_breaker |
| cell_delay_calculation | clock_gating | clocks
| congestion | cwd | datapath | design_rules
| dft_chains | dft_registers | dft_setup
| dft_violations | disabled_transparent_latches
| gates | hierarchy | instance | isolation
| level_shifter | memory | memory_cells | messages
| net_cap_calculation | net_delay_calculation
| net_res_calculation | nets | operand_isolation
| ple | port | power | power_doamin | qor | scan_power
| sequential | slew_calculation | state_retention
| summary | timing | yield}

Generates the specified report on synthesis results. For more information, see the Related
Information.

You can automatically write out a gzip compressed report file. For example:

report port sample.gz

Note: The report memory command does not support the gzip compressed output.

Options and Arguments

area Reports the area of the synthesized and mapped design.

boundary_opto Reports a summary of the boundary optimization.

cdn_loop_breaker Reports the loop breaker buffers added by the tool and breaks
the combinational loops for timing analysis.

cell_delay_calculation

Reports how the cell delay of a libcell instance is calculated.

clock_gating Reports clock-gating information for the design.

clocks Generates a report on the clocks of the current design.

congestion Reports the congestion summary.

cwd Generates a ChipWare Developer report.

datapath Reports datapath operators that were inferred from the design.

design_rules Reports the design rule violations.

dft_chains Reports the scan chain data for the design.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 329 Product Version 9.1

dft_registers Reports the scan status of all flip-flops in the design.

dft_setup Reports the DFT setup information.

dft_violations Reports the DFT violations.

disabled_transparent_latches

Reports disabled transparent latches.

gates Generates a gates report.

hierarchy Reports the design hierarchy information.

instance Generates a report on the instances of the current design.

isolation Reports isolation cell information for the design.

level_shifter Reports level-shifter information for the design.

memory Reports the memory usage in the compilation environment.

memory_cells Reports the memory cells in the library.

messages Generates a summary of error messages that have been
issued.

net_cap_calculation Reports how the capacitance of the net is calculated.

net_delay_calculation

Reports how the net delay is calculated.

net_res_calculation Reports how the resistance of the net is calculated.

nets Generates a report on the nets of the current design.

operand_isolation Reports operand-isolation information for the design.

ple Reports physical layout estimation data

port Generates reports on the ports of the current design.

power Generates a power leakage report.

power_domain Generates a report with power domain information.

qor Generates a QoR report.

scan_power Reports estimated power of design during scan test

slew_calculation Reports how the slew on the driver pin of a libcell instance is
calculated.

sequential Generates a report on the sequential elements of the design.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 330 Product Version 9.1

Related Information

state_retention Reports state_retention information for the design.

summary Generates an area, timing, and design rule violations report.

timing Generates a timing report.

yield Generates a yield report.

Related commands: report area on page 332

report boundary_opto on page 334

report cdn_loop_breaker on page 336

report cell_delay_calculation on page 338

report clock_gating on page 342

report clocks on page 347

report congestion on page 349

report datapath on page 350

report design_rules on page 355

report dft_chains on page 356

report dft_registers on page 361

report dft_setup on page 365

report dft_violations on page 370

report disabled_transparent_latches on page 373

report gates on page 374

report hierarchy on page 377

report instance on page 379

report isolation on page 381

report level_shifter on page 384

report memory on page 388

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 331 Product Version 9.1

report memory_cells on page 389

report messages on page 391

report net_cap_calculation on page 393

report net_delay_calculation on page 394

report net_res_calculation on page 395

report nets on page 396

report operand_isolation on page 400

report ple on page 402report port on page 403

report power on page 404

report power_domain on page 416

report qor on page 419

report scan_power on page 422

report sequential on page 426

report slew_calculation on page 428

report state_retention on page 430

report summary on page 435

report timing on page 437

report yield on page 445

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 332 Product Version 9.1

report area

report area
[-depth integer] [-min_count integer]
[design]... [> file]

Reports the following information:

■ The total count of cells mapped against the hierarchical blocks in the current design

■ The combined cell area in each of the blocks and the top level design (hierarchical
breakup)

The Cell Area numbers are based on the cell implementations taken from the
technology library after mapping. However, in PLE mode, the numbers are based on the
information in the LEF libraries. It might be 0 if the information is missing in the LEF
libraries.

■ The Net Area refers to the estimated post-route net area and is only meaningful if you
read in the LEF libraries. Net area is based on the minimum wire widths defined in the
LEF and capacitance table files and the area of the design blocks.

■ The wireload model adopted for each of the blocks

Note: The units used in the report depend on the units used in the library.

Options and Arguments

-depth integer Specifies the number of levels of recursion.

design Specifies the design for which you want to generate a report.
You can also cd into the particular design directory and
generate the report.

file Specifies the name of the file to which to write the report.

-min_count integer Specifies the minimum instance count per block.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 333 Product Version 9.1

Examples

■ The following example generates the area report for the current design:

> report area
==
Generated by: RTL Compiler (RC) version
Generated on: Current date Current time
Module: alu
Technology library: tutorial 1.0
Operating conditions: typical_case (balanced_tree)
Wireload mode: enclosed

==

************* Area *************

Instance Cells Cell Area Net Area Wireload

alu 210 378 0 AL_MEDIUM (S)
ops1_add_25 61 101 0 AL_MEDIUM (S)

(S) = wireload was automatically selected

Related Information

Affected by this command: synthesize on page 294

Affected by this attribute shrink_factor

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 334 Product Version 9.1

report boundary_opto

report boundary_opto

Reports a summary of the boundary optimization done on the design.

This is a summary of boundary changes on the hierarchical pins.

Example

Consider the following input RTL:

module top(in1,in2,out,out1,out2);
input in1,in2;
output out,out1,out2;
child inst(in1,in2,out,out1,out2);

endmodule

module child(a,b,out,out1,out2);
input a,b;
output out,out1,out2;
and u1(n_1,b,a);
assign out = n_1;
assign out1 = ~a;
assign out2 = ~n_1;

endmodule

After the synthesize -to_map command, report the boundary optimization.

rc:/> report boundary_opto
==
 Generated by: Encounter(R) RTL Compiler 9.1.100
 Generated on: Current date Current time
 Module: top
 Technology library: tutorial 1.1
 Operating conditions: typical_case (balanced_tree)
 Wireload mode: enclosed
 Area mode: timing library
==

Instance Pin Boundary Change

inst out1 routed opposite signal through ’inst/a’ around ’inst’
 out2 pushed opposite signal through ’inst/out’

Related Information

Related attribute: boundary_change

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 335 Product Version 9.1

report buskeepers

report buskeepers
[> file]

Important

This command is only available in RCQA mode.

Reports the bus keeper cells in the library.

Bus keeper cells store the previous state (value) to avoid bus contentions, and are used
mostly in PADS, tristates, other standard cells for bus inputs. These cells are defined in the
library with the driver_type Liberty attribute with the bus_hold value.

Options and Arguments

Examples

■ The following command reports the buskeeper cells to a file named file.rpt:

rcqa:/> report buskeepers > file.rpt

file Specifies the name of the report file.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 336 Product Version 9.1

report cdn_loop_breaker

report cdn_loop_breaker [-sdcfile string]
[-version string] [design] [> file]

Reports the loop breaker buffers that were added by the timing engine to break the
combinational loops during timing analysis.

The report lists for every loop breaker the instance name, and the driver and the load of the
loop breaker.

Options and Arguments

Example

The following report shows the loop breakers inserted in design loop.

rc:/> report cdn_loop_breaker
==
 Generated by: version
 Generated on: date
 Module: loop
 Technology library: tutorial 1.1
 Operating conditions: typical_case (balanced_tree)
 Wireload mode: enclosed
 Area mode: timing library
==

 CDN Loop breaker Driver Load

inst1/cdn_loop_breaker inst1/i1/Y i0/B

design Specifies the design for which you want the report.

file Redirects the report to the specified file.

-sdcfile string Creates an SDC file with the appropriate
set_disable_timing and set_false_path settings.

-version string Specifies a particular SDC version for the SDC file created with
the -sdcfile option. The available versions are: 1.1, 1.3,
1.4, 1.5 or 1.7.

Default: 1.7.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 337 Product Version 9.1

Related Information

Related command: remove_cdn_loop_breaker on page 817

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 338 Product Version 9.1

report cell_delay_calculation

report cell_delay_calculation
-from_pin pin -to_pin pin
[-from_rise] [-from_fall]
[-to_rise] [-to_fall] [> file]

Reports how the cell delay is calculated from the look up table in the loaded technology
library. Specify the cell by choosing its the driving and loading pins.The formula for calculating
the delay is provided at the bottom of the report.

Options and Arguments

file Redirects the report to the specified file.

-from_pin pin Specifies the driving pin.

-from_fall Uses the fall delay calculation from the driving pin.

-from_rise Uses the rise delay calculation from the driving pin.

-to_fall Uses the fall delay calculation of the loading pin.

-to_pin pin Specifies the loading pin.

-to_rise Uses the rise delay calculation of the loading pin.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 339 Product Version 9.1

report checks

report checks
[-hdl_lint]
[-clock_domain_crossing]
[-constraints] [-library]
[-power] [-dft] [-physical]
[-error] [-warning] [-info]
[-summary | -detail]
[> file]

Important

This command is only available in RCQA mode.

Reports the logical design signoff checks that were performed when running the
signoff_checks command. By default, this command reports all checks.

Options and Arguments

-clock_domain_crossing Reports clock domain crossing checks

-constraints Reports SDC lint checks

-detail Details every message for every message ID, one
message per line.

-dft Reports DFT checks.

-error Reports Error severity messages.

file Specifies the name of the file to direct the report output.

-hdl_lint Reports the HDL lint checks.

-info Reports Info severity messages.

-library Reports library checks.

-physical Reports physical netlist checks.

-power Reports power checks.

-summary Prints the total number of messages for all severities. By
default, the command reports on the total number per ID,
followed by this summary.

-warning Reports Warning severity messages.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 340 Product Version 9.1

Examples

■ The following command reports a detailed table for HDL lint checks with a summary and
includes only warning messages:

rcqa:/> report checks -hdl_lint -warning

■ The following command reports a detailed table for DFT checks including error, warning
and info messages, and a summary:

rcqa:/> report checks -dft

■ The following shows a portion of the report when running the HDL lint checks for warning
messages, and the summary the shows the total message count for all severities:

rcqa:/> report checks -hdl_lint -warning

HDL Lint Report

File Formatting

Message ID Count Severity Help

CTLCHR 668 Warning HDL source line contains one or more control

characters
MAXLEN 1871 Warning HDL source line is too long
UCCONN 112 Warning Lowercase characters used for identifier
NOBLKN 42 Warning Each block should be labeled with a meaningful

name
SIGLEN 12 Warning Signal name is not of appropriate length
VERREP 29 Warning Repeated usage of identifier or label name
DIFFMN 6 Warning Name differs from file name
LCVARN 45 Warning Name uses uppercase characters
MULTMF 2 Warning More than one module definition in file

Total number warning messages : 2787

...

Summary

Total number of error messages : 360
Total number of warning messages : 5897
Total number of info messages : 161

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 341 Product Version 9.1

■ The following shows a portion of the report when running the SDC lint checks for error
severity messages with the -detail option:

rcqa:/> report checks -constraints -error -detail

Constraints Report

SDC Lint

Message ID Severity Info File/Row/Column

CCD_SDC_USG1 Error No object of the expected type(s) ./firb.sdc 69

matches the given name(s) In line 69,
file ./firb.sdc (set_driving_cell):
The library ’slow’ has not been read
using the read library command

CCD_SDC_USG1 Error No object of the expected type(s) ./firb.sdc 88
matches the given name(s) In line 88,
file ./firb.sdc (get_lib_cells):
slow/RFRDX2

......

......

■ The following shows a portion of the report when running the library checks for info
severity messages with the -detail option:

rcqa:/> report checks -library -info -detail

Library Report

Library

Message ID Severity Info File/Row/Column

LBR-40 Info An unsupported construct was detected s.lib.gz 6 19

in this library.
.lib.gz:6:18: Construct
’library_features’ is not supported.

LBR-40 Info An unsupported construct was detected s.lib.gz 34 39
in this library.
.lib.gz:34:31: Construct
’slew_lower_threshold_pct_fall’ is not
supported.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 342 Product Version 9.1

report clock_gating

report clock_gating
[-preview [-gated_ff]
[-clock clock_list | -clock_pin {pin|port|subport}...]

| [-gated_ff] [-ungated_ff] [-no_hierarchical]
[-summary] [-detail]

| {-clock clock_list |-clock_pin {pin|port|subport}...}
[-detail]

| -cg_instance cg_instance...
| -multi_stage] [> file]

Reports clock-gating information for the design.

Note: After importing third-party clock-gating logic, this clock-gating logic will be reported as
“RC Clock Gating Instances.”

Tip

If you use a user-defined clock-gating module, you need to change your current
location in the hierarchy to the design directory, before you enter this command.

Options and Arguments

-cg_instance

Reports detailed clock-gating information for the specified
clock-gating instances. Information includes the library cell
used for the clock-gating cell, the clock-gating style, the signals
connected to the inputs and outputs of the gating logic, and the
flip-flops gated by this gating cell.

A clock-gating instance is the hierarchical instance with the
clock-gating logic inside.

-clock clock_list Limits the report to the specified clocks. The specified clocks
must that have been defined through either the define_clock
command or through the SDC constraints.

-clock_pin {pin | port| subport}

Limits the report to the specified clock pins. Use this option if
you did not define the clocks. You can specify clock pins, clock
ports or clock subports.

Note: If both -clock and -clock_pin options are specified,
the -clock option takes precedence.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 343 Product Version 9.1

-detail Reports detailed clock-gating information. Lists all the
clock-gating instances inserted, including the library cell used
for the clock-gating cell, the clock-gating style, the signals
connected to the inputs and outputs of the gating logic, and the
flip-flops gated by this gating cell.

If you specify only this option, the return value of this command
is the total number of clock-gating logic inserted in the design.

file Specifies the name of the file to which to write the report.

-gated_ff Reports all the flip-flops that are clock gated and the
clock-gating instances that gate the flip-flops.

If you specify only this option, the return value of this command
is the total number of flip-flops that are gated in the design.

If you specify this option with the -preview option, the report
adds for each combination of clock and enable inputs (listed in
the report) the names of the flip-flops that can potentially be
gated.

-multi_stage Shows the clock-gating instance hierarchy. This option cannot
be combined with any other options.

-no_hierarchical Limits the clock-gating information to the current module.

By default, the report command traverses the hierarchy starting
from the current module and reports all the clock gating found in
the current module and its children modules.

-preview Shows the potential reduction in the clock toggling when
clock-gating logic would be inserted—without making any
modifications to the netlist.

Use this option on an unmapped or partially mapped design.

If you did not define the clocks, you must specify the
-clock_pin option to identify a clock.

Note: If both -clock and -clock_pin options are specified,
the -clock option takes precedence.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 344 Product Version 9.1

Examples

The following reports show output generated after clock gating has been inserted.

■ The following command reports all the flip-flops that are clock gated. In this case, the
return value of the command is 8.

rc:/> report clock_gating -gated_ff
==
...
==

Gated Flip-flops

Module Clock Gating Instance Fanout Gated Flip-flops
--
alu RC_CG_HIER_INST 8 aluout_reg[0]

aluout_reg[1]
...

aluout_reg[7]
--
Total 1 8
==

8

-summary Prints a summary report of the clock gating inserted in the
design that includes the number of clock-gating instances, the
number of gated flip-flops, and the number of ungated flip-flops.

Note: The first two lines refer to the leaf clock-gating instances
(RC and non-RC) that were added. If multi-stage clock gating is
present, two more lines are added to the top of the summary
reporting the multi-stage clock gating instances (RC and
non-RC).

If used with other options, a summary report is printed at the
end.

If you specify only this option, the return value of this command
is the total number of clock-gating logic inserted in the design.

If no other options specified, you will get a summary report by
default.

-ungated_ff Reports all the flip-flops that are not clock gated, and lists
whether the flop was excluded for clock-gating or not.

If you specify only this option, the return value of this command
is the total number of flip-flops that are not gated in the design.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 345 Product Version 9.1

■ The following command reports the number of flip-flops that are clock gated by the
specified clock.

rc:/> report clock_gating -clock [find / -clock clock]
Info: Since -clock option is specified, options other than -detail are ignored.
Multi-stage clock gating for ’/designs/alu/ports_in/clock’
====================================
Max stage: 1
Total FFs with 0 stage of CG: 1
Total FFs with 1 stage of CG: 8
====================================
Total FF: 9

■ The following command reports all the flip-flops that are not clock gated. In this case, the
return value of the command is 1.
rc:/> report clock_gating -ungated_ff
==
...
==

Ungated Flip-flops

Flip-flop Excluded Module Instance
--
zero_reg false alu alu
--
Total ungated flip-flops: 1
--

1

■ The following command generates detailed clock-gating information for the specified
clock-gating instance:
rc:/> report clock_gating -cg_instance RC_CG_HIER_INST
Info: Since -cg_instance option is specified, all other options are ignored.
...
==

Detail

Clock Gating Instance : RC_CG_HIER_INST

Origin: Inserted by RC
Libcell: TLATNTSCAX2 (slow)
Style: latch_posedge_precontrol
Module: alu (alu)
Type: Leaf level CG Instance
Inputs:
ck_in = clock (/designs/alu/ports_in/clock)

TCF = (0.75000, 0.571429/ns)
enable = ena (/designs/alu/ports_in/ena)

TCF = (0.50000, 0.020000/ns)
test = LOGIC0

Outputs:
ck_out = rc_gclk_420

TCF = (0.37380, 0.310000/ns)
Gated FFs:

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 346 Product Version 9.1

Module Clock Gating Instance Fanout Gated Flip-flops
--
alu RC_CG_HIER_INST 8 aluout_reg[0]

aluout_reg[1]
aluout_reg[2]

...
aluout_reg[6]
aluout_reg[7]

--
Total 1 8
==

1

Related Information

Previewing the Effect of Clock Gating in Low Power in Encounter RTL Compiler

Reporting Clock-Gating Information in Low Power in Encounter RTL Compiler

Clock Gating Cell Specification in the Library Guide for Encounter RTL Compiler.

Affected by this command: synthesize on page 294

Affected by these attributes: lp_clock_gating_add_obs_port

lp_clock_gating_add_reset

lp_clock_gating_cell

lp_clock_gating_control_point

lp_clock_gating_exclude

lp_clock_gating_style

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 347 Product Version 9.1

report clocks

report clocks
[-ideal] [-generated]
[clock]... [-mode mode_name] [> file]

Generates a report on the clocks of the current design. Reports the clock period, rise, fall,
domain, setup uncertainty, latency, clock ports or sources in the current design.

Use the -generated option to report generated clock information, and use the -ideal
option to report an ideal clock - clock relationship.

Options and Arguments

Example

The following example generates a clock report with generated clock information added to the
table:

rc:/> report clocks -generated

==

Generated by: RTL Compiler (RC) Version

Generated on: Date

Module: test

Technology library: tutorial 1.0

Operating conditions: typical_case (balanced_tree)

Wireload mode: enclosed

==

Clock Description

Clock No of

clock Specifies the name of the clock for which you want to generate
the report.

file Specifies the name of the file to which to write the report.

-generated Adds generated clock information to the description,
uncertainty, and the relationship table.

-ideal Reports a clock description with the ideal clock - clock
relationship.

-mode mode_name Generates a report by mode on the clocks of the current design.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 348 Product Version 9.1

Name Period Rise Fall Domain Pin/Port Registers
--

CLK1 4000.0 0.0 2000.0 domain_1 Clk 5

CLK2 2000.0 0.0 1000.0 domain_1 C 0

CLK3 3000.0 0.0 1500.0 domain_2 Clk1 5

CLK4 6000.0 0.0 3000.0 domain_2 C1 0

Clock Network Latency / Setup Uncertainty

Network Network Source Source Setup Setup
Clock Latency Latency Latency Latency Uncertainity Uncertainity
Name Rise Fall Rise Fall Rise Fall
--

CLK1 140.0 140.0 150.0 150.0 100.0 100.0

CLK2 120.0 120.0 120.0 120.0 110.0 110.0

CLK3 100.0 100.0 100.0 100.0 100.0 100.0

CLK4 0.0 0.0 0.0 0.0 0.0 0.0

Clock Relationship (with uncertainity & latency)

From To R->R R->F F->R F->F
--

CLK1 CLK1 3900.0 1900.0 1900.0 3900.0

CLK1 CLK2 1840.0 840.0 1840.0 840.0

CLK2 CLK1 1950.0 1950.0 950.0 950.0

CLK2 CLK2 1890.0 890.0 890.0 1890.0

CLK3 CLK3 2900.0 1400.0 1400.0 2900.0

CLK3 CLK4 2800.0 2800.0 1300.0 1300.0

CLK4 CLK3 3100.0 1600.0 3100.0 1600.0

CLK4 CLK4 6000.0 3000.0 3000.0 6000.0

Related Information

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affected by this command: create_mode on page 237

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 349 Product Version 9.1

report congestion

report congestion [>file]

Reports the total number (and percentage) of gcells with overflow, the total overflow of the
design as well as the maximum overflow and the associated gcell.

Options and Arguments

Example

The following command shows the congestion summary for design test.

rc:/> report congestion

==
Generated by: RTL Compiler (RC) Version
Generated on: Date
Module: test
Technology libraries: lib1

lib2
Operating conditions: max
Interconnect mode: placement
Area mode: physical library

==

GCELLS with H overflow: 99 (6.71%)
GCELLS with V overflow: 329 (22.29%)
Total number of GCELLS: 1476

Item Oflow/Avail Gcell (Bounding-box location)
--
Max. Overflow -111/201 20,18 (480.0,432.0),(504.0,456.0)
Max. Overflow (H) -52/118 31,29 (744.0,696.0),(768.0,720.0)
Max. Overflow (V) -75/87 19,17 (456.0,408.0),(480.0,432.0)
Total Overflow -7172
Total Overflow (H) -1329
Total Overflow (V) -5843

file Specifies the name of the file to which to write the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 350 Product Version 9.1

report datapath

report datapath [-full_path]
[-no_header] [-no_area_statistics]
[-mux] [-all] [-max_width string]
[-print_instantiated] [-print_inferred]
[-sort keys] [design] [> file]

Reports datapath operators that were inferred from the design. This command is available
after elaboration. You must set the set the hdl_track_filename_row_col attribute to
true to enable filename, column, and line number tracking in the datapath report; otherwise
these headings will be hidden.

Options and Arguments

-all Reports all datapath operators present in the design including
muxes.

Note: The mux operators are different from the MUX library
cells that are picked by the mapper or are available in the
technology library.

design Specifies a particular design on which to report datapath
operators. By default, RTL Compiler reports on the current
design.

file Specifies the name of the file to which to write the report.

-full_path Reports the full UNIX path name of the filename, including the
filename. By default, RTL Compiler only reports the design
name. See Examples for more information.

-max_width string Specifies the maximum width of individual column names. By
default, the maximum width for a column is 20. If a name is
more than 20, it will wrap to the next line.

The valid column names are Module, Instance, Operator,
Signedness, Architecture, Inputs, Outputs, Cell Area,
Line, Col, and Filename.

-mux Reports muxes present in the design. Muxes are not reported
by default.

Using the -mux option only displays the muxes in the design
and suppresses the other datapath operators. To view both, use
the -all option.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 351 Product Version 9.1

-no_area_statistics Suppresses the table that only shows the total area and
percentage information. The area and the percentage of the
total area consumed by the datapath operators in the design
are only available after issuing the synthesize -to_mapped
command.

-no_header Suppresses the header information.

-print_inferred Reports only the inferred datapath components in the design.

-print_instantiated Reports only the instantiated datapath components in the
design.

-sort keys Indicates how to sort the report. You can sort on the following
keys:

■ architectures sorts the architectures in alphabetical
order

■ area sorts by descending area

■ inputs sorts based on the number*width (number of bits)
of the input signals—components with higher number of bits
are printed first

■ instances sorts the instances in alphabetical order

■ outputs sorts based on the number*width (number of bits)
of the output signals—components with higher number of
bits are printed first

■ operators sorts by operator

■ slack sorts by ascending slack

■ subdesigns sorts the subdesigns in alphabetical order

By default, the report does not contain the slack numbers.

Note: You can sort on several keys.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 352 Product Version 9.1

Examples

■ The following example generates a report of the datapath components for the
rpdp1_basic design.

rc:/> report datapath rpdp1_basic
==
...
Module: rpdp1_basic
Technology library: tutorial 1.0

...
==
Instantiated datapath components

Operator Signedness Inputs Outputs CellArea Line Col Filename
===
rpdp1_basic
d1
u2
module:CW__CW_multadd__builtin_wA8_wB8_wC8_wZ16
CW/CW_multadd/builtin

n/a n/a 8x8x8x1 16 1239.75 38 52 impl_inf.v
+++

mul_1_19
very_fast/non_booth

* signed 9x9 16 912.75
+++

add_1_24
very_fast + signed 16x9 16 322.50

===

Inferred components

Operator Signedness Inputs Outputs CellArea Line Col Filename
===
rpdp1_basic
mul_18_28
module:mult_unsigned
very_fast/non_booth

* unsigned 16x8 16 1044.00 18 28 impl_inf.v
===

Type CellArea Percentage

datapath modules 2283.75 20.55
external muxes 0.00 0.00
others 8829.00 79.45

total 11112.75 100.00

■ By default, when using the report datapath command on a mapped netlist
containing datapath operators, you will get the area statistics of the design, as shown in
the following example:

datapath modules 4938.00 100.00
mux modules 0.00 0.00
others 0.00 0.00

total 4938.00 100.00

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 353 Product Version 9.1

This information is useful in determining the percentage of the design that contains
datapath operators. If you do not want to report this information, then use the
-no_area_statistics option.

By default, the area report is suppressed for a netlist that contains only generic cells (no
library cells).

■ The following command provides a 30-character width to the filename column and
provides a 0-character width to the area column:

report datapath -max_width {{filename 30} {area 0}}

■ The following command generates a report sorted by area.

rc:/> report datapath -sort area

==
...
==

Inferred components

 Operator Signedness Inputs Outputs CellArea Line Col Filename
==
lt_leq
 add_14_26
 module:add_signed
 very_fast + signed 4x4 4 31.50 14 26 lt_leq.v
==
lt_leq
 lt_13_25
 module:lt_signed
 very_fast < signed 4x4 1 26.25 13 25 lt_leq.v
==
lt_leq
 lt_16_25
 module:lt_unsigned
 very_fast < unsigned 4x4 1 26.25 16 25 lt_leq.v
==
lt_leq
 le_17_26
 module:leq_unsigned
 very_fast <= unsigned 4x4 1 25.50 17 26 lt_leq.v
==

 Type CellArea Percentage

datapath modules 109.50 75.26
external muxes 0.00 0.00
others 36.00 24.74

total 145.50 100.00

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 354 Product Version 9.1

■ The following command sorts the report first by slack, then by area:

rc:/> report datapath -sort {slack area}
==
...
==

Inferred components

Operator Signedness Inputs Outputs CellArea Line Col Filename Slack
===
====
lt_leq
 lt_13_25
 module:lt_signed
very_fast < signed 4x4 1 26.25 13 25 lt_leq.v -145.2

===
lt_leq
 lt_16_25
 module:lt_unsigned
very_fast < unsigned 4x4 1 26.25 16 25 lt_leq.v -145.2

===
lt_leq
 le_17_26
 module:leq_unsigned
very_fast <= unsigned 4x4 1 25.50 17 26 lt_leq.v -53.3

===
lt_leq
 add_14_26
 module:add_signed
very_fast + signed 4x4 4 31.50 14 26 lt_leq.v 49.0

===

 Type CellArea Percentage

datapath modules 109.50 75.26
external muxes 0.00 0.00
others 36.00 24.74

total 145.50 100.00

Related Information

Generating Datapath Reports in Datapath Synthesis in Encounter RTL Compiler for
detailed information on interpreting the report, reporting RTL sharing, and interpreting the
report datapath command at different stages in the design flow.

Affected by this attribute: hdl_track_filename_row_col

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 355 Product Version 9.1

report design_rules

report design_rules [design]... [> file]

Reports any design rule violations that are present in the specified design objects.

Options and Arguments

Examples

■ The following example generates a report of the design rule violations for the specified
design:

> report design_rules alu
==
Generated by: RTL Compiler (RC) version
Generated on: Current date Current time
Module: alu
Technology library: tutorial 1.0
Operating conditions: typical_case (balanced_tree)
Wireload mode: enclosed

==

Max_transition design rule: no violations.

Max_capacitance design rule: no constraints.

Max_fanout design rule: no constraints.

Related Information

design Specifies the design for which you want to generate a report.

By default, a report is created for all designs currently loaded in
memory.

file Specifies the name of the file to which to write the report.

Affected by this command: synthesize on page 294

Affected by these attributes: ignore_library_max_fanout

max_capacitance

max_fanout

max_transition

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 356 Product Version 9.1

report dft_chains

report dft_chains [design] [-chain scan_chain]...
[-dft_configuration_mode dft_config_mode_name]
[-summary] [> file]

Reports for every chain in the design the following elements:

■ The scan data input port and its hookup pin

■ The scan data output port and its hookup pin

■ The shift enable port and its hookup pin

■ The DFT clock domain and the DFT clock domain edge of the chain (for muxed scan
only)

■ The length of the chain

■ The elements in the chain

In case of the muxed scan style, the report also lists for each element the test clock and
test clock edge determined by the check_dft_rules command for that element.

■ Any user-specified segments with their elements

In case of the muxed scan style, this includes data lockup elements, and the location of
the data lockup element in the chain.

■ The bit position and length of any user-specified segment in the chain

■ The head and tail test clock and test clock edge for any abstract segment in the chain

Options and Arguments

-chain scan_chain...

Reports only the listed scan chains

design Specifies the design for which you want to generate a report.

Note: If you have multiple top designs, you must either specify
the design name, or change to the directory in the design
hierarchy that contains the design for which you want the report.

-dft_configuration_mode dft_configuration_mode_name

Reports the scan chains related to the specified scan mode
name.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 357 Product Version 9.1

Examples

■ The following example shows one scan chain, with three user-defined segments.

rc:/designs/test> report dft_chains
Reporting 1 scan chain

Chain 1: DFT_chain_1
scan_in: in[0]
scan_out: out[1] (shared output)
shift_enable: SE (active high)

clock_domain: clk (edge: mixed)
length: 8
START segment segHead (type: floating)
@ bit 1, length: 2
bit 1 out_reg_4 <clk/fall>
bit 2 out_reg_5 <clk/fall>

END segment segHead
bit 3 out_reg_6 <clk/fall>
bit 4 out_reg_7 <clk/fall>
START segment segBody (type: fixed)
@ bit 5, length: 2
bit 5 out_reg_1 <clk/rise>
bit 6 out_reg_3 <clk/rise>

END segment segBody
bit 7 out_reg_2
START segment segTail (type: floating)
@ bit 8, length: 1
bit 8 out_reg_0 <clk/rise>

END segment segTail

■ The following example shows the summary report for the previous example.

rc:/designs/test> report dft_chains -summary
Reporting 1 scan chain (muxed_scan)

Chain 1: DFT_chain_1
scan_in: in[0]
scan_out: out[1] (shared output)
shift_enable: SE (active high)
clock_domain: clk (edge: mixed)
length: 8

file Specifies the name of the file to which to write the report.

-summary Condenses the scan chain report to include only chain name,
scan-data pins, shift enable, clock domain and length
information.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 358 Product Version 9.1

■ The following examples show the scan chains of a design before and after DFT
compression:

❑ Before compression
Reporting 2 scan chains (muxed_scan)

Chain 1: AutoChain_1
 scan_in: DFT_sdi_1
scan_out: DFT_sdo_1
shift_enable: se (active high)
clock_domain: clk (edge: rise)
length: 10
bit 1 out_reg[1] <clk (rise)>
bit 2 out_reg[2] <clk (rise)>
bit 3 out_reg[3] <clk (rise)>
bit 4 out_reg[4] <clk (rise)>
bit 5 out_reg[5] <clk (rise)>
bit 6 out_reg[6] <clk (rise)>
bit 7 out_reg[7] <clk (rise)>
bit 8 out_reg[8] <clk (rise)>
bit 9 out_reg[9] <clk (rise)>
bit 10 out_reg[10] <clk (rise)>

Chain 2: AutoChain_2
scan_in: DFT_sdi_2
scan_out: DFT_sdo_2
shift_enable: se (active high)
clock_domain: clk (edge: rise)
length: 10
bit 1 out_reg[11] <clk (rise)>
bit 2 out_reg[12] <clk (rise)>
bit 3 out_reg[13] <clk (rise)>
bit 4 out_reg[14] <clk (rise)>
bit 5 out_reg[15] <clk (rise)>
bit 6 out_reg[16] <clk (rise)>
bit 7 out_reg[17] <clk (rise)>
bit 8 out_reg[18] <clk (rise)>
bit 9 out_reg[19] <clk (rise)>
bit 10 out_reg[20] <clk (rise)>

❑ After compression

The report shows in addition

❍ How the original scan chains have been divided in several internal chains.

❍ For each internal chain the START and END (separate scan data input and
output) are given together with the length of the internal channel.

❍ An additional scan chain, mask_chain (if the user opted to add making logic)

The mask chain is comprised of abstract segments only.

The shift-enable signal of the mask chain is reported as NONE because it is a
connected shift enable.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 359 Product Version 9.1

Reporting 3 scan chains (muxed_scan)

Chain 1: AutoChain_1 (compressed)
scan_in: DFT_sdi_1
scan_out: DFT_sdo_1
shift_enable: se (active high)
clock_domain: clk (edge: rise)
length: 10

<START compressed internal chain AutoChain_1_0 (sdi: g121/SWBOX_SI[0])>
bit 1 out_reg[1] <clk (rise)>
bit 2 out_reg[2] <clk (rise)>
<END compressed internal chain AutoChain_1_0 (sdo: g121/SWBOX_SO[0])

(length: 2)>
<START compressed internal chain AutoChain_1_1 (sdi: g121/SWBOX_SI[1])>

bit 3 out_reg[3] <clk (rise)>
bit 4 out_reg[4] <clk (rise)>
<END compressed internal chain AutoChain_1_1 (sdo: g121/

SWBOX_SO[1]) (length: 2)>
<START compressed internal chain AutoChain_1_2 (sdi: g121/SWBOX_SI[2])>

bit 5 out_reg[5] <clk (rise)>
bit 6 out_reg[6] <clk (rise)>
<END compressed internal chain AutoChain_1_2 (sdo: g121/SWBOX_SO[2])

(length: 2)>
<START compressed internal chain AutoChain_1_3 (sdi: g121/SWBOX_SI[3])>

bit 7 out_reg[7] <clk (rise)>
bit 8 out_reg[8] <clk (rise)>
<END compressed internal chain AutoChain_1_3 (sdo: g121/SWBOX_SO[3])

(length: 2)>
<START compressed internal chain AutoChain_1_4 (sdi: g121/SWBOX_SI[4])>

bit 9 out_reg[9] <clk (rise)>
bit 10 out_reg[10] <clk (rise)>
<END compressed internal chain AutoChain_1_4 (sdo: g121/SWBOX_SO[4])

(length: 2)>

Chain 2: AutoChain_2 (compressed)
scan_in: DFT_sdi_2
scan_out: DFT_sdo_2
shift_enable: se (active high)
clock_domain: clk (edge: rise)
length: 10

<START compressed internal chain AutoChain_2_5 (sdi: g121/SWBOX_SI[5])>
bit 1 out_reg[11] <clk (rise)>
bit 2 out_reg[12] <clk (rise)>
<END compressed internal chain AutoChain_2_5 (sdo: g121/SWBOX_SO[5])

(length: 2)>
...
...

<START compressed internal chain AutoChain_2_9 (sdi: g121/SWBOX_SI[9])>
bit 9 out_reg[19] <clk (rise)>
bit 10 out_reg[20] <clk (rise)>
<END compressed internal chain AutoChain_2_9 (sdo: g121/SWBOX_SO[9])

(length: 2)>

Warning - could not find shift_enable signal for chain /designs/top/dft/
report/actual_scan_chains/mask_chain
Chain 3: mask_chain
scan_in: msi
scan_out: mso
shift_enable: NONE
clock_domain: mck (edge: rise)
length: 10

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 360 Product Version 9.1

START segment DFT_segment_1 (type: abstract)
@ bit 1, length: 4
pin g121/msi[0] <mck (rise)>
pin g121/mso[0] <mck (rise)>

END segment DFT_segment_1
START segment DFT_segment_3 (type: abstract)
@ bit 5, length: 3
pin g121/msi[2] <mck (rise)>
pin g121/mso[2] <mck (rise)>

END segment DFT_segment_3
START segment DFT_segment_2 (type: abstract)
@ bit 8, length: 3
pin g121/msi[1] <mck (rise)>
pin g121/mso[1] <mck (rise)>

END segment DFT_segment_2

Related Information

Reporting on All Scan Chains in Design for Test in Encounter RTL Compiler

Compressing Scan Chains in Design for Test in Encounter RTL Compiler

Affected by this command: connect_scan_chains on page 523

compress_scan_chains on page 508

Related attributes: Actual Scan Chain

Actual Scan Segment

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 361 Product Version 9.1

report dft_registers

report dft_registers [-pass_tdrc] [-fail_tdrc]
[-lockup] [-latch] [-dont_scan] [-misc]
[-shift_reg] [design] [> file]

Reports the DFT status of all flip-flop instances in the design. Use this command after running
check_dft_rules. More specifically, the command reports

■ Registers which pass the DFT rule checker

For each flip-flop, it reports the hierarchical instance name along with their DFT test clock
domain and active edge.

■ Registers which fail the DFT rule checker

For each flip-flop, it reports the hierarchical instance name along with the violation type
(clock, or asynchronous set/reset) and the violation ld number.

For an abstract segment that fails the DFT rule checker, it reports the name of the
abstract segment, and the number of flip-flops in the segment.

■ Registers that are preserved or marked dont-scan

Note: Mapped flip-flops can be listed in this category if

❑ The flip-flop is marked preserved and it is mapped to a non-scan flop

However, if a flip-flop is marked preserved and is already mapped to scan for DFT
purposes, it will be listed as either passing or failing the DFT rule checker—based
on the DFT rule checker analysis—and it will not be listed in this category.

❑ The flip-flop is mapped to a scan flop for non-DFT purposes

■ Registers that are marked Abstract Segment dont-scan.

■ Registers that are part of shift register segments

■ Registers that are identified as lockup elements

■ Registers that are level-sensitive elements

■ Registers not part of any of the other categories

Without any options specified, the command reports on all categories of registers.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 362 Product Version 9.1

Options and Arguments

Example

■ The following example shows that 1 flip-flop passed the DFT rule checks, while 4
flip-flops failed the tests.

rc:/> report dft_registers

Reporting registers that pass DFT rules
Iset_reg PASS; Test clock: clk/rise

Reporting registers that fail DFT rules
out_reg_0 FAIL; violations: clock #(0) async set #(1)
out_reg_1 FAIL; violations: clock #(0) async set #(1)
out_reg_2 FAIL; violations: clock #(0) async set #(1)
out_reg_3 FAIL; violations: clock #(0) async set #(1)

Reporting registers that are preserved or marked dont-scan
Reporting registers that are marked Abstract Segment Dont Scan
Reporting registers that are part of shift register segments
Reporting registers that are identified as lockup elements

design Specifies the design for which you want to generate a report.

By default a report is created for all designs currently loaded in
memory.

-dont_scan Reports all edge-triggered registers that are not to be mapped
to scan flops, or connected into the top-level chains.

-fail_tdrc Reports all edge-triggered registers that fail the DFT rule
checks.

file Specifies the name of the file to which to write the report.

-latch Reports all registers of type latch in the design.

Note: Latch instances which are instantiated as lockup
elements in a preserved segment are reported with the
-lockup option.

-lockup Reports data lockup elements of type latch or flop that are
either instantiated in a preserved segment, or added to the
design during scan chain configuration.

-misc Reports all registers that are not reported through any of the
other options, such as clock-gating registers.

-pass_tdrc Reports all edge-triggered registers that pass the DFT rule
checks.

-shift_reg Reports all registers that are part of shift register segments.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 363 Product Version 9.1

Reporting registers that are level-sensitive elements
Reporting misc. non-scan registers
Summary:
Total registers that pass DFT rules: 1
Total registers that fail DFT rules: 4
Total registers that are marked preserved or dont-scan: 0
Total registers that are marked Abstract Segment dont-scan: 0
Total registers that are part of shift register segments: 0
Total registers that are lockup elements: 0
Total registers that are level-sensitive: 0
Total registers that are misc. non-scan: 0

■ The following report was generated after the scan configuration engine was run. In this
case, four lockup elements were inserted:

rc:/> report dft_registers

Reporting registers that pass DFT rules
out1_reg_0 PASS; Test clock: test_clk1/rise
...
out1_reg_4 PASS; Test clock: test_clk1/fall
...
out2_reg_0 PASS; Test clock: test_clk2/rise
...
out2_reg_4 PASS; Test clock: test_clk2/fall
...
out3_reg_0 PASS; Test clock: test_clk3/rise
...
out3_reg_4 PASS; Test clock: test_clk3/fall
...

Reporting registers that fail DFT rules
Reporting registers that are preserved or marked dont-scan
Reporting registers that are marked Abstract Segment Dont Scan
Reporting registers that are part of shift register segments
Reporting registers that are identified as lockup elements
DFT_lockup_g1
DFT_lockup_g348
DFT_lockup_g349
DFT_lockup_g350

Reporting registers that are level-sensitive elements
Reporting misc. non-scan registers
Summary:
Total registers that pass DFT rules: 27
Total registers that fail DFT rules: 0
Total registers that are marked preserved or dont-scan: 0
Total registers that are marked Abstract Segment dont-scan: 0
Total registers that are part of shift register segments: 0
Total registers that are lockup elements: 4
Total registers that are level-sensitive: 0
Total registers that are misc. non-scan: 0

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 364 Product Version 9.1

Related Information

Reporting Status of Flip-Flops in Design for Test in Encounter RTL Compiler.

Affected by this command: check_dft_rules on page 501

Related attributes: dft_dont_scan

dft_scan_style

dft_status

dft_violation

preserve (instance)

preserve (subdesign)

Scan Segment Attributes

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 365 Product Version 9.1

report dft_setup

report dft_setup [design] [> file]

Reports DFT setup information for the design including both user-defined and tool-inferred
information.

You must load and elaborate a design before you can use this command. The contents of this
report further depends on the stage of the design that you are at.

Use this command at the end of the design process to document the DFT setup and resulting
configuration of the design.

Options and Arguments

Examples

■ The following example shows the report after you have elaborated the design. Because
you have not specified any setup information yet, the information shown is based on the
default settings for DFT.

rc:/> report dft_setup

Design Name
===========

top

Scan Style
==========

muxed_scan
DFT rule check status is not available. Need to (re)run check_dft_rules

Global Constraints
==================

Minimum number of scan chains: no_value
Maximum length of scan chains: no_value
Lock-up element type: level_sensitive
Mix clock edges in scan chain: false
Prefix for unnamed scan objects: DFT_

Test signal objects
===================

design Specifies the design for which you want to generate a report.

By default a report is created for all designs currently loaded in
memory.

file Specifies the name of the file to which to write the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 366 Product Version 9.1

Test clock objects
==================
Reporting all test clocks as TDRC status is not available

DFT controllable objects
========================

DFT don’t scan objects
======================

DFT abstract don’t scan objects
===============================

DFT scan segment constraints
============================

DFT scan chain constraints
==========================

DFT actual scan chains
======================

■ The following example shows the report after the scan configuration engine was run:

rc:/designs/test> report dft_setup

Design Name
===========

top

Scan Style
==========

muxed_scan
Design has a valid DFT rule check status

Global Constraints
==================

Minimum no of Scan chains: no_value
Maximum length of scan chains: no_value
Lock-up element type: level_sensitive
Mix clock edges in scan chain: true
Prefix to name user defined scan chains: DFT_

Test signal objects
==================

shift_enable:
object name: SE
pin name: SE
hookup_pin: SE

 hookup_polarity: non_inverted
active: high
ideal: true
user defined: true

Test clock objects
==================

test_clock:
object name: clk
user defined: false
source: clk

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 367 Product Version 9.1

root source: clk
root source polarity: non_inverting
hookup_pin: clk
period: 50000.0

DFT controllable objects
========================

DFT don’t scan objects
======================

DFT abstract don’t scan objects
===============================

DFT scan segment constraints
============================

Segment:
object name: segHead
scan-in:
scan-out:
shift-enable: internal
connected_shift_enable: false
length: 2
type: floating

Segment:
object name: segTail
...

Segment:
object name: segBody
scan-in:
scan-out:
shift-enable: internal
connected_shift_enable: false
length: 2
type: fixed

DFT scan chain constraints
==========================

User Chain:
object name: DFT_chain_1
scan-in: in[0]
scan-in hookup_pin: in[0]
scan-out: out[1]
scan-out hookup_pin: out[1]
shared out: true
shift_enable object name:
max length: no_value

 head segment: segHead
 tail segment: segTail
 complete: false

DFT actual scan chains
======================

Actual Chain:
object name: DFT_chain_1
scan-in: in[0]

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 368 Product Version 9.1

scan-in hookup_pin: in[0]
scan-out: out[1]
scan-out hookup_pin: out[1]
shared out: true
shift_enable: SE
length: 8
segment objects: segHead segBody segTail
analyzed: false

 test_clock domain: clk
 test_clock edge: any

Related Information

Affected by these constraints: define_dft shift_enable on page 572

define_dft test_clock on page 577

define_dft test_mode on page 581

Affected by this command: check_dft_rules on page 501

connect_scan_chains on page 523

Related attributes: dft_controllable

dft_dont_scan

dft_lockup_element_type

dft_max_length_of_scan_chains

dft_min_number_of_scan_chains

dft_mix_clock_edges_in_scan_chains

dft_prefix

dft_scan_style

(instance) preserve

(subdesign) preserve

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 369 Product Version 9.1

Related attributes: Actual Scan Chain Attributes

Actual Scan Segment Attributes

Scan Segment Attributes

Scan Chain Attributes

Test Clock Attributes

Test Signal Attributes

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 370 Product Version 9.1

report dft_violations

report dft_violations [-async] [-clock]
[-abstract] [-shiftreg] [-tristate]
[-race] [-xsource] [-xsource_by_instance]
[design] [> file]

Reports for each violation the object name, the type of violation, the description of the
violation, how to find the root pin or port of the problem, the source file and the line number
where to find the problem, the number of registers affected, and the instance names of the
affected registers. The report is sorted by violation type. Run the DFT rule checker to get
meaningful information.

Without any options specified, the command reports on all types of violations.

Options and Arguments

-abstract Reports all abstract segment test mode violations.

-async Reports all async set and async reset violations.

-clock Reports all clock violations.

design Specifies the design for which you want to generate a report.

By default a report is created for all designs currently loaded in
memory.

file Specifies the name of the file to which to write the report.

-race Specifies to report potential race condition violations.

-shiftreg Reports all shift register segment violations.

-tristate Reports tristate design rules checking violations.

-xsource Reports X-Source violations.

-xsource_by_instance

Reports X-Source violations by instance.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 371 Product Version 9.1

Examples

■ The following example shows that the design has four violations, but only detailed
information on the clock violations is requested.

rc:/> report dft_violations -clock
Total 4 violations (muxed_scan)

Clock Rule Violations
=====================
Reporting 2 clock violations

Violation #0:
Object name: vid_0_clock
Type: clock violation
Description: [CLOCK-05] internal or gated clock signal
Source: g1/z (test10.v:12)
Number of registers affected: 4
Affected registers:
out1_reg[0]
out1_reg[1]
out1_reg[2]
out1_reg[3]

Violation #1:
Object name: vid_1_clock
Type: clock violation
Description: [CLOCK-06] clock signal driven by a sequential element
Source: divClk_reg/q (test10.v:14)
Number of registers affected: 4
Affected registers:
out2_reg[0]
out2_reg[1]
out2_reg[2]
out2_reg[3]

Violation Rule Summary Report

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 372 Product Version 9.1

=============================
[CLOCK-05] internal or gated clock signal : 1
[CLOCK-06] clock signal driven by a sequential element : 1

■ The following example reports one tristate net contention violation.

rc:/> report dft_violations
Total 1 violation (muxed_scan)

Tristate Net Violations
=====================
Reporting 1 tristate net contention violations

Violation #0:
Object name: vid_0_tristate_net
Type: tristate net violation
Description: [TRISTATE_NET-01] tristate net potentially driven by conflicting
values

Tristate net affected: tbus
Tristate net load pin affected: tbus
Tristate drivers causing contention: b2/Y b1/Y b3/Y b4/Y b6/Y b8/Y b7/Y b5/Y

...
Violation Rule Summary Report
=============================
[TRISTATE_NET-01] tristate net potentially driven by conflicting values : 1

Related Information

Affected by this command: check_dft_rules on page 501

fix_dft_violations on page 586

Related attributes: Violations Attributes

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 373 Product Version 9.1

report disabled_transparent_latches

report disabled_transparent_latches [> file]

Reports the disabled transparent latches and the enable to Q arcs that are not yet disabled.
Transparent latches are latches with enable signal held constant at the active state. Without
enabling transparent latches, paths through them cannot be traced.

Options and Arguments

Related Information

file Specifies the name of the file to which to write the report.

Affected by this command: enable_transparent_latches on page 64

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 374 Product Version 9.1

report gates

report gates [-library_domain library_domain_list]
[-power] [-yield]
[-instance_hier instance] [design] [> file]

Reports the technology library cells that were implemented (and identifies their originating
libraries), the area of the cell instances, and the break up of the instances into timing models,
sequential cells, inverters and logic gate cells. Optionally power information can be reported.

Note: Timing models can refer to memory cells, IPs, integrated clock-gating cells, and so on.

Options and Arguments

design Specifies the block for which you want to generate a report. You
can also cd into the particular design directory and generate
the report.

file Specifies the name of the file to which to write the report.

-instance_hier instance

Restricts the reported information to the specified hierarchical
instance.

-library_domain library_domain_list

Restricts the reported information to the specified library
domains.

Note: This option only applies when using CPF.

-power Adds leakage power and internal power information.

-yield Reports the yield cost and yield percentage values for each
library cell.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 375 Product Version 9.1

Examples

■ The following example reports information such as the type of cells that were used,
number of instances, area, and originating library of the current design.

rc:/> report gates
==
...
Module: alu
Technology library: tutorial 1.0
Operating conditions: typical_case (balanced_tree)
Wireload mode: enclosed

==

Gate Instances Area Library

flopdrs 9 72.000 tutorial
inv1 35 105.000 tutorial
nand2 112 112.000 tutorial
nor2 37 55.500 tutorial
xor2 17 34.000 tutorial

total 210 378.500

Type Instances Area Area %

sequential 9 72.000 19.0
inverter 35 105.000 27.7
logic 166 201.500 53.2

total 210 378.500 100.0

■ The following example shows the additional power information in the report.

❑ The first table lists the leakage and internal power of all instances per used library
cell.

❑ The second table shows the number and percentage of instances coming from each
library, the leakage and internal power consumed by these instances, as well as the
percentage of power consumed by these instances.

❑ The third table shows the leakage and internal power of all sequential cells,
inverters, and combinational cells, as well as the percentage of power that each type
consumes.

rc:/> report gates -power
==
...
==

Leakage Internal
Gate Instances Area Power (nW) Power (nW) Library

--
ACHCONX2TH 1 28.856 59.948 372.198 slow_hvt
ADDFHX1 1 39.040 158.364 276.327 slow
...
XOR2XL 10 118.820 339.664 471.216 slow

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 376 Product Version 9.1

XOR2XLTH 449 5335.018 6259.161 22146.660 slow_hvt
XOR3XL 1 28.856 83.655 80.446 slow
--
total 11980 109000.238 139743.990 505460.121

Leakage Leakage Internal Internal
Library Instances Instances % Power (nW) Power % Power (nW) Power %

slow 1919 16.0 74607.161 53.4 168629.031 33.4
slow_hvt 10061 84.0 65136.830 46.6 336831.090 66.6

Leakage Leakage Internal Internal
Type Instances Area Area % Power (nW) Power % Power (nW) Power %

--
sequential 212 7864.054 7.2 17285.068 12.4 112374.696 22.2
inverter 1684 5961.269 5.5 5752.468 4.1 22492.255 4.4
buffer 37 364.941 0.3 1877.474 1.3 3920.823 0.8
logic 10047 94809.9748 87.0 114828.979 82.2 366672.348 72.5
--
total 11980 109000.2382 100.0 139743.990 100.0 505460.121 100.0

■ The following example reports the yield cost and yield percentage values for each library
cell:

Gate Instances Area Cost Yield Library

flopdrs 33 264.000 3.39278e-06 99.9997 tutorial

inv1 103 51.500 1.5022e-06 99.9998 tutorial

nand2 315 315.000 1.08311e-05 99.9989 tutorial

nor2 19 28.500 6.79989e-07 99.9999 tutorial

total 470 659.000 1.64061e-05 99.9984

Type Instances Area Area %

sequential 33 264.000 40.1

inverter 103 51.500 7.8

logic 334 343.500 52.1

total 470 659.000 100.0

Related Information

Analyze Design in Low Power in Encounter RTL Compiler

Affected by this command: synthesize on page 294

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 377 Product Version 9.1

report hierarchy

report hierarchy [design] [> file]

Generates a report based on the design hierarchy starting from the top level module down to
the leaf module. The report will take the following format:

level instance (module) <status>

status : preserve_<value> -- indicating preserve hierachy or inherited_preserve
value

: blackbox -- indicating unresolved instance

Note: The hdl_track_filename_row_col attribute needs to be set to true before
elaboration in order to successfully use this command.

Options and Arguments

Example

■ The following example reports the hierarchy of desing m1:

==
Hierarchy Report Format :

level instance (module) <status>

status : preserve_<value> -- indicating preserve hierachy or
inherited_preserve value

: blackbox -- indicating unresolved instance
==

0 m1
1 m2 (m2)

2 m3 (m3)
3 m3_0 (m3_0)

4 m3_0_0 (m3_0_0)
3 m4 (m4)

4 m5 (m5)
5 m5_bbox (m5_bbox) blackbox

4 m6 (m6)
2 m2myclk (m2myclk)

design Specifies a specific design to report when there are multiple
designs.

file Specifies the name of the file to which to write the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 378 Product Version 9.1

Related Information

Affected by this attribute: hdl_track_filename_row_col

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 379 Product Version 9.1

report instance

report instance [-timing] [-power] instance... [> file]

Generates a report on the instances of the current design. By default, the report gives timing
related information on the instances. Get power related information using the -power option.

Options and Arguments

Example

■ The following example reports timing information for the n0000D3666 instance:

rc:/> report instance -timing -power n0000D3666

==
...
Module: dpldalgn
Technology library: tutorial 1.0
Operating conditions: typical_case (balanced_tree)
Wireload mode: enclosed

==

Instance Timing Info

Instance n0000D3666 of libcell nor2

Arc Arc Slew Slew
From To In Load Out Delay Slack
--

A r Y f 46.2 20.7 57.2 136.0 -1022.4
A f Y r 46.2 20.7 57.2 136.0 -1022.4
B r Y f 16.5 20.7 57.2 134.0 -900.2
B f Y r 16.5 20.7 57.2 134.0 -900.2

file Specifies the name of the file to which to write the report.

instance Specifies the name of a leaf instance for which to generated the
report.

-power Reports instance leakage, internal power, net power and the
computed probability, toggle rate, and net power on the nets of
the instance, and the activity and power for each of the arcs.

Note: In case the switching activities are user-asserted, the
values are appended with an asterisk (*).

-timing Reports timing information, such as slew-in, load, slew-out,
delay, and slack.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 380 Product Version 9.1

■ The following example shows the timing and power information for instance
o_m2_clk2_1_reg_0.

==
...
Module: m1
Technology library: slow 1.0
Operating conditions: slow (balanced_tree)
Wireload mode: enclosed

==
Instance m2/o_m2_clk2_1_reg_0 of libcell EDFFX1

Arc Arc Slew Slew
From To In Load Out Delay Slack

CK r Q f 0.0 10.0 173.9 387.0 inf
CK f Q r 0.0 10.0 187.3 429.0 inf
D r Q f 0.0 10.0 173.9 inf
D f Q r 0.0 10.0 187.3 inf
E r Q f 0.0 10.0 173.9 inf
E f Q r 0.0 10.0 187.3 inf
CK r QN f 0.0 0.0 64.3 inf
CK f QN r 0.0 0.0 61.3 inf
D r QN f 0.0 0.0 64.3 inf
D f QN r 0.0 0.0 61.3 inf
E r QN f 0.0 0.0 64.3 inf
E f QN r 0.0 0.0 61.3 inf

Instance Power Info

Instance m2/o_m2_clk2_1_reg_0 of Libcell EDFFX1

Leakage Internal Net
Power(nW) Power(nW) Power(nW)

33.7 20470.8 58.3

Computed Computed Net
Pin Net Probability Toggle Rate(/ns) Power(nW)

Q o_m2_clk2_1[0] 0.4 0.0100 58.3
CK n_0 0.5 1.8725 4914.2
D in_2[21] 0.5 0.0200 133.0
E en_2[7] 0.5 0.0200 454.9
CK n_0 0.5 1.8725 4914.2
D in_2[21] 0.5 0.0200 133.0
E en_2[7] 0.5 0.0200 454.9

Arc Arc Arc Arc
From To When Activity Power(nW)

CK CK !D & !E 0.468 9395.6
CK CK D & !E 0.468 9563.0
CK CK !D & E 0.468 11860.1
CK CK D & E 0.468 11972.6
D D 0.020 7725.6
E E 0.020 10293.1
CK Q 0.010 7867.9

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 381 Product Version 9.1

report isolation

report isolation
{ [instance_list]
| [-detail] [-hierarchical]
[-from_power_domain power_domain...]
[-to_power_domain power_domain...] }

[> file]

Reports isolation cell information for the design. The return value of the report corresponds
to the number of leaf isolation cell instances found. The information returned depends on your
current position in the design hierarchy.

Options and Arguments

-detail Requests a detailed isolation cell report. A detailed report
shows the names of the hierarchical isolation cell instances, the
power domains they are inserted between, the power domain
they are stored with, the type of isolation cell, and the number of
leaf isolation cell instances they contain. The following types of
cells can be distinguished:

■ L—Level shifter library cell with isolation logic

■ I—Isolation library cell

■ D—Discrete isolation cell (can contain an AND gate, or OR
gate, or latch, and possibly an inverter)

file Specifies the name of the file to which to write the report.

-from_power_domain power_domain

Reports all isolation cells whose drivers are output pins of
instances in the specified power domains.

-hierarchical Traverses the hierarchy starting from the current module and
reports all the isolation cell instances found in the current
module and its children modules.

instance_list Reports detailed information for the specified hierarchical
isolation cell instances. The detailed report lists

■ For the hierarchical instance: the from and to domain, the
location, the type of the isolation cells, the enable driver (if
it can be determined), and for discrete types, the function.

■ For each leaf cell: the driver and the load.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 382 Product Version 9.1

Examples

■ The following command shows the basic report for the top-level design. The design has
four power domains, four hierarchical isolation cell instances and four leaf isolation cell
instances were inserted.

rc:/> report isolation
==

Generated by: Encounter(r) RTL Compiler version
Generated on: date
Module: top

 ...
==

Category
==
Unique power domains 4
--
Isolation Cell hierarchical instances 4
Isolation Cell instances 4
==

4

Note: The report by instance also shows the type of the isolation
cell. In addition to the three types that are distinguished with the
detailed report, the report by instance can also distinguish two
other types:

■ Generic—Refers to a user-specified (isolation) module that
contains (an) unmapped cell(s).

■ Complex—Refers to a user-specified (isolation) module that
contains complex gates, or a hierarchy that contains mixed
cell types, such as a pure isolation cell and an enabled level
shifter.

These two types cause a warning in the detailed isolation
report.

-to_power_domain power_domain

Reports all isolation cells whose output pins are driving
instances in the specified power domains.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 383 Product Version 9.1

■ The following command shows the detailed report for the design and reports all isolation
instances found in the hierarchy starting from the top level.

rc:/> report isolation -detail -hierarchical

...
Isolation Cell From To Location Type Number of

instance domain domain cells
==
mux_10_14RC_ISO_HIER_INST_22 p1 p2 p2 D 1
mux_10_14RC_ISO_HIER_INST_23 p1 p2 p2 D 1
mux_10_14RC_ISO_HIER_INST_24 p1 p2 p2 D 1
mux_10_14RC_ISO_HIER_INST_26 p1 p2 p2 D 1
mux_10_14RC_ISO_HIER_INST_27 p1 p2 p2 D 1
mux_10_14RC_ISO_HIER_INST_28 p1 p2 p2 D 1
mux_10_14RC_ISO_HIER_INST_29 p1 p2 p2 D 1
mux_10_14RC_ISO_HIER_INST_30 p1 p2 p2 D 1
mux_10_14RC_ISO_HIER_INST_31 p1 p2 p2 D 1
mux_10_14RC_ISO_HIER_INST_32 p1 p2 p2 D 1
RC_ISO_HIER_INST_19 p3 p4 p1 D 1
RC_ISO_HIER_INST_20 p3 p4 p1 D 1
RC_ISO_HIER_INST_25 p3 p4 p1 D 1
RC_ISO_HIER_INST_21 p3 p2 p3 D 1

p4
--
 Summary
=========
 Category
==
Unique power domains 4
--
Isolation Cell hierarchical instances 14
Isolation Cell instances 14
==

14

■ The following command shows the report for instance RC_ISO_HIER_INST_19.

rc:/> report isolation RC_ISO_HIER_INST_19

...
Name: RC_ISO_HIER_INST_19
From domain(s): p3
To domain(s): p4
Location: p1
Type: Discrete
Function: Enable: active_high; Output: low
Enable: s
Details:

Isolation Driver Load
cell instance/pin(s) instance/pin(s)
instance

===
RC_ISO_AND myInsti/y_reg[2]/Q y[2]
RC_ISO_NOT

1

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 384 Product Version 9.1

report level_shifter

report level_shifter
{ [instance_list]
| [-detail] [-hierarchical]
[-from_power_domain power_domain_list]
[-to_power_domain power_domain_list] }

[-verbose] [> file]

Reports level-shifter information for the design. The return value of the report corresponds to
the number of leaf level-shifter instances found.

Options and Arguments

-detail Requests a detailed level shifter report.

file Specifies the name of the file to which to write the report.

-from_power_domain power_domain_list

Reports all level shifters whose drivers are output pins of
instances in the specified power domain.

-hierarchical Reports level shifters hierarchically.

If this option is omitted, reports all level shifters at the current
level of the hierarchy.

instance_list Reports detailed information for the specified hierarchical
level-shifter instances at the current level.

-to_power_domain power_domain_list

Reports all level shifters whose output pins are driving
instances in the specified power domain.

-verbose Reports complete information if it has been not shown with
-detail option.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 385 Product Version 9.1

Examples

■ The following command shows the report for the top-level design. The design has three
power domains, one hierarchical level-shifter instance stored in the power domain for the
top design, and 2 leaf level-shifter instances.

rc:/> report level_shifter
==
Generated by: Encounter(R) RTL Compiler version
Generated on: date
Module: soc
Library domain: umc_08v
Domain index: 0
Technology libraries: scmetro_umcl130e_sp_tt_0p8v_25c 1.0

scmetro_umcl130e_ll_tt_0p8v_25c 1.0
scmetropmk_umc13sp_tt_0p8v_25c 1.0
scmetropmk_umc13sp_tt_0p8v_1p2v_25c 1.0

Operating conditions: _nominal_ (balanced_tree)
Library domain: umc_120v
Domain index: 1
Technology libraries: scmetropmk_umc13sp_tt_0p8v_1p2v_25c 1.0

scmetro_umcl130e_ll_tt_1p2v_25c 1.0
scmetro_umcl130e_sp_tt_1p2v_25c 1.0

Operating conditions: _nominal_ (balanced_tree)
Wireload mode: enclosed
Area mode: timing library

==

Summary

Unique Power Domains : 3
==
Domain Interactions

Level Shifter Level Shifter
From Power Domain To Power Domain Hierarchies Instances
==
PD3 (0.8v-1.2v) PD1 (0.8v) 1 2
==

Total: 1 2
==
2

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 386 Product Version 9.1

■ The following report requests a hierarchical report. This report indicates that the design
uses a total of three power domains, has two hierarchical level-shifter instances and 11
leaf level-shifter instances inserted.

rc:/> report level_shifter -hier
==
...
Summary

Unique Power Domains : 3
==
Domain Interactions

Level Shifter Level Shifter
From Power Domain To Power Domain Hierarchies Instances
==
PD1 (0.8v) PD2 (0.8v-1.2v) 1 4
PD1 (0.8v) PD3 (0.8v-1.2v) 1 4
PD2 (0.8v-1.2v) PD3 (0.8v-1.2v) 1 1
PD3 (0.8v-1.2v) PD1 (0.8v) 1 2
==

Total: 4 11
==
11

■ The following command shows the detailed report of the level shifters between power
domain PD2 and PD3. The report shows the name of the hierarchical level-shifter
instance and the hierarchical instance (module) it was inserted in.

rc:/> report level_shifter -from_power PD2 -to_power PD3 -detail -hier
...
==

From To Module Level Instances Location
Power Power Shifter
Domain Domain Hierarchy
(Range) (Range)

==
PD2 (0.8v-1.2v) PD3 (0.8v-1.2v) socsync_det CPF_LS_HIER_INST_27 1 to
==

Summary

Unique Power Domains : 3
==
Domain Interactions

Level Shifter Level Shifter
From Power Domain To Power Domain Hierarchies Instances
==
PD2 (0.8v-1.2v) PD3 (0.8v-1.2v) 1 1
==

Total: 1 1
==
1

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 387 Product Version 9.1

■ The following command shows the report for level-shifter instance
CPF_LS_HIER_INST_21. The detailed report lists for each leaf level shifter instance all
pins that it is connecting.

rc:/> report level_shifter [find / -inst CPF_LS_HIER_INST_21]
...
Name: cg_pream/CPF_LS_HIER_INST_21
From Power Domain: PD1 (0.8v-0.8v)
To Power Domain: PD2 (0.8v-1.2v)
Location: to
Instances: 4
Details:

Level From To Is
shifter instance/pin instance/pin dedicated

instance
===

g1 /soc/pd cg_pream/count_reg[1]/RETN true
cg_pream/count_reg[5]/RETN true
cg_pream/count_reg[9]/RETN true
cg_pream/count_reg[2]/RETN true
cg_pream/count_reg[6]/RETN true
cg_pream/count_reg[3]/RETN true
cg_pream/count_reg[7]/RETN true
cg_pream/prem_ok_reg/RETN true
cg_pream/count_reg[0]/RETN true
cg_pream/count_reg[4]/RETN true
cg_pream/count_reg[8]/RETN true

g442 /soc/ck1 cg_pream/count_reg[9]/CK true
cg_pream/count_reg[5]/CK true
cg_pream/count_reg[1]/CK true
cg_pream/count_reg[6]/CK true
cg_pream/count_reg[2]/CK true
cg_pream/count_reg[7]/CK true
cg_pream/count_reg[3]/CK true
cg_pream/count_reg[8]/CK true
cg_pream/count_reg[4]/CK true
cg_pream/count_reg[0]/CK true
cg_pream/prem_ok_reg/CK true

g443 /soc/rec_en cg_pream/g418/B true
cg_pream/g415/A0 true

g444 /soc/rst cg_pream/g428/A true

4

Related Information

Affected by these commands: commit_cpf on page 752

read_cpf on page 760

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 388 Product Version 9.1

report memory

report memory [> file]

Reports the memory resource used by the compiler in the computing platform.

Options and Arguments

file Specifies the name of the file to which to write the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 389 Product Version 9.1

report memory_cells

report memory_cells [library] [> file]

Reports the memory cells in the library.

Options and Arguments

Example

The following command lists the memory cells in the RF32X32_lib library.

rc:/> report memory_cells

Library : RF32X32_lib
Memory Cell: RF32X32
Memory Type: ram
Memory address width: 5
Memory word width: 32
Bus : Q, mode output, 31 to 0
Associated address bus is A
related_pin : CLK
timing_type : rising_edge
Bus : D, mode input, 31 to 0
Associated address bus is A
Misc Attributes clocked_on : CLK
related_pin : CLK
timing_type : hold_rising
related_pin : CLK
timing_type : setup_rising
related_pin : CLK
timing_type : rising_edge
timing_sense : non_unate
Pin : CLK, mode input
capacitance : 0.038
clock : true
max_transition : 1.000
min_pulse_width_high : 0.055
min_pulse_width_low : 0.130
min_period : 0.867
Pin : CEN, mode input
capacitance : 0.002
related_pin : CLK
timing_type : hold_rising
related_pin : CLK

file Specifies the name of the file to which to write the report.

library Specifies the name of the library for which to report the memory
cells.

If no library is specified, the report applies to all libraries that
are loaded.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 390 Product Version 9.1

timing_type : setup_rising
Pin : WEN, mode input
capacitance : 0.010
related_pin : CLK
timing_type : hold_rising
related_pin : CLK
timing_type : setup_rising
Bus : A, mode input, 4 to 0
bus_type : RF32X32_ADDRESS
capacitance : 0.008
related_pin : CLK
timing_type : hold_rising
related_pin : CLK
timing_type : setup_rising
related_pin : CLK
timing_type : hold_rising
related_pin : CLK
timing_type : setup_rising

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 391 Product Version 9.1

report messages

report messages [-all] [-include_suppressed] [-error]
[-warning] [-info] [> file]

Summarizes the information, warning and error messages that have been issued by RTL
Compiler in the current run since the last report. The report contains the number of times the
message has been issued, the severity of the message, the identification number, and the
message text.

The -all option does not report those messages that were suppressed through the
suppress_messages command. Specify the -include_suppressed option to report
such messages.

By adding report messages to your Tcl prompt, RTL Compiler can summarize all messages
issued during the last command right before prompting you for more input. This is useful after
long commands (such as elaborate) that can generate many messages.

Options and Arguments

Examples

Note: The following examples all apply to the same RTL Compiler session.

■ The following example is the first request to report messages in a session.

rc:/> report messages

=================
Message Summary
=================

Num Sev Id Message Text
--
1 Info ELAB-VLOG-9 Variable has no fanout.

This variable is not driving anything and will be

-all Reports all messages since you started this RTL Compiler run.

-error Reports the error messages.

file Specifies the name of the file to which to write the report.

-include_suppressed Reports those messages that were suppressed through the
suppress_messages command.

-info Reports the information messages.

-warning Reports the warning messages.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 392 Product Version 9.1

simplified
3 Info LBR-30 Promoting a setup arc to recovery.

Setup arcs to asynchronous input pins are not
supported

3 Info LBR-31 Promoting a hold arc to removal.
Hold arcs to asynchronous input pins are not
supported

1 Info LBR-54 Library has missing unit.
Current library has missing unit.

■ The following example executes the report messages command immediately after the
previous report messages command and consequently does not return any new
messages.

rc:/> report messages

■ The following example is the third report messages command in a row, but because
the -all option is specified, the same output as with the first command is given:

rc:/> report messages -all

=================
Message Summary
=================

Num Sev Id Message Text
--
1 Info ELAB-VLOG-9 Variable has no fanout.

This variable is not driving anything and will be
simplified

3 Info LBR-30 Promoting a setup arc to recovery.
Setup arcs to asynchronous input pins are not
supported

3 Info LBR-31 Promoting a hold arc to removal.
Hold arcs to asynchronous input pins are not
supported

1 Info LBR-54 Library has missing unit.
Current library has missing unit.

■ The following example requests to print all error messages since this run was started,
but no error messages were found:

rc:/> report messages -all -error

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 393 Product Version 9.1

report net_cap_calculation

report net_cap_calculation net [> file]

Reports the capacitance values for the different pins or ports that are connected to the
specified net.

■ For a pin, the capacitance value is the capacitance of the libcell pin (obtained from the
.lib).

■ For a port, the capacitance value is any capacitance annotated on the port (sum of the
external_pin_cap and external_wire_cap attributes).

■ The net capacitance is computed from the wire-load model available in the library. This
is based on the wireload_mode attribute (top, segmented, or enclosed).

■ The final capacitance is the sum of the net capacitance and the pin and port capacitance
values to which the net is connected.

The columns "Terms from .lib" and "Cap from .lib" in the report will be populated if the
wire-load model in the .lib appears as a table. Otherwise, it will be empty.

This command is not supported on those nets that have the physical_cap attribute set on
them. Also, when you are in PLE mode, only the final capacitance is shown (no computation).

Options and Arguments

Related Information

file Redirects the report to the specified file.

net Specifies the net name for which the report should be
generated.

Related command: report net_res_calculation on page 395

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 394 Product Version 9.1

report net_delay_calculation

report net_delay_calculation [-driver_pin {port|pin}...]
[-load_pin {port|pin}...] [> file]

Reports the net delay, in picoseconds, between the specified driver and load pins. Both the
driver and load pins should be on the same net. The delay computed would depend upon the
tree type used (tree_type attribute): best case, worst case, or balanced tree.

Options and Arguments

Example

■ The following command provides a report based on the in1[0] driver pin:

rc:/designs/areid/ports_in> report_net_delay_calculation -driver_pin in1[0]

==
...
Operating conditions: slow (balanced_tree)
Wireload mode: segmented
==

Formula: (Wres/f) * (Pcap + Wcap/f)

From To Wire res Wire cap Fanout Pin cap of Total pin cap of Net
pin pin of net of net of net to pin all to pins delay

in1[0] inst1/g43/A 0.000 7.2 1 5.3 5.3 0.0

Related Information

-driver_pin {port|pin}

Specifies the starting port or pin on which to obtain the net
delay.

-load_pin {port|pin}

Specifies the ending port or pin on which to obtain the net delay.

file Redirects the report to the specified file.

Affected by this attribute: tree_type

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 395 Product Version 9.1

report net_res_calculation

report net_res_calculation net [> file]

Reports the total wire resistance of the specified net. The total wire resistance is the sum of
the individual net segment resistance (obtained from the wire-load model) and the external
wire resistance (annotated on any port and obtained from the external_wire_res
attribute) that is connected to the net.

■ For a port, the resistance value is any resistance annotated on the port (the
external_wire_cap attributes).

■ The net resistance is computed from the wire-load model available in the library. This is
based on the wireload_mode attribute (top, segmented, or enclosed).

■ The final resistance is the sum of the net resistance and the pin and port resistance
values to which the net is connected.

The columns "Terms from .lib" and "Cap from .lib" in the report will be populated if the
wire-load model in the .lib appears as a table. Otherwise, it will be empty.

This command is not supported on those nets that have the physical_res attribute set on
them. Also, when you are in PLE mode, only the final resistance is shown (no computation).

Options and Arguments

Related Information

file Redirects the report to the specified file.

net Specifies the net name for which the report should be
generated.

Related command: report net_cap_calculation on page 393

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 396 Product Version 9.1

report nets

report nets [-hierarchical] [-pin pin...]
[-minfanout integer] [-maxfanout integer]
[net | instance]... [-sort string]
[-cap_worst integer] [> file]

Generates a report on the nets of the current design. The report gives information for the
top-level nets in the design. You can specify pin names, nets, instances, maximum and
minimum fanout threshold values, nets, and instances. Control the data printed out using the
-minfanout and -maxfanout options for nets that have fanout between these values.Nets
that are followed by the "@" symbol in parenthesis indicate SPEF annotation.

Options and Arguments

Examples

■ The following example reports the five worst capacitance nets in the top level:

rc:\> report nets -cap_worst 5

==
Generated by: RTL Compiler (RC) Version
Generated on: Date
Module: m1
Technology library: slow 1.5
Operating conditions: slow (balanced_tree)

-cap_worst integer Specifies the number of worst capacitance nets that are to be
reported.

file Specifies the name of the file to which to write the report.

-hierarchical Reports all the nets in the design hierarchy.

-maxfanout Specifies an integer value and reports nets whose fanouts
are below the given threshold value.

-minfanout Specifies an integer value and reports nets whose fanouts
are above the given threshold value.

net|instance Reports information on the specified nets or nets belonging to
the instance.

-pin pin Specifies a list of pin names and reports the nets connected to
the pins.

-sort Specifies the field name on which to sort. Valid field names are
load, resistance, or capacitance.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 397 Product Version 9.1

Wireload mode: segmented
==

Wire Wire Wireload
Net Loads Drivers Cap(fF) Res(k-ohm) Model

--

ai 2 3 14.5 0.000

n_135 2 2 10.4 0.000

n_0 2 1 6.7 0.000

ao[5] 1 2 6.7 0.000

bi 1 1 3.6 0.000
==

■ The following example sorts the nets in the top level by the number of loads:

rc:\> report nets -sort load

==
...
==

Wire Wire Wireload
Net Loads Drivers Cap(fF) Res(k-ohm) Model

--

n_1 8 1

clk 3 1 0.0 0.000

n_135 2 2 10.4 0.000

n_0 2 1 6.7 0.000

ai 2 3 14.5 0.000

......
==

■ The following example reports all the nets in the top level of the current design whose
fanout is less than 2.

rc:\> report net -maxfanout 2

==
...
==

Wire Wire Wireload
Net Loads Drivers Cap(fF) Res(k-ohm) Model

in1a[0] 1 1 0.4 0.000 AL_SMALL

in1a[1] 1 1 0.4 0.000 AL_SMALL

in1b[0] 1 1 0.4 0.000 AL_SMALL

in1b[1] 1 1 0.4 0.000 AL_SMALL

out2a[0] 1 1 0.4 0.000 AL_SMALL

out2a[1] 1 1 0.4 0.000 AL_SMALL

out2b[0] 1 1 0.4 0.000 AL_SMALL

out2b[1] 1 1 0.4 0.000 AL_SMALL

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 398 Product Version 9.1

out3a[0] 1 1 0.0 0.000 AL_SMALL

out3a[1] 1 1 0.0 0.000 AL_SMALL

out3b[0] 1 1 0.0 0.000 AL_SMALL

out3b[1] 1 1 0.0 0.000 AL_SMALL

out4a[0] 1 1 0.0 0.000 AL_SMALL

out4a[1] 1 1 0.0 0.000 AL_SMALL

out4b[0] 1 1 0.0 0.000 AL_SMALL

out4b[1] 1 1 0.0 0.000 AL_SMALL
==

You can specify an instance name to the above example and get information on the nets
associated with the instance(s) whose fanout is less than 2.

■ The following example provides specific information on the n_0 ai net:

rc:\> report net n_0 ai

==
...
==

Total Slew Slew
Net Cap(fF) Rise Fall Driver(s) Load(s)

--

n_0 20.3 0.0 0.0 g24/Y g23/A

g22/A

bx_reg3/CK

ai 12.0 0.0 0.0 ai g25/A

bx_reg2/D
==

■ The following example reports the nets associated with the g22/A bx_reg2/D pin:

rc:/> report net -pin "g22/A bx_reg2/D"

==
...
==

Total Slew Slew
Net Cap(fF) Rise Fall Driver(s) Load(s)

--

n_0 20.3 0.0 0.0 g24/Y g23/A

g22/A

bx_reg3/CK

ai 12.0 0.0 0.0 ai g25/A

bx_reg2/D
==

■ The following example shows that the address nets are SPEF annotated while the
accum nets are not:

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 399 Product Version 9.1

==
...
==

address[0] (@) 1 1 1.0 0.000

address[1] (@) 1 1 0.8 0.000

accum[0] 1 1 2.1 0.000

accum[1] 1 1 8.5 0.000

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 400 Product Version 9.1

report operand_isolation

report operand_isolation
[-oi_instance instance...] [> file]

Reports operand-isolation information for the design. The information depends on whether
the operand-isolation logic has been committed or not.

Note: This command only reports operand-isolation logic inserted by the RC-LP engine,
provided that you do not remove the subdesigns corresponding to the operand-isolation logic.
It does not report operand-isolation logic inserted by third-party tools.

Options and Arguments

Examples

■ The following command gives a summary after operand-isolation logic has been
inserted.

rc:/> report operand_isolation
==
Generated by: RTL Compiler-D (RC) version
....

==

Operand Isolation Instances

Module Operand Isolation Instance Width Isolated Instance Control Inputs

test RC_OI_HIER_INST 8 add_13_21 en1, en2

RC_OI_HIER_INST6 8 add_13_21 en1, en2

Total 2
===

-oi_instance instance

Reports detailed information for the specified operand-isolation
instances. Information includes the name of the isolated
instance, the list of control inputs and their associated switching
activities, the list of data inputs that have been isolated, the list
of output pins of the operand-isolation instance.

Note: If the isolated instance name is (flattened), the
datapath instance was flattened during optimization.

file Specifies the name of the file to which to write the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 401 Product Version 9.1

where

❑ Width is the width of the data_bus input of the operand-isolation instance

❑ Isolated instance is the datapath instance whose input is isolated.

❑ Control inputs lists the control signals that are inputs to the operand-isolation
instance

■ The following command generates detailed operand-isolation instance information for
the specified operand-isolation instance:
rc:/> report operand_isolation -oi_instance RC_OI_HIER_INST

==
Generated by: RTL Compiler-D (RC) version

...
==

Operand Isolation Instance : RC_OI_HIER_INST

Module: test (test)
Isolated Instance: add_13_21 (test/add_13_21)
Control Inputs:
RC_OI_CTRL_PORT = en1 (/designs/test/ports_in/en1)

TCF = (0.50000, 0.020000/ns)
RC_OI_CTRL_PORT_1 = en2 (/designs/test/ports_in/en2)

TCF = (0.50000, 0.020000/ns)
Data Inputs:
RC_OI_DATA_PORT = in1[7] ({/designs/test/ports_in/in1[7]})

in1[6] ({/designs/test/ports_in/in1[6]})
in1[5] ({/designs/test/ports_in/in1[5]})
in1[4] ({/designs/test/ports_in/in1[4]})
in1[3] ({/designs/test/ports_in/in1[3]})
in1[2] ({/designs/test/ports_in/in1[2]})
in1[1] ({/designs/test/ports_in/in1[1]})
in1[0] ({/designs/test/ports_in/in1[0]})

Outputs:
RC_OI_OUT_PORT = n_79 (/designs/test/i..13_21/pins_in/A[7])

n_78 (/designs/test/i..13_21/pins_in/A[6])
n_77 (/designs/test/i..13_21/pins_in/A[5])
n_76 (/designs/test/i..13_21/pins_in/A[4])
n_75 (/designs/test/i..13_21/pins_in/A[3])
n_74 (/designs/test/i..13_21/pins_in/A[2])
n_73 (/designs/test/i..13_21/pins_in/A[1])
n_72 (/designs/test/i..13_21/pins_in/A[0])

Related Information

Reporting Operand Isolation Information in Low Power in Encounter RTL Compiler
.
Affected by this command: synthesize on page 294

Affected by these attributes: lp_operand_isolation_prefix

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 402 Product Version 9.1

report ple

report ple [design]... [> file]

Returns the physical layout estimation information for the specified design. The command
reports information like aspect ratio, shrink factor, site size, layer names, direction of layers,
capacitance, resistance, area, and the source used to extract the physical information.

Options and Arguments

Example

■ The following example reports the ple information for the current design:

rc:/> report ple

==
Generated by: Encounter(r) RTL Compiler
Interconnect mode: ple

...
==

Aspect ratio : 1.06
Shrink factor : 0.90
Site size : 2.52 um (from lef [tech+cell])

 Capacitance
Layer / Length Data source:
Name Direction (pF/micron) lef_library

METAL1 H 0.000530
METAL2 V 0.000496
...
 Resistance
Layer / Length Data source:
Name Direction (ohm/micron) lef_library

METAL1 H 1.203704
METAL2 V 0.639683
...
 Area
Layer / Length Data source:
Name Direction (micron) lef_library

METAL1 H 0.108000
METAL2 V 0.126000
...

design Specifies the design name on which to report. If no design is
specified, the current design is loaded.

file Specifies the name of the file to which to write the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 403 Product Version 9.1

report port

report port [-delay] [-driver] [-load] port... [> file]

Generates reports on the ports of the current design. By default, the report gives information
on port direction, external delays, exception objects and their types, driver, slew, fanout load,
pin capacitance and wire capacitance for the ports. You can also specify the port names on
which the report is to be generated and control the data printed using the -delay, -driver
and -load options.

Options and Arguments

Example

The following example reports the external delay information on the ck1, e_out[6], and
ena ports:

rc:/> report port -delay -driver -load ck1 e_out[6] ena

External Delays & Exceptions

Rise Fall Ext Delay Exception
Port Dir Clock Delay Delay Object Object/Type

ck1 in CLK1 700.0 700.0 in_del_1 N/A
CLK2 500.0 500.0 in_del_2

e_out[6] out CLK1 200.0 200.0 ou_del_1 del_1 (path_delay)
CLK2 300.0 300.0 ou_del_2

300.0 300.0 outrxt1

ena inout CLK1 700.0 700.0 in_del_1 N/A
CLK2 500.0 500.0 in_del_2

ena inout CLK1 200.0 200.0 ou_del_1 del_1 (path_delay)
CLK2 300.0 300.0 ou_del_2

300.0 300.0 outrxt1

-delay Reports external delay information (rise and fall delay and the
external delay object)

-driver Reports the external driver name and the slew (rise and fall)
values of the ports.

file Specifies the name of the file to which to write the report.

-load Reports the external fanout load and the pin and wire
capacitance values of the ports.

port Specifies the port for which to generate the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 404 Product Version 9.1

report power

report power
{ -rtl_cross_reference [-detail]
[-flat [-nworst number]] [-sort mode]
[design | instance]...
[-mode mode] [-tcf_summary]

| [-hier | -flat [-nworst number]] [-depth number]
[-sort mode] [design | instance | net]...
[-mode mode] [-tcf_summary]

| -clock_tree [clock]...
-width float -height float }

[> file]

Reports the power consumed. The information returned depends on your current position
in the design hierarchy and on the specified objects. If no objects are specified, the report is
given for the design or instance at the current position in the design hierarchy .

With the -rtl_cross_reference option specified, the power consumed by the instances
is cross-referenced to the corresponding line in the RTL files. Set the
hdl_track_filename_row_col attribute to true before elaboration to enable filename,
column, and line number tracking.

Note: Nets connected to primary inputs and outputs are only reported at the top-level of an
instance-based power report.

Options and Arguments

clock Specifies the name of a clock for which you want to estimate the
clock tree power.

If no clock is specified, the power is estimated for all clocks in
the design.

-clock_tree Estimates the power of the clock tree.

You can use this option with generic and mapped netlists.

-depth number Specifies the number of hierarchy levels to descend in the
report. If an instance is specified, the depth starts from the
position of that instance in the design hierarchy. Use a
non-negative integer.

Note: This option applies to instance-based power reports, but
is not supported with the -rtl_cross_reference option.

Default: infinite (all levels of the hierarchy)

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 405 Product Version 9.1

design Specifies the design for which you want the power to be
reported. Specify the path name to the design.

If your current position in the design hierarchy is at the design
level and you have only one design loaded, the report is by
default given for the design.

-detail Adds an abbreviated version of the RTL line and a list of the
instances that correspond to that RTL line. In this report, the
dynamic power is replaced with the internal power and net
power (the two components of dynamic power). The detailed
report also returns the power information for the primary inputs.

Note: This option only applies if you specified the
-rtl_cross_reference option.

file Specifies the name of the file to which to write the report.

-flat Reports the power of leaf instances (combinational and
sequential instances) starting from the current position in the
hierarchy.

■ If you perform a gate-level power analysis, the number of
hierarchical levels that are expanded depends on the setting
of the -depth option.

■ If you perform RTL power analysis using the
-rtl_cross_reference option, power information for all
modules in the current hierarchy is shown.

Note: This option only applies to instance-based power reports.

-full_instance_names

Reports the full path names of the instances.

-height float Specifies the estimated chip height (in microns).

Note: This option can only be specified with the -clock_tree
option and is optional if a DEF file was read in.

-hier Reports the power of hierarchical instances. The number of
hierarchical levels shown depends on the setting of the -depth
option.

If you specify neither the -flat or -hier option, the RC-LP
engine uses the -hier option by default.

Note: This option applies to instance-based power reports, but
is not supported with the -rtl_cross_reference option.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 406 Product Version 9.1

instance Specifies the instance for which you want the power to be
reported. Specify the path name to the instance.

-mode mode Only prints the power report for the specified power mode.

The specified mode must correspond to one of the power mode
names defined with a create_power_mode command in the
CPF file that was read in.

If you have a multi-mode design and you omit this option, the
report will apply to the current state of the design.

Note: This option cannot be used with the -clock_tree
option.

net Specifies the net for which you want the power to be reported.
Specify the path name to the net.

Note: Net-based power reports are not supported with the
-rtl_cross_reference option.

-nworst number Prints only the top worst entries of a sorted report.

This option applies only to instance-based reports, and can only
be used with the -flat option.

-rtl_cross_reference

Cross-references the power consumed to the corresponding
line in the RTL files. The report also returns the leakage power,
dynamic power, and total power for the top-level design.

-sort mode Indicates how to sort the report.

The following modes are available for instance-based reports:

dynamic Sorts by descending total dynamic
power, which is the sum of the internal
and net power.

Note: This option is not supported with
the -rtl_cross_reference option.

file Sorts by RTL file and line number.

Note: This option applies only to RTL
power analysis and is the default for RTL
power analysis.

internal Sorts by descending internal power.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 407 Product Version 9.1

leakage (default) Sorts by descending leakage power.

net Sorts by descending net power.

The following modes are available for net-based reports:

dynamic (default) Sorts by descending total dynamic
power.

load Sorts by descending capacitive load on
the net.

net Sorts by descending total switching
power.

prob Sorts by descending probability of the
nets being high.

rate Sorts by descending toggle rates of the
nets.

Note: If a report is requested for nets and instances, but the
specified sort mode applies only to one category, the other
category will be sorted according to its default.

-tcf_summary Adds a summary to the power report listing the following:

■ The number of primary inputs asserted in the design.

■ The total number of primary inputs connected in the design.

■ The number of sequential outputs asserted in the design.

■ The total number of sequential outputs connected in the
design.

■ The total number of nets in the design.

■ Nets asserted refer to nets with asserted switching
activities (probability and toggle rate).

■ Asserted clock nets refer to nets whose
lp_probability_type or lp_toggle_rate_type
attribute value is set to clock.

■ Constant nets refer to nets whose driver is either a
constant object 0 or 1.

For net-based reports, an asterisk (*) is appended to each net
that has user-asserted switching activities.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 408 Product Version 9.1

Examples

■ The following command requests a basic RTL power analysis of design
mult_bit_muxed_add.

rc:/> build_rtl_power_models -clean_up_netlist
rc:/> report power -rtl_cross_reference

==

...
Technology library: xxx yy
Operating conditions: _nominal_ (balanced_tree)
Wireload mode: enclosed

==

Leakage Dynamic Total
Design Power(nW) Power(nW) Power(nW)

mult_bit_muxed_add 71.146 1578.273 1649.419

Leakage Dynamic Total
File Row Power(nW) Power(nW) Power(nW)

mult_bit_muxed_add.v 8 35.573 665.277 700.850
mult_bit_muxed_add.v 9 5.573 675.858 711.431

■ The following command shows RTL power analysis for all levels of the hierarchy:

rc:/> report power -rtl -flat

==

...
Technology library: xxx yy
Operating conditions: _nominal_ (balanced_tree)
Wireload mode: enclosed

==

Leakage Dynamic Total
Design Power(nW) Power(nW) Power(nW)

mult_bit_muxed_add 71.146 1578.273 1649.419

Leakage Dynamic Total
File Row Power(nW) Power(nW) Power(nW)

muxed_add.v 8 28.308 519.317 547.625
muxed_add.v 9 21.419 403.153 424.572
muxed_add.v 12 21.419 418.665 440.084

-verbose Replaces the dynamic power column with the components of the
dynamic power—the internal power and net power.

-width float Specifies the estimated chip width (in microns).

Note: This option can only be specified with the -clock_tree
option and is optional if a DEF file was read in.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 409 Product Version 9.1

■ The following command requests a detailed RTL power analysis report.

rc:/> report power -rtl -detail -flat

==
...
 Module: mult_bit_muxed_add
...
==

Leakage Internal Net
Design Power(nW) Power(nW) Power(nW)

--
mult_bit_muxed_add 71.146 1069.140 509.134
--

Leakage Internal Net
Primary Input Power(nW) Power(nW) Power(nW)

--
a[1] 0.000 0.000 19.428
a[0] 0.000 0.000 19.428
b[1] 0.000 0.000 19.428
b[0] 0.000 0.000 19.428
c[1] 0.000 0.000 19.428
c[0] 0.000 0.000 19.428
d[1] 0.000 0.000 19.428
d[0] 0.000 0.000 19.428
s 0.000 0.000 81.713

Leakage Internal Net
File Row RTL Line Instances Power(nW) Power(nW) Power(nW)

--
muxed_add.v 8 {if (s) begin} g1 28.308 397.891 121.426

g1
g1
g1

--
muxed_add.v 9 {y = a + c;} g1 21.419 330.297 72.856

g1
--
muxed_add.v 12 {y = b + d;} g1 21.419 340.952 77.713

g1
--

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 410 Product Version 9.1

■ The following command requests a detailed RTL power analysis report for instance
add_9_15.

rc:/> report power -rtl -detail [find . -inst add_9_15]
==
...

 Module: mult_bit_muxed_add
...
==

Leakage Internal Net
Design Power(nW) Power(nW) Power(nW)

--
mult_bit_muxed_add 71.146 1069.140 509.134
--

Leakage Internal Net
Primary Input Power(nW) Power(nW) Power(nW)

--
a[1] 0.000 0.000 19.428
a[0] 0.000 0.000 19.428
b[1] 0.000 0.000 19.428
b[0] 0.000 0.000 19.428
c[1] 0.000 0.000 19.428
c[0] 0.000 0.000 19.428
d[1] 0.000 0.000 19.428
d[0] 0.000 0.000 19.428
s 0.000 0.000 81.713
--

Leakage Internal Net
File Row RTL Line Instances Power(nW) Power(nW) Power(nW)

--
muxed_add.v 9 y = a + c; add_9_15 21.419 330.297 72.856

add_9_15
--

Note: The report shows two add_9_15 instances because RTL Compiler found two
instances with that name.

■ The following example first descends in the design hierarchy down to instance
add_9_15, then requests a detailed RTL power analysis. The output is slightly different
from the previous example.

rc:/> cd /designs/mult_bit*/instances_hier/ma0/instances_hier/add_9_15

rc:/designs/mult_bit_muxed_add/instances_hier/ma0/instances_hier/add_9_15>
report power -rtl -detail
==
...

==

Leakage Internal Net
File Row RTL Line Instances Power(nW) Power(nW) Power(nW)

--
muxed_add.v 9 y = a + c; add_9_15 10.709 170.476 38.856
--

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 411 Product Version 9.1

■ The following command shows the clock tree power estimation for clock clk.

rc:/> report power -clock_tree iCLK1 -width 5 -height 5

==

Generated by: Encounter(r) RTL Compiler version
Generated on: date
Module: test
Technology libraries: typical 1.3
Operating conditions: typical (balanced_tree)
Wireload mode: segmented
Area mode: timing library

==

Clock Power Estimation Summary for clock ’iCLK1’
==

Estimate Leakage (nW) Dynamic (nW) Total (nW)

Max 0.007 147560.871 147560.878
Min 0.007 42160.249 42160.251
Typical 0.007 67941.241 67941.244

Leaf CGIC Cells 4
Leaf Clock Buffers 0
Total Clock Buffers 2

Estimation Parameters
=====================

Clock Buffers Used: BUFX12 BUFX16 BUFX2
BUFX20 BUFX3 BUFX4
BUFX6 BUFX8 CLKBUFX12
CLKBUFX16 CLKBUFX2 CLKBUFX20
CLKBUFX3 CLKBUFX4 CLKBUFX6
CLKBUFX8 DLY1X1 DLY1X4
DLY2X1 DLY2X4 DLY3X1
DLY3X4 DLY4X1 DLY4X4

Max flops driven by one leaf buffer: 3
Die width: 5.0 um
Die height: 5.0 um

■ The following command reports the power (after synthesis) at the current level in the
hierarchy, which is the design.With the -hier option specified, the report lists the design
and its hierarchical instances.

rc:/designs/mult_bit_muxed_add> report power -hier
==
...

==

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

mult_bit_muxed_add 6 71.146 1578.273 1649.419
ma0 3 35.573 636.281 671.854
ma1 3 35.573 638.728 674.301

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 412 Product Version 9.1

■ The following command reports the power (after synthesis) at the current level in the
hierarchy, which is the design. With the -verbose option specified, the report shows in
addition the components of the dynamic power.

rc:/designs/mult_bit_muxed_add> report power -verbose

==
...

==
Leakage Internal Net Dynamic Total

(Int+Net)(Leak+Dyn)
Instance Cells Power(nW) Power(nW) Power(nW) Power(nW) Power(nW)

--
mult_bit_muxed_add 6 71.146 1069.140 509.134 1578.273 1649.419
ma0 3 35.573 533.055 103.226 636.281 671.854
ma1 3 35.573 536.085 102.643 638.728 674.301

■ The following command reports the power (after synthesis) at the current level in the
hierarchy, which is the design.With the -flat option specified, the report lists leaf
instances starting from the current position in the hierarchy.

rc:/designs/mult_bit_muxed_add> report power -flat

==
...

==

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

ma0/g38 13.900 255.674 269.574
ma0/g39 13.900 253.342 267.242
ma1/g38 13.900 223.699 237.599
ma1/g39 13.900 253.350 267.250
ma0/g37 7.774 127.265 135.039
ma1/g37 7.774 161.679 169.453

■ The following command reports the power (after synthesis) at the current level in the
hierarchy, which is a subdesign.With the -hier option specified, the report lists the
subdesign and its hierarchical instances. Because in this case there are no hierarchical
instances, only the power for the subdesign is listed.

rc:/designs/mult_bit_muxed_add/instances_hier/ma0> report power -hier

==
...

==

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

ma0 3 35.573 636.281 671.854

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 413 Product Version 9.1

■ The following command reports the power for an instance and sorts the report according
to descending net power.

rc:/designs/mult_bit_muxed_add> report power -flat instances_hier/ma0 \
-sort net

==
...

==

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

ma0/g39 13.900 255.674 269.574
ma0/g38 13.900 253.342 267.242
ma0/g37 7.774 127.265 135.039

■ The following command reports the power for an instance and a net.

rc:/designs/mult_bit_muxed_add> report power nets/a[1] ma0 -flat

==
...

==

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

ma0/g39 13.900 255.674 269.574
ma0/g38 13.900 253.342 267.242
ma0/g37 7.774 127.265 135.039

Net Net Toggle
(asserted *) Power (nW) Prob. Rate (/ns) Cap. (nF)

a[1] 26.827 0.500 0.020 2.300

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 414 Product Version 9.1

■ The following design has five power domains and three power modes. The following
commands show the power report for two of the modes after mapping. In this case the
report has an additional column Domain (voltage) which shows for each instance to
which power domain it belongs and what the voltage is of the domain in the reported
mode. Note that when the second report power command is given, the tool adjusts
the wireload models for the specified mode before reporting power.

rc:/designs/counter> report power -mode PMdefault
==
...
Module: counter
Library domain: umc_0p8v
Domain index: 0
Technology libraries: ...
Operating conditions: _nominal_ (balanced_tree)
Library domain: umc_1v
Domain index: 1
...)
Library domain: umc_1p2v
Domain index: 2
...
Wireload mode: enclosed
Area mode: timing library
Power mode: PMdefault
==

Domain Leakage Dynamic Total
Instance (Voltage) Cells Power(nW) Power(nW) Power(nW)

counter PDcore(0.81v) 142 7.076 9192.022 9199.099
monitor_power PDmon(0.81v) 84 3.720 4050.236 4053.956
adder_counter PDadd(0.81v) 25 1.215 1573.961 1575.175
bcd_counter PDbcd(0.81v) 12 1.088 1697.572 1698.659
binary_counter PDbin(0.81v) 18 1.012 1565.877 1566.888

rc:/designs/counter> report power -mode PMmid
==
...
Power mode: PMmid
==

Applying wireload models.
Info : Changing wireload model of a design/subdesign. [TIM-92]

: Changing wireload model of design ’counter’ from <none> to cmos065.
: The change of wireload model will likely change the design’s timing

slightly.

...
Computing net loads.

Library Leakage Dynamic Total
Instance Domain Cells Power(nW) Power(nW) Power(nW)

counter umc_1v 142 11.023 33056.713 33067.735
monitor_power umc_1v 84 5.805 14774.642 14780.447
adder_counter umc_1v 25 1.884 4185.202 4187.086
bcd_counter umc_1v 12 1.697 6138.779 6140.477
binary_counter umc_1v 18 1.569 6542.145 6543.714

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 415 Product Version 9.1

Related Information

RTL Power Analysis in Low Power in Encounter RTL Compiler

Reporting Clock Tree Power in Low Power in Encounter RTL Compiler

Reporting on All Power Components in Low Power in Encounter RTL Compiler

Affected by these commands: build_rtl_power_models on page 699

synthesize on page 294

Affected by these attributes: cell_leakage_power

leakage_power_scale_in_nW

lp_asserted_probability

lp_asserted_toggle_rate

lp_power_unit

Related attributes lp_clock_tree_buffers

lp_clock_tree_leaf_max_fanout

lp_computed_probability

lp_computed_toggle_rate

lp_leakage_power

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 416 Product Version 9.1

report power_domain

report power_domain
[-detail] [-mode]
[-power_nets] [-qor]
[> file]

Reports power domain related information.

Note: An asterisk (*) identifies the default power domain.

Without any options specified, a summary report is given which shows for each power domain

■ The name of the shutoff signal

■ The polarity of the shutoff signal

■ The operating voltage in the default power mode

Options and Arguments

-detail Prints the summary information and the information you would
get by specifying the -mode, -power_nets and -qor options.

file Specifies the name of the file to which the report is to be
written.

-mode Prints the operating voltage of each power domain in each
power mode.

-power_nets Prints for each power domain the following information for the
power and ground nets:

■ The external power or ground net

■ The internal power or ground net

■ The power supply to which the net must be connected

■ The name of the library that describes the power supply

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 417 Product Version 9.1

Example

■ The following example shows the basic report (with no options specified).

rc:/designs/top> report power_domain

Summary
=======
===

Shut-off signal

Name Name Active level Voltage(V)
===
LD1 - - 1.2
PD1(*) - - 0.8
PD2 pm_inst/pse_enable[0] active_high 0.8
PD3 pm_inst/pse_enable[1] active_high 0.8
PD4 pm_inst/pse_enable[2] active_high 0.8

5

■ The following example shows the power mode information. The default power mode is
marked with an asterisk.

rc:/designs/top> report power_domain -mode

Power Modes
===========
===

Power Modes

Power Domain PM1 PM2 PM3 PM4
===
LD1 1.2 1.2 1.2 1.2
PD1(*) 0.8 0.8 0.8 0.8
PD2 0.8 OFF OFF OFF
PD3 0.8 0.8 OFF OFF
PD4 0.8 0.8 0.8 OFF

5

-qor Prints the following information for each power domain:

■ The cell area

■ The percentage of nets with user-asserted switching
activities

■ The dynamic power consumption

■ The leakage power consumption

Note: The results are given for the current power mode and are
affected by the setting of the lp_power_unit attribute.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 418 Product Version 9.1

■ The following example shows the power net information. The report indicates that no
information was given for the ground nets.

rc:/designs/top> report power_domain -power_nets

Power Nets
==========
===

Power Nets

Power Domain External Internal Rail Connection Library
===
PD2 VDD_0.8 VDD2 VDDH /libraries/library_domains/ld_1/lib2
PD3 VDD_0.8 VDD3 VDDH /libraries/library_domains/ld_1/lib2
PD4 VDD_0.8 VDD4 VDDH /libraries/library_domains/ld_1/lib2

Ground Nets
==========
===

Ground Nets

Power Domain External Internal Rail Connection Library
===

Related Information

Affected by these commands: read_cpf on page 760

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 419 Product Version 9.1

report qor

report qor [-levels_of_logic] [design]... [> file]

Reports the critical path slack, total negative slack (TNS), number of gates on the critical path,
and number of violating paths for each cost group. It also gives the instance count, total area
(net and cell area), cell area, leakage power, dynamic power, runtime, and host name
information.

If you perform physical synthesis and start with a floorplan, the report also contains the
floorplan utilization in %. If you executed either the synthesize -to_placed or the
predict_qos command, the report will also contain a Silicon Virtual Prototype
section that lists the total and average net length in micron, and the routing congestion in %.
Routing congestion is a measure of track overflow . A value greater than 5% in either direction
gives an indication that the design will be difficult to route. The information is static information
from the most recent Encounter® batch job.

Options and Arguments

Example

■ The following example reports the QoR data for the current design.

rc:\> report qor

==
Generated by: RTL Compiler version
Generated on: date
Module: cscan
Technology libraries: tutorial 1.0

slow_hvt 1.1
Operating conditions: typical_case (balanced_tree)
Wireload mode: enclosed

==

Timing

Cost Critical Violating
Group Path Slack TNS Paths

I2C 1182.4 0 0
C2O 1987.2 0 0
.....

design Specifies the design name on which to report. If no design is
specified, the report is given for the current design.

file Specifies the name of the file to which the report is to be
written.

-levels_of_logic Prints the number of gates on the critical path per cost group.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 420 Product Version 9.1

Instance Count

Leaf Instance Count 41
Sequential Instance Count 16
Combinational Instance Count 25
Hierarchical Instance Count 0

Area & Power

Total Area 106.445
Cell Area 106.445
Leakage Power 0.583 nW
Dynamic Power 8714.675 nW
Total Power 8715.259 nW

Max Fanout 2 (out1[0])
Min Fanout 1 (in2[3])
Average Fanout 1.2
Terms to net ratio 0.5
Terms to instance ratio 3.0
Runtime 4.19 seconds
Hostname rcae030.cadence.com

■ The following command requests to report the number of gates on the critical path per
cost group data. This adds a No of gates on Critical Path column the table
under Timing. The rest of the report does not change.
rc:\> report qor -levels_of_logic

==
...
==

Timing

Cost Critical No of gates on Violating
Group Path Slack TNS Critical Path Paths
--
I2C 1182.4 0 2 0
C2O 1987.2 0 1 0
.....

■ The following example reports the QoR data for a Dynamic Voltage Frequency Scaling
(DVFS) design (design with multiple power modes). In this case, an additional Mode
column is added to the table under Timing. The rest of the report does not change.
Timing

Cost Critical Path Violating
Mode Group Slack Paths

m1 default No paths

I2C -202.6 1
C2O -116.5 1
C2C No paths
I2O No paths

m2 default -202.6 2
I2C No paths
C2O No paths
C2C No paths

...

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 421 Product Version 9.1

■ The following example reports the QoR data after you executed the synthesize
-to_placed command.

rc:/> report qor

==
...
Module: fifo
Technology libraries: slow 1.3

physical_cells
Operating conditions: slow
Interconnect mode: ple1
Area mode: physical library

==

Timing

Cost Critical Violating
Group Path Slack TNS Paths
--
default No paths 0
CLK1 -802.8 -47540 90
--
Total -47540 90

Instance Count

Leaf Instance Count 209
Sequential Instance Count 82
Combinational Instance Count 127
Hierarchical Instance Count 0

Area & Power

Total Area 6744.198
Cell Area 5195.741
Floorplan Utilization 59.05%
Leakage Power 0.134 nW
Dynamic Power 1112757.869 nW
Total Power 1112758.004 nW

Max Fanout 82 (n_60)
Min Fanout 1 (d)
Average Fanout 3.4
Terms to net ratio 4.6
Terms to instance ratio 5.0
Runtime 7.66 seconds
Hostname rcae003

Silicon Virtual Prototype

Total Net Length 7280.40 um
Average Net Length 32.65 um
Routing Congestion H: 0.00% V: 0.00%

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 422 Product Version 9.1

report scan_power

report scan_power [-clock float]
[-flop float
| -atpg [-atpg_options string] [-capture]
[-start_vector integer] [-end_vector integer]

| -scan_vectors file [-capture]
[-start_vector integer] [-end_vector integer]]

[-report_only_switching] [-library string] [> file]

Reports the estimated average power consumption or average switching activities of the
design during test.

Note: To use this command you need to have the Encounter Test software installed and your
operating system PATH environment variable must include the path to the Encounter Test
software. For more information on the exact product requirements, refer to Encounter Test
Product Requirements for Advanced Features in Design for Test in Encounter RTL
Compiler.

Options and Arguments

-atpg Invokes Encounter Test to compute switching activities from the
test vectors.

-atpg_options string

Specifies a string containing extra options to run ATPG-based
analysis.

Note: For more information on these options, refer to the
create_tests command in the Command Line Guide (of
the Encounter Test documentation).

-capture Reports the average power consumed in scan capture mode.

Note: This option must be specified with either the -atpg or
-scan_vectors option.

-clock float Specifies the frequency in MHz of the scan clock.

Default: frequency of the first test clock object found

-end_vector integer

Specifies at which test vector to stop when computing the
switching activities.

file Specifies the file to which to redirect the report.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 423 Product Version 9.1

-flop float Specifies the frequency in MHz of the flops. The frequency
should not be more than the clock frequency.

Default: 50% of the clock frequency.

-library string Specifies the list of Verilog structural library files. Specify the list
in a quoted string.

Note: This option is only required when you invoke this
command on a mapped netlist.

-report_only_switching

Reports the average scan-in, scan-out, and average overall
switching activity (toggle rate).

When you combine this option with the -capture option, the
command reports the average capture switching activity.

Note: This information is only reported if you either requested to
create test vectors (using the -atpg option) or specified to use
existing test vectors (using the -scan_vectors option).
Otherwise, the average switching activity is computed based on
50% of the clock frequency.

-scan_vectors file

Specifies a file containing test vectors. The file must be
specified in Encounter Test TBDpatt format. The command can
read files that have been compressed with gzip (.gz
extension).

Note: The test vectors are written in TBDpatt format using
Encounter Test report_vectors command. The test vectors
may be written using format type vectors|node; the
vectors option produces more compacted output. Use the
following options when writing the test vector file:

report_vectors format=vector compact=fill\
outputfile=fileName

For more information on the TBDpatt format, refer to Test
Pattern Data Reference for Encounter Test.

-start_vector integer

Specifies from which test vector to start when computing the
switching activities.

Default: 1

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 424 Product Version 9.1

Examples

■ The following three sets of commands are equivalent. They all specify two files to be
used as Verilog simulation libraries.

set simLibs "sim/tsmc13.v sim/tpz013g3.v"
report scan_power -atpg -library $simLibs

set rootDir sim
set verilogLibs "$rootDir/tsmc13.v $rootDir/tpz013g3.v"
report scan_power -atpg -library $verilogLibs

set rootDir sim
report scan_power -atpg -library "${rootDir}/tsmc13.v ${rootDir}/tpz013g3.v"

■ The following command requests to estimate the power consumed during scan test
when a scan clock frequency of 20 MHz is applied.

rc:/> report scan_power -clock 20
Computing the scan power with the following toggle frequencies:
... set clocks @ 20 MHz
... set flops @ 10.0 MHz (computed at 50% of clock frequency)
==
Generated by: version
Generated on: date

 Module: cpu
Technology library: typical 1.3
Operating conditions: typical (balanced_tree)
Wireload mode: segmented

==

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

cpu 1588 0.285 93261.187 93261.472

■ The following command controls the type of latchfill used to fill the non-care bits
(non-targeted faults) while generating the ATPG vectors. This results in a reduction of the
scan power.

report scan_power -atpg -atpg_options "latchfill=repeat"
...
Computing the scan power with the following toggle frequencies:
... set clocks @ 20.0 MHz
... set flops @ 3.8 MHz (computed using scan power test vectors)
==
Generated by: version
Generated on: date
Module: cpu
Technology library: typical 1.3
Operating conditions: typical (balanced_tree)
Wireload mode: segmented

==

Leakage Dynamic Total
Instance Cells Power(nW) Power(nW) Power(nW)

cpu 1588 0.285 52384.169 52384.455

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 425 Product Version 9.1

■ The following command reports the average switching activity in scan-shift mode.

rc:/> report scan_power -atpg -report_only_switching
...

Switching activity report (computed using scan power test vectors)
Average switching activity: 0.47
Average scan-in switching activity: 0.46
Average scan-out switching activity: 0.48

■ The following command reports the average switching activity in capture mode.

rc:/> report scan_power -atpg -report_only_switching -capture
...
Switching activity report (computed using scan power test vectors)

Average capture switching activity: 0.49

Related Information

Analyzing the Scan Power in Design for Test in Encounter RTL Compiler

Affected by these constraints: define_dft test_mode on page 581

define_dft test_clock on page 577

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 426 Product Version 9.1

report sequential

report sequential [-instance_hier instance] [-hier]
[subdesign |design] [> file]

Generates a report on the sequential elements of the current design. The report provides the
sequential element name, row, column, filename information, and the sequential element
type (flip-flop (async set/rest, sync set/reset, sync enable), latch, or timing model).

Note: Set the hdl_track_filename_row_col attribute to true before using the
elaborate command to track the filename, row and column information.

Options and Arguments

Examples

■ The following example reports all the sequential elements in the top level design:

rc:/> report sequential

==
Generated by: Version
Generated on: Date
Module: test
Technology library: slow 1.5
Operating conditions: slow (balanced_tree)
Wireload mode: segmented

==

Instantiated/
Register File Row Column Inferred Type

--

sync_rst_reg all.v 12 16 inferred flip-flop synchronous reset

async_rst_reg all.v 21 27 inferred flip-flop asynchronous reset

sync_set_reg all.v 30 37 inferred flip-flop asynchronous set

no_rst_reg all.v 39 45 inferred flip-flop

sync_preset_reg all.v 44 58 inferred flip-flop synchronous set

q_reg all.v 6 12 inferred latch

file Specifies the name of the file to which to write the report.

-hier Reports all the flops in the design.

-instance_hier instance

Specifies the hierarchical instance name to report flops.

subdesign | design Specifies the design or subdesign name to report flops.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 427 Product Version 9.1

■ The following example reports all the sequential elements in the design:

rc:/> report sequential -hier

report sequential: prints a sequential instance report.

==
....
==

Instantiated/

Register File Row Column Inferred Type

m2/m3/m4/m5/o_m5_0_reg_1 hier.v 25 22 instantiated flip-flop synchronous
enable

m2/m3/m4/m5/o_m5_0_reg_2 hier.v 27 22 instantiated flip-flop synchronous
enable

m2/m3/m4/m5/o_m5_1_reg_0 hier.v 30 22 instantiated flip-flop synchronous
enable

m2/m3/m4/m5/o_m5_0_reg_0 hier.v 23 22 instantiated flip-flop synchronous
enable

...................

...................

m2/o_m2_clk1_0_reg_2 hier.v 174 27 instantiated flip-flop synchronous
enable

■ The following example reports a timing model:

rc:> report sequential

===

Generated by: RTL Compiler (RC) Version

Generated on: Date

Module: m1

Technology library: slow 1.0

Operating conditions: slow (balanced_tree)

Wireload mode: enclosed

===

Instantiated/

 Register File Row Column Inferred Type

clockgate/g2clatch_tlat timing_model.v 22 29 instantiated timing_model

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 428 Product Version 9.1

report slew_calculation

report slew_calculation pin [-rise | -fall] [> file]

Reports how the slew of a cell driver pin is calculated from the look up table in the loaded
technology library. The formula for calculating the delay is provided at the bottom of the
report.

Options and Arguments

file Redirects the report to the specified file.

[-fall | -rise] Uses the falling or rising slew calculation on the driver pin.

By default, all possible arcs are reported.

pin Specifies the cell driver pin.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 429 Product Version 9.1

report spare_instances

report spare_instances
[> file]

Important

This command is only available in RCQA mode.

Reports the number of spare instances. Before running this command, you must set the
spare_instance attribute to denote an instance as a spare instance. The percentage value
reported is:

(Number of spare instances/Total number of instances) * 100.

Options and Arguments

Examples

■ The following command reports the number of spare instances to a file named
file.rpt:

rcqa:/> report spare_instances > file.rpt

file Specifies the name of the report file.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 430 Product Version 9.1

report state_retention

report state_retention
{ [instance_list]
| [-hierarchical] [-detail]
[-power_gating_pin_driver {port|pin}...]
[-power_domain power_domain-list]

[-verbose] [> file]

Reports state_retention information for the design. The return value of the report corresponds
to the number of state-retention registers found.

Options and Arguments

-detail Requests a detailed state retention report.

file Specifies the name of the file to which to write the report.

-hierarchical Reports state retention registers hierarchically.

If this option is omitted, reports all state retention registers at
the current level of the hierarchy.

instance_list Reports detailed information for the specified state retention
registers.

-power_domain power_domain_list

Reports all state retention registers in the specified power
domains.

-power_gating_pin_driver {pin|port}

Reports all state retention registers with the specified drivers.

-verbose Lists the full paths of the state retention registers and power
gating pins.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 431 Product Version 9.1

Examples

■ The following command requests a hierarchical report. This report shows how many
sequential instances are mapped to state retention registers and indicates why some
sequential instances were not mapped.

rc:/> report state_retention -hier
==
Generated by: Encounter(R) RTL Compiler version
Generated on: date
Module: counter
Library domain: umc_08v

 Domain index: 0
 Technology libraries: scmetropmk_umc13sp_tt_0p8v_25c 1.0
 scmetropmk_umc13sp_tt_0p8v_1p2v_25c 1.0
 scmetro_umcl130e_ll_tt_0p8v_25c 1.0
 GS60_W_125_1.08_CORE_RET_SNPM.db
 Operating conditions: _nominal_ (balanced_tree)
 Library domain: umc_10v
 Domain index: 1
 Technology libraries: scmetropmk_umc13sp_tt_1v_25c 1.0
 scmetropmk_umc13sp_tt_0p8v_1v_25c 1.0
 scmetro_umcl130e_ll_tt_1p0v_25c 1.0
 GS60_W_125_1.08_CORE_RET_SNPM.db
 Operating conditions: _nominal_ (balanced_tree)
 Library domain: umc_120v
 Domain index: 2
 Technology libraries: scmetropmk_umc13sp_tt_1p2v_25c 1.0
 scmetropmk_umc13sp_tt_1v_1p2v_25c 1.0
 scmetro_umcl130e_ll_tt_1p2v_25c 1.0
 GS60_W_125_1.08_CORE_RET_SNPM.db
 Operating conditions: _nominal_ (balanced_tree)
 Wireload mode: enclosed
 Area mode: timing library
==

Summary

===
 Category Number %
===
Number of Sequential instances mapped to SR cells 20 68.97
Number of Sequential instances not mapped to SR cells 9 31.03

Total sequential instances in the design 29.0 100

Reason why not mapped to SR cell

Excluded from mapping (no rule specified) 9 31.03
Did not find appropriate SR cell 0 0.00

Note: SR stands for State Retention

20

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 432 Product Version 9.1

■ The following command shows the detailed report of the state retention registers in
hierarchical instance monitor_power. It shows for each sequential instance that was
replaced, the library cell that was used, to which power domain the instance belongs, and
the names of the power gating pins. The report also indicates that all sequential
instances in this hierarchical instance were remapped to state retention registers.

rc:/> report state_retention [find / -inst monitor_power]

...
===

Module State Libcell Power Power % of total
Retention Domain Gating seqs
Instance Pins

===
monitor_power/ cst_.._reg[0] umc_..F2_SNPM PDmon 1: (..NDRIVEN 27.59

2: (..~en[1]}
cst_.._reg[1] umc_..F2_SNPM PDmon 1: (..{en[0]}

2: (..~en[1]}
cst_.._reg[2] umc_..F2_SNPM PDmon 1: (..{en[0]}

2: (..~en[1]}
cst_.._reg[3] umc_..F2_SNPM PDmon 1: (..{en[0]}

2: (..~en[1]}
cst_reg[0] umc_..F2_SNPM PDmon 1: (..{en[0]}

2: (..~en[1]}
cst_reg[1] umc_..F2_SNPM PDmon 1: (..{en[0]}

2: (..~en[1]}
cst_reg[2] umc_..F2_SNPM PDmon 1: (..{en[0]}

2: (..~en[1]}
cst_reg[3] umc_..F2_SNPM PDmon 1: (..{en[0]}

2: (..~en[1]}
===

Summary

===

Category Number %
===
Number of Sequential instances mapped to SR cells 8 27.59
Number of Sequential instances not mapped to SR cells 0 0.00

Total sequential instances in the design 29.0 100

Reason why not mapped to SR cell

Excluded from mapping (no rule specified) 0 0.00
Did not find appropriate SR cell 0 0.00
--

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 433 Product Version 9.1

■ The following command shows the detailed hierarchical report for all state retention
registers in power domain PDbin. The instance names, library cell names, and power
gating pins are all abbreviated. To see the full names, add the -verbose option to the
command.

rc:/> report state_retention -power_domain PDbin -hier -detail
...
==

Module State Libcell Power Power % of total
Retention Domain Gating seqs
Instance Pins

==
binary_counter/ bin_.._reg[0] umc_..F2_SNPM PDbin 1: (save) 0 13.79

2: (..g1660/Y
bin_.._reg[1] umc_..F2_SNPM PDbin 1: (save) 0

2: (..g1660/Y
bin_.._reg[2] umc_..F2_SNPM PDbin 1: (save) 0

2: (..g1660/Y

bin_.._reg[3] umc_..F2_SNPM PDbin 1: (save) 0
2: (..g1660/Y

==

Summary

===

Category Number %
===
Number of Sequential instances mapped to SR cells 4 13.79
Number of Sequential instances not mapped to SR cells 1 3.45

Total sequential instances in the design 29.0 100

Reason why not mapped to SR cell

Excluded from mapping (no rule specified) 1 3.45
Did not find appropriate SR cell 0 0.00

Note: SR stands for State Retention
~ stands for active low signal

4

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 434 Product Version 9.1

■ The following command reports all state retention instances with the specified power
gating pin.

report state_retention \
-power_gating_pin_driver [find / -pin monitor_power/g1660/Y] -hier -detail

...
==
 Module State Libcell Power Power % of total
 Retention Domain Gating seqs
 Instance Pins
==
binary_counter/ bin_.._reg[0] umc_..F2_SNPM PDbin 1: (save) 0 13.79
 2: (..g1660/Y
 bin_.._reg[1] umc_..F2_SNPM PDbin 1: (save) 0
 2: (..g1660/Y
 bin_.._reg[2] umc_..F2_SNPM PDbin 1: (save) 0
 2: (..g1660/Y
 bin_.._reg[3] umc_..F2_SNPM PDbin 1: (save) 0
 2: (..g1660/Y
==

Summary

===
 Category Number %
===
Number of Sequential instances mapped to SR cells 4 13.79
Number of Sequential instances not mapped to SR cells 9 31.03

Total sequential instances in the design 29.0 100

Reason why not mapped to SR cell

Excluded from mapping (no rule specified) 9 31.03
Did not find appropriate SR cell 0 0.00

Note: SR stands for State Retention
 ~ stands for active low signal

4

Related Information

Affected by these commands: commit_cpf on page 752

read_cpf on page 760

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 435 Product Version 9.1

report summary

report summary
[-mode mode] [-all]
[design]... [> file]

Reports the area by mode used by the design, cells mapped for the blocks in the specified
design, the wireload model, and the timing slack of the critical path. It also reports if any
design rule is violated and the worst violator information.

Options and Arguments

Examples

■ The following example generates a report of the area used by the design, the worst
timing endpoint in the design, and the design rule violations summary.

rc:/> report summary
==
Generated by: RTL Compiler (RC) version
Generated on: date
Module: alu
Technology library: tutorial 1.0
Operating conditions: typical_case (balanced_tree)
Wireload mode: enclosed

==

Timing

Slack Endpoint

-1082ps out1_tmp_reg[9]/D

Area

Instance Cells Cell Area Net Area Wireload

-all Reports all timing and DRC violations in the design.

design Specifies the design for which you want to generate a report.

By default, a report is created for all designs currently loaded in
memory.

file Specifies the name of the file to which to write the report.

-mode mode Specifies the mode for which the report must be specified.

Note: This option is only required for a design using a dynamic
voltage frequency scaling methodology.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 436 Product Version 9.1

gen_test 326 525 0 AL_MEDIUM (S)

(S) = wireload was automatically selected

Design Rule Check

Max_transition design rule: no violations.
Max_capacitance design rule (violation total = 19402.5)
Worst violator:

Pin Load (ff) Max Violation

in0[5] (Primary Input) 96.9 5.0 91.9

Max_fanout design rule (violation total = 16.000)
Worst violator:

Pin Fanout Max Violation

in0[5] (Primary Input) 8.000 4.000 4.000

Related Information

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affected by this command: synthesize on page 294

create_mode on page 237

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 437 Product Version 9.1

report timing

report timing [-endpoints] [-summary] [-lint]
[-full_pin_names] [-physical] [-num_paths integer]
[-slack_limit integer] [-worst integer]
[-from {instance|external_delay|clock|port|pin}...]
[-through {instance|port|pin}...]...
[-to {instance|external_delay|clock|port|pin}...]
[-paths string] [-exceptions exception...]
[-cost_group cost_group] [-mode mode_name] [-gtd] [-gui] [> file]

Generates a timing report of the current design. By default, the report gives a detailed view
of the critical path of the current design. If the current session has multiple designs, use the
cd command to navigate to the desired design to generate the report. You can also generate
a report on possible timing constraint problems (timing lint) or view slack at endpoints.

Note: All values are always expressed in picoseconds. This unit cannot be changed.

Important

When RTL Compiler detects a combinational feedback loop, it inserts a buffer from
the technology library as a loop breaker instance before it performs timing analysis.
To add the loop breaker, RTL Compiler might first need to uniquify a hierarchical
instance which can result in a change in the netlist. As the module and instance
name can change, this can affect your scripts and your database search.

Where applicable, special footnotes are used as shown in the table below to enhance the
usability of the report.

Footnote Meaning

(*) Zero Slack Borrow Limit = This is the maximum amount that can be borrowed without
violating timing on the lending side

(@) Annotated capacitance

(a) Net has asynchronous load pins which are being considered ideal

(b) Timing paths are broken

(C) Cell belongs to congested region (applies only to physical flow)

(i) Net is ideal

(m) Attribute cell_delay_multiplier is modified for this library cell

(P) Instance is preserved

(p) Instance is preserved but may be resized

(u) Net has unmapped pin(s)

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 438 Product Version 9.1

Options and Arguments

(V) Net with virtual buffer(s)

-cost_group cost_group

Reports only paths for the specified cost groups.

file Specifies the name of the file to which to write the report.

-endpoints Reports the slack at all timing endpoints in the design instead of
the detailed path report. The most critical endpoints are listed
first.

-exceptions Reports only paths to which one of the specified exceptions
applies.

Note: This option can be combined with -from, -through,
-to, and -endpoints options to further restrict the path
reporting.

-from {instance| external_delay| clock | port | pin}

Specifies a Tcl list of start points for the paths. The start points
can be input ports of your design, clock pins of flip-flops, clock
objects, or a combination of these, instances, or input ports to
which the specified external delay timing applies.

-full_pin_names Prints the full hierarchical path of each pin in the report.

You can use these pin names from the report to paste into other
commands.

-gtd Generates the MRTRF (Machine readable format) output out of
RTL Compiler. This is a file format used for representing timing
information that can be understood by the Global Timing Debug
(GTD) viewer in Encounter. The GTD viewer in Encounter
parses this file and represents the timing information in
graphical format. This helps illustrate the total slack, failing
paths, components contributing the most delay in each path,
the total number of violations, and more in the design.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 439 Product Version 9.1

-gui Allows you to create a detailed timing report in the GUI without
having to use the menu commands. By using this option from
the command line you can fine-tune the report using all
command-line options which are not all available in the dialogs.

Note: This option has only effect when you are running the tool
in GUI mode.

-lint Reports, in an abbreviated output, possible timing problems in
the design, such as ports that have no external delays, timing
exceptions that cannot be satisfied, constraints that may have
no impact on the design, and so on.

-mode mode_name Reports the worst timing across all modes or analyzes timing in
one particular mode.

-num_paths integer

Specifies the maximum number of paths to report.

Default: the value of -worst

Note: When combined with the -endpoints option, the
number of endpoints is limited to the specified number.

-paths string Reports only the specified timing restricted paths. Create the
string argument using the specify_paths command.

-physical Reports physical information, like the x, y location.

-slack_limit integer

Reports only paths with a slack smaller than the specified
number.

-summary Generates a short timing report that includes timing slack,
start-point and end-point but does not include the full path.

-through {instance | port | pin}

Specifies a Tcl list of a sequence of points that a path must
traverse. Points to traverse can be ports, hierarchical pins, pins
on a sequential/mapped combinational cells, or sequential/
mapped combinational instances.

You can repeat the -through option to require that a path first
must traverse one of the objects in the first set, then pass
through one of the objects in the second set, and so on.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 440 Product Version 9.1

Examples

■ The following example generates a report for the worst path to each of the four
most-constrained endpoints. The extraction of the report shows four different endpoints:

rc:/designs/sample_design> report timing -num_paths 4
==
Generated by: RTL Compiler (RC) version
...

==

path 1:

Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps)

--
...
--
Timing slack : 543ps
Start-point : accum[1]
End-point : aluout_reg_7/D

path 2:

Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps)

--
...
--
Timing slack : 547ps
Start-point : accum[1]
End-point : aluout_reg_6/D

path 3:

Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps)

--

-to {instance | external_delay | clock | port | pin}

Specifies a Tcl list of endpoints for the paths. The endpoints can
be output ports of your design, input pins of flip-flops, clock
objects, or a combination of these, instances, or output ports to
which the specified external delay timing exception applies.

Only paths that end at one of the ports or pins, or paths that are
captured by one of the clock objects have the exception applied
to them.

-worst integer Specifies the maximum number of paths to report to each
endpoint.

Default: 1

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 441 Product Version 9.1

...
--
Timing slack : 1030ps
Start-point : accum[1]
End-point : aluout_reg_5/D

path 4:

Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps)

--
...
--
Timing slack : 1034ps
Start-point : accum[1]
End-point : aluout_reg_4/D

■ The following example also generates a report for the four worst paths in the current
design, but compared to the previous example, three of the worst paths now have the
same endpoint.

rc:/designs/sample_design> report timing -num_paths 4 -worst 4
==
Generated by: RTL Compiler (RC) version
...

==

path 1:

Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps)

--
...
--
Timing slack : 543ps
Start-point : accum[1]
End-point : aluout_reg_7/D

path 2:

Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps)

--
...
--
Timing slack : 543ps
Start-point : data[1]
End-point : aluout_reg_7/D

path 3:

Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps)

--
...
--
Timing slack : 543ps
Start-point : accum[1]
End-point : aluout_reg_7/D

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 442 Product Version 9.1

path 4:

Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps)

--
...
--
Timing slack : 547ps
Start-point : accum[1]
End-point : aluout_reg_6/D

■ The following example reports the slack at the four most-constrained endpoints:

rc:/designs/sample_design> report timing -endpoints -num_paths 4
==
Generated by: RTL Compiler (RC) version
...

==

Slack Endpoint

+543ps aluout_reg_7/D
+547ps aluout_reg_6/D
+1030ps aluout_reg_5/D
+1034ps aluout_reg_4/D

■ The following example reports the path from input port ‘a’ that has the least slack:

rc:/> report timing -from [find / -port accum[1]]
==
Generated by: RTL Compiler (RC) version
...

==

Pin Type Fanout Load Slew Delay Arrival
(fF) (ps) (ps) (ps)

--
(clock clock) launch 0 R
(in_del_1) ext delay +1000 1000 F
alu/accum[1] <<< in port 6 66.5 0 +0 1000 F

...
--
Timing slack : 543ps
Start-point : accum[1]
End-point : aluout_reg_7/D

■ The following example reports the physical information:

rc:/> report timing -physical

==
...
==

Pin Type Fanout Load Slew Delay Arrival Location
(fF) (ps) (ps) (ps) (x, y)

(clock clock1) launch 0 R
wr_addr_reg[0]/CK 0 0 R
wr_addr_reg[0]/Q (@) SDFFRHQX1 2 6.0 118 +311 311 R (107640, 51660)
g154/A 118 +0 311
g154/Y (@) CLKMX2X2 3 10.9 105 +206 517 R (102580, 51660)
g146/B 105 +0 517
g146/CO (@) ADDHXL 1 4.6 167 +189 706 R (101660, 59040)

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 443 Product Version 9.1

g145/A 167 +0 706
...
- -
(clock clock1) capture 10000 R

Timing slack : 7997ps
Start-point : wr_addr_reg[0]/CK
End-point : wr_addr_reg[7]/D

(@) : Annotated capacitance.

■ The following example reports only a condensed version of the timing report:

rc:/> report timing -summary

Timing slack : 9744ps
Start-point : in1[3]
End-point : out4

■ The following example reports the path with the least slack that uses a multi_cycle
exception named ‘mc_2’

rc:/> report timing -exceptions [find / -exception mc_2]

■ The following example reports only the worst path being launched by clock clk1

rc:/> report timing -paths [specify_paths -from clk1]

■ The following example only prints the first three objects in each lint category. If there are
more than three objects, a related message is issued:

report timing -lint

/designs/test/ports_out/SO1
/designs/test/ports_out/SO2
/designs/test/ports_out/SO3
......
20 other pins in this category. Use the -verbose option for more details:

report timing -lint -verbose

■ The following example illustrate how to use the -gtd option:

rc:/> report_timing -from -to -gtd > viol.mtarpt

Open viol.mtarpt in the global timing debug viewer in Encounter.

Related Information

Checking the Constraints Using the report timing-lint Command in Setting Constraints and
Performing Timing Analysis in Encounter RTL Compiler

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 444 Product Version 9.1

Performing Multi-Mode Timing Analysis in Setting Constraints and Performing Timing
Analysis in Encounter RTL Compiler

Affected by this command: create_mode on page 237

specify_paths on page 274

synthesize on page 294

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 445 Product Version 9.1

report yield

report yield [-depth integer] [-min_count integer]
[> file]

Reports the yield cost and yield percentage for each instance. This command is used in the
design for manufacturing (DFM) flow.

Options and Arguments

Example

■ The following example shows the defect-limited yield impact for library cell defects:

rc:/> report yield

Instance Cells Cell Area Cost Yield %

--

cpu 470 659 1.600606e-05 99.9984

alu1 248 283 7.606708e-06 99.9992

pcount1 65 92 2.215669e-06 99.9998

ireg1 33 88 1.629471e-06 99.9998

accum1 33 88 1.629471e-06 99.9998

decode1 50 67 1.568901e-06 99.9998

Related Information

Design For Manufacturing Flow in Encounter RTL Compiler Synthesis Flows

-depth integer Specifies the number of levels of recursion.

-min_count integer

Specifies the minimum instance count per block.

file Redirects the report to the specified file.

Affected by this command: read_dfm

Related command: report gates -yield

Affected by this attribute: optimize_yield

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 446 Product Version 9.1

timestat

timestat
[string] [> file]

Reports the runtime and memory used up to this stage (time that the information was
requested).

Options and Arguments

Examples

■ The following script extract requests the information after RTL optimization.

synthesize -to_generic -eff $SYN_EFF

puts "Runtime & Memory after ’synthesize -to_generic’"

timestat GENERIC

■ The following example shows the output after mapping.

rc:/> timestat map

===

The RUNTIME after map is 0.45 secs

and the MEMORY_USAGE after map is 24.16 MB

===

■ The following example shows the output if no user-defined string was specified.

rc:/> timestat

===

The RUNTIME after undefined is 0.45 secs

and the MEMORY_USAGE after undefined is 24.16 MB

===

string Specifies a user-defined string which allows you to identify at
which stage in the design the information was requested.

Default: undefined.

file Redirects the command output to the specified file.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 447 Product Version 9.1

validate_timing

validate_timing
[-sdc sdc_files] [-netlist path] [-libs lib_list]
[-include file | -rep_tim_str command]
[-keep_temp_dir] [> file]

Generates an Encounter Timing System timing report.

To run this command you need to have access to the Encounter ® Timing System software.

Options and Arguments

file Specifies the name of the file to which the report must be
written.

Default: vtim_ets_timing_rpt

-include file Specifies the file containing the Encounter Timing System
commands to be executed.

These commands will be read in after the libraries, netlist and
SDC constraints have been read into the Encounter Timing
System tool.

-keep_temp_dir Does not remove the temporary (.vtim_ets) directory in
which the tool generates the SDC file or netlist.

-libs lib_list Specifies the list of libraries to be read by Encounter Timing
System.

If no libraries are specified, the same libraries that were
specified for synthesis are used.

-netlist path Specifies the path to the netlist.

If no netlist is specified, the netlist is generated with the
write_hdl command in the .vtim_ets directory.

-rep_tim_str command

Specifies a string that contains a single Encounter Timing
System report command.

-sdc file_list Specifies the SDC file(s) for the design.

If no SDC file(s) are specified, the SDC files are generated
using the write_sdc command in the .vtim_ets directory.

Command Reference for Encounter RTL Compiler
Analysis and Report

July 2009 448 Product Version 9.1

Examples

■ The following command reads the Encounter Timing System commands to be executed
from the ets_include file.

validate_timing -netlist test.v -libs $env(REGLIBS)/tutorial.lib \
-include ets_include

Because no SDC file was specified, the vtim_run_ets.sdc file is generated in the
.vtim_ets directory.

■ The following command directly specifies which Encounter Timing System command to
be execute.

validate_timing -rep_tim_str "report_timing"

Command Reference for Encounter RTL Compiler
9
Physical

■ def_move on page 450

■ predict_qos on page 451

■ read_def on page 453

■ read_encounter on page 455

■ read_spef on page 456

■ report congestion

■ reset_def on page 458

■ specify_floorplan on page 459

■ update_congestion_map on page 461

■ write_def on page 462

■ write_spef on page 463
July 2009 449 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
def_move

def_move
[-initialize]
[-highlight]
[-min_distance string]

Highlights cell movement in the physical tab of the GUI.

Use this command after you run the synthesize -to placed command.

Options and Arguments

Example

Following illustrates the usage:

def_move -initialize

synthesize -to_placed -incr

def_move -highlight

Related Information

-highlight Highlights the cell movement with respect to their last stored
location.

-initialize Stores the location of the instances at the time the command is
given with this option.

-min_distance string

Limits the highlighting to cells that have been moved more than
the specified distance. Specify the distance in microns.

If this option is omitted, highlighting is limited to those cells
whose x and y locations both changed by a value greater than
or equal to the row height.

Related command: synthesize on page 294
July 2009 450 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
predict_qos

predict_qos [-reference_config_file string]
[-parasitic_output_file string]
[-abandon_existing_placement]
[-ignore_scan_chains]
[design]

Analyzes and optimizes the design for silicon. This process enhances the correlation
between results from place and route pre-clock tree synthesis and the results from RTL
Compiler. The predict_qos command invokes Encounter. You will need an RC 400 license
to be available prior to the command’s execution.

Specifically, the predict_qos command generates a Silicon Virtual Prototype (SVP) to
gauge the quality of silicon of the design. The steps in the SVP creation process include:

■ Placement

■ Trial route

■ Parasitic extraction

The detailed placement information and the resistance and capacitance parasitics are then
used for delay calculation and annotation of physical delays. The predict_qos command
will operate in incremental mode if the standard cells are placed. Use
-abandon_existing_placement option to suppress this behavior. The predict_qos
command will perform virtual buffering by default.

You should use the synthesize -incremental immediately after predict_qos
command for the best results.

The predict_qos command will not work with encrypted netlists.Therefore, de-encrypt
your netlist before using the predict_qos command.

Options and Arguments

-abandon_existing_placement

Discards instance placement information.

design Specifies the design for QoS prediction.

-ignore_scan_chains

Ignores the scan chain connections during placement
estimation.
July 2009 451 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
Examples

■ The following example specifies the penny.conf as the configuration file template and
hillary.spef as the outputted SPEF file:

rc:/> predict_qos -reference_config_file rc_enc_des/penny.conf \
-parasitic_output_file hscott.spef

Related Information

-parasitic_output_file string

Outputs the parasitics from QoS prediction in SPEF format to
the specified filename.

-reference_config_file string

Specifies the configuration file to use as a template.

Related command: synthesize on page 294
July 2009 452 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
read_def

read_def
[-hierarchical] [-incremental] [-no_specialnets]
def_file

Loads the specified DEF file.

RTL Compiler will perform a consistency check between the DEF and the Verilog netlist and
issue relevant messages if necessary. The DEF file must define the die size. A warning
message will be issued for any components that lie outside the die area. For better synthesis
results, you should also have the pin and macro locations specified in the DEF, although it is
not required.

RTL Compiler supports DEF 5.3 and above.

Important

The information extracted from the DEF file depends on the license you use to start
the tool. In most cases, the read_def command will only extract the die size
information (aspect ratio in particular) from the DEF file. Other floorplan information
(such as, placed objects, blockages, constraints, and so on) will only be extracted if
you start the tool with an RTL_Compiler_Physical license.

Options and Arguments

def_file Specifies the DEF file.

-design design Specifies the design to which to annotate the DEF information.

-hierarchical Specifies that the DEF file is hierarchical.

-incremental Specifies that the DEF file has incremental information.
Therefore only updates of the pins and components are
needed.

■ If a pin or component has physical data from the original
DEF file, the physical data in the incremental DEF file will
overwrite the original data.

■ If a pin or component did not have physical data in the
original DEF file, physical data in the incremental DEF are
used.

-no_specialnets Specifies not to read the SPECIALNETS section in the DEF file.
July 2009 453 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
Example

■ The following example loads the point.def DEF file:

rc:/> read_def point.def
Reading DEF file ’point.def’...

Warning : A DEF component does not exist in the netlist. [PHYS-171]
: The component ’U1/foo1’ does not exist.

Warning : A DEF component does not exist in the netlist. [PHYS-171]
: The component ’U1/foo4’ does not exist.

Info : A COVER component has been read. [PHYS-182]
: The instance ’U1/g20’ is COVER.

Info : A COVER component has been read. [PHYS-182]
: The instance ’U1/g21’ is COVER.

Summary report for DEF file ’point.def’
Components

Cover: 2
Fixed: 8

Physical: 2
Placed: 594

Unplaced: 2
TOTAL: 608

Macros: 0

Pins

Cover: 0
Fixed: 0
Placed: 0

Unplaced: 0
TOTAL: 0

Related Information

Related attribute: phys_ignore_special_nets
July 2009 454 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
read_encounter

read_encounter config configuration_file

Reads an Encounter configuration file into RTL Compiler. An Encounter configuration file is
an ASCII file that contains Tcl variables that describe information such as the netlist or RTL,
technology libraries, LEF information, constraints, and capacitance tables. Encounter
configuration files have the .config extension.

After the file is loaded, the constraints and attributes specified in the configuration file will
automatically be set. Hence, the design will be ready for synthesis or optimization or both.

Options and Arguments

Examples

■ Since the configuration file contains information such as technology libraries, HDL files,
and constraints, the read_encounter command should be used at the beginning of a
synthesis session. After the configuration file is loaded, you can immediately synthesize
or optimize the design. The following example loads the fast.config configuration file,
then synthesizes the design to gates.

rc:/> read_encounter config fast.config

rc:/> synthesize -to_mapped

...

Related Information

configuration_file Specifies the configuration file to load.

Related command: write_encounter on page 202
July 2009 455 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
read_spef

read_spef spef_file
[-max_fanout integer]
[-hierarchical] [-incremental]

Reads the SPEF file and loads the resistance and grounded capacitors from the file. Gzip
compressed files (.gz extension) can also be loaded. In RTL Compiler, the SPEF file is
generated by Encounter.

Options and Arguments

Related Information

-hierarchical Specifies that SPEF file is hierarchical.

-incremental Specifies that the SPEF file contains incremental information.
Allows to read in the data without resetting the original SPEF
annotated values (if any).

-max_fanout Any net with a fanout count greater than the specified value will
not be annotated with the resistance and capacitance from the
SPEF. Also, delay calculation will not be performed. The default
value is1000.

spef_file Specifies the SPEF file.

Related command: write_spef on page 463
July 2009 456 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
report congestion

Refer to report congestion in Chapter 8, “Analysis and Report.”
July 2009 457 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
reset_def

reset_def

Removes all physical information from the design.

Related Information

Related command: read_def on page 453
July 2009 458 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
specify_floorplan

specify_floorplan
{ -die_box {llx lly urx ury}
| -height float -weight float }
[-core_box {llx lly urx ury}]
design

Specifies the floorplan information for the specified design.

Options and Arguments

Examples

■ The following command specifies the coordinates of the die and the core of the design.

specify_floorplan MYCHIP -die_box {0 0 1550 1500} -core_box {100 100 1400 1400}

■ The following commands first specify the width and height of the die, then the
coordinates of the core. Parameter legality checking is performed as shown below.

rc:/> specify_floorplan DTMF_CHIP -height 1400 -width 1200

rc:/> specify_floorplan DTMF_CHIP -core_box {100 100 1400 1400}

Error : The design core box must lie within the die box. [PHYS-102]
[specify_floorplan]

 : core box = {100 100 1400 1400}, die box = {0 0 1200 1400}

 : Wrong coordinates were specified for the core box.

-core_box {llx lly urx ury}

Specifies the lower left and upper right coordinates of the core
of the design.

design Specifies the name of the design.

-die_box {llx lly urx ury}

Specifies the lower left and upper right coordinates of the die of
the design.

-height float Specifies the height of the die.

-width float Specifies the width of the die.
July 2009 459 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
Related Information

Affects this command: synthesize on page 294
July 2009 460 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
update_congestion_map

update_congestion_map design

Updates the congestion map for the specified design.

You can run this command after any command that updates the physical data.
July 2009 461 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
write_def

write_def [-ignore_groups] [-ignore_placed_instances]
[-scan_chains] [design] [> file]

Writes a floorplan, in DEF format, for the specified design. RTL Compiler does not store all
the information from the original DEF (for example, VIAS, SLOTS, ROWS, TRACKS, etc.).
However, the generated floorplan includes data from both the RTL Compiler session as well
as the original imported DEF. The DEF does not contain the netlist information (net
connectivity information) aside from the power/ground nets defined in the input DEF
(SPECIALNETS section).

You can write out the DEF in gzip format by specifying the .gz extension when writing out the
file.

Options and Arguments

Related Information

design Specifies a particular design for which to write out the
floorplan. Only one design can be specified at a time.

file Redirects the floorplan to the specified file.

-ignore_groups Discards the instance groups that are defined in RC. These
come from the input DEF (GROUPS section). The output DEF
will have no GROUPS or REGIONS sections.

-ignore_placed_instances

Only writes preplaced instances (+ FIXED tag in the DEF) to
the DEF. These are objects such as macros. Without this
option, the output DEF will include all the instances that are
preplaced or placed. Unplaced components will never be
written to the DEF. This is all in the COMPONENTS section.

-scan_chains Specifies that scan chain information should be included in
the floorplan.

Related attribute: phys_ignore_special_nets
July 2009 462 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
write_spef

write_spef [> file]

Writes out the parasitics (resistance and capacitance information) of the design in SPEF
(Standard Parasitic Exchange Format) format.

Options and Arguments

Related Information

file Specifies the file to which to write the parasitics.

Related command: read_spef on page 456
July 2009 463 Product Version 9.1

Command Reference for Encounter RTL Compiler
Physical
July 2009 464 Product Version 9.1

Command Reference for Encounter RTL Compiler

July 2009 465 Product Version 9.1

10
Quality Analyzer

Important

These commands are only available when you run the tool in RCQA mode.

■ add_rule_group on page 466

■ launch on page 467

■ read_config_file on page 468

■ report buskeepers on page 469

■ report checks on page 470

■ report spare_instances on page 471

■ reset_session on page 472

■ restore_session on page 473

■ save_session on page 474

■ signoff_checks on page 475

■ signoff_checks all on page 477

■ signoff_checks clock_domain_crossing on page 478

■ signoff_checks constraints on page 479

■ signoff_checks dft on page 480

■ signoff_checks hdl_lint on page 481

■ signoff_checks library on page 482

■ signoff_checks physical on page 483

■ signoff_checks power on page 484

■ write_config_template on page 485

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 466 Product Version 9.1

add_rule_group

add_rule_group rule_group_name
-label label_name
[-tool tool_name]
[-disable]

Defines a rule group under the predefined existing rule set.

Options and Arguments

Example

The following command sequence creates a new rule group called user_rule_grp with a
label name of custom group in the rule set ALL_DFT:

rcqa:/> cd /rules/ALL_DFT

rcqa:/rules/ALL_DFT\> add_rule_group user_rule_grp -label “custom group”

-disable Disables all rule that belong to the rule group. The
supported values of tool are ""(null) and RC.

-label label_name Specifies a label for the rule group. Labels with more than
one separated word, such as custom group, must be
enclosed in quotes (see example).

-tool tool_name Specifies the tool for running the rules in the rule group.

rule_group_name Specifies the name of the rule group.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 467 Product Version 9.1

launch

launch
{ clock_domain_crossing_checker
| constraint_checker
| equivalence_checker
| low_power_checker
| timing_validator }

Launches the various engines in GUI mode. All of the required scripts files are generated in
the respective directories. You can modify the script files and run them separately.

Note: This command launches the tools in GUI mode, but not in the batch mode, so you can
only exit the tool by clicking Exit, not Exit GUI.

Options and Arguments

clock_domain_crossing_checker

Launches the clock domain crossing checker

constraint_checker Launches the constraint checker

equivalence_checker Launches the equivalence checker

low_power_checker Launches the low power checker

timing_validator Launches the timing validator

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 468 Product Version 9.1

read_config_file

read_config_file file

Loads a configuration file.

Options and Arguments

Example

The following command loads a configuration file named config.file:

rcqa:/> read_config_file config.file

Related Information

Supported Variables for Configuration Files in Using Encounter RTL Compiler Quality
Analyzer

file Specifies the name of the configuration file to load.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 469 Product Version 9.1

report buskeepers

Refer to report buskeepers in Chapter 8, “Analysis and Report.”

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 470 Product Version 9.1

report checks

Refer to report checks in Chapter 8, “Analysis and Report.”

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 471 Product Version 9.1

report spare_instances

Refer to report spare_instances in Chapter 8, “Analysis and Report.”

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 472 Product Version 9.1

reset_session

reset_session [design]

Resets the quality analyzer session with its design, library and additional information for
re-running the checks.

Options and Arguments

Examples

The following commands show an example of the command sequence when using
reset_session.

The first set of commands load a configuration file named config.file and runs all signoff
checks:

rcqa:/> read_config_file config.file

rcqa:/> signoff_checks all

The next set of commands reset the session to the point before running the checks, and
reloads the same configuration file:

rcqa:/> reset_session

rcqa:/> read_config_file config.file

Related Information

design Specifies the name of the design.

Related commands: restore_session on page 473

save_session on page 474

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 473 Product Version 9.1

restore_session

restore_session
-file file
[-db]

Restores the saved quality analyzer session that was saved with the save_session
command. This command loads the configuration file, library information, design information,
and saved check results.

Options and Arguments

Examples

■ The following command restores the results of the logical design signoff checks from a
saved file named sessionA.clss:

rcqa:/> restore_session -file sessionA.clss

■ The following command restores the results of 1.clss and loads for the database file
1.clss.db:

rcqa:/> restore_session -file 1.clss -db

Related Information

-db Restores the database file that was specified with the
save_session -db command.

-file file Specifies the name of the saved session file.

Related commands: reset_session on page 472

save_session on page 474

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 474 Product Version 9.1

save_session

save_session
-to_file file
[-db]

Saves the results of the logical design signoff checks in the current session to an encrypted
file.

You can restore the saved session file using the restore_session command.

Options and Arguments

Examples

■ The following command saves the results of the logical design signoff checks to a file
named sessionA.clss:

rcqa:/> save_session -to_file sessionA.clss

■ The following command generate two files: 1.clsswith all the RCQA related setup, and
1.clss.db:

rcqa:/> save_session -to_file 1.clss -db

Related Information

-db Saves the database file in addition to the session file with
a .db extension.

-to_file file Specifies the name of the session file.

Related commands: reset_session on page 472

restore_session on page 473

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 475 Product Version 9.1

signoff_checks

signoff_checks { all | clock_domain_crossing | constraints | dft
| hdl_lint | library | physical | power }

Runs the specified rule checks. Use this command only after loading a valid configuration file.

After running the checks, the RCQA software creates a rcqa_*_chk directory that
generates internal files required to perform the checks that includes the log file generated by
the corresponding engine. If you do not get enough information from the rcqa.log file to
debug the issue, you can refer to the individual log file of the internal engine available in the
debug directories.

Options and Arguments

all Runs all checks in this order: HDL lint, library, clock domain
crossing, constraints, power, and DFT.

clock_domain_crossing Runs clock domain crossing checks.

constraints Runs constraint validation (SDC) checks.

dft Runs Design for Test (DFT) checks.

hdl_lint Runs HDL analysis for lint, structural, and synthesizability
issues.

library Runs library checks.

physical Runs physical netlist checks.

power Runs low power checks.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 476 Product Version 9.1

Related Information

Related commands: signoff_checks all on page 477

signoff_checks clock_domain_crossing on page 478

signoff_checks constraints on page 479

signoff_checks dft on page 480

signoff_checks hdl_lint on page 481

signoff_checks library on page 482

signoff_checks physical on page 483

signoff_checks power on page 484

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 477 Product Version 9.1

signoff_checks all

signoff_checks all
[> file]

Runs all rule checks in the following order:

■ HDL lint

■ Library

■ Clock comain crossing

■ Constraints

■ Power

■ DFT

Use this command only after loading a valid configuration file.

After running the checks, the RCQA software creates rcqa_*_chk directories that
generates internal files required to perform the checks that includes the log file generated by
the corresponding engine. If you do not get enough information from the rcqa.log file to
debug the issue, you can refer to the individual log file of the internal engine available in the
debug directories.

Options and Arguments

Example

The following command runs all rule checks and outputs the results to a file named
all_checks:

rcqa:/> signoff_checks all > all_checks

Related Information

Debug Directories in Using Encounter RTL Compiler Quality Analyzer

file Specifies the name of the file to direct the output.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 478 Product Version 9.1

signoff_checks clock_domain_crossing

signoff_checks clock_domain_crossing
[-diagnose] [-license string]
[> file]

Runs clock domain crossing checks. Use this command only after loading a valid
configuration file.

After running the check, the RCQA software creates an rcqa_cdc_chks directory that
generates internal files required to perform the checks that includes the log file generated by
the corresponding engine. If you do not get enough information from the rcqa.log file to
debug the issue, you can refer to the individual log file of the internal engine available in the
debug directories.

Options and Arguments

Example

The following command runs clock domain crossing checks and enables the GXL license:

rcqa:/> signoff_checks clock_domain_crossing -license GXL

Related Information

Debug Directories in Using Encounter RTL Compiler Quality Analyzer

-diagnose Opens up the Clock Domain Crossing engine for debugging.
After quitting the tool, it reports the checks that you can
analyze using the Message browser

file Specifies the name of the file to direct the output.

-license string Specifies the license of the child technology.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 479 Product Version 9.1

signoff_checks constraints

signoff_checks constraints
[-diagnose] [-license string]
[> file]

Runs constraint validation (SDC) checks. Use this command only after loading a valid
configuration file.

After running the checks, the RCQA software creates an rcqa_con_chks directory that
generates internal files required to perform the checks that includes the log file generated by
the corresponding engine. If you do not get enough information from the rcqa.log file to
debug the issue, you can refer to the individual log file of the internal engine available in the
debug directories.

Options and Arguments

Example

The following command runs constraint (SDC) checks and enables the GXL license:

rcqa:/> signoff_checks constraints -license GXL

Related Information

Debug Directories in Using Encounter RTL Compiler Quality Analyzer

-diagnose Opens up the Conformal Constraint Designer engine for
debugging. After quitting the tool, it reports the checks that
you can analyze using the Message browser.

file Specifies the name of the file to direct the output.

-license string Specifies the license of the child technology.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 480 Product Version 9.1

signoff_checks dft

signoff_checks dft
[> file]

Runs Design for Test (DFT) checks. Use this command only after loading a valid configuration
file.

After running the checks, the RCQA software creates an rcqa_dft_chks directory that
generates internal files required to perform the checks that includes the log file generated by
the corresponding engine. If you do not get enough information from the rcqa.log file to
debug the issue, you can refer to the individual log file of the internal engine available in the
debug directories.

Note: If you specify a CPF file, the power checks must be run first before running the DFT
checks.

Options and Arguments

Example

The following command runs DFT checks:

rcqa:/> signoff_checks dft

Related Information

Debug Directories in Using Encounter RTL Compiler Quality Analyzer

file Specifies the name of the file to direct the output.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 481 Product Version 9.1

signoff_checks hdl_lint

signoff_checks hdl_lint
[> file]

Runs HDL analysis for lint, structural, and synthesizability issues. Use this command only
after loading a valid configuration file.

After running the checks, the RCQA software creates an rcqa_hdl_chks directory that
generates internal files required to perform the checks that includes the log file generated by
the corresponding engine. If you do not get enough information from the rcqa.log file to
debug the issue, you can refer to the individual log file of the internal engine available in the
debug directories.

Options and Arguments

Example

The following command runs HDL lint checks:

rcqa:/> signoff_checks hdl_lint

Related Information

Debug Directories in Using Encounter RTL Compiler Quality Analyzer

file Specifies the name of the file to direct the output.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 482 Product Version 9.1

signoff_checks library

signoff_checks library
[> file]

Runs library checks. Use this command only after loading a valid configuration file.

After running the checks, the RCQA software creates an rcqa_lib_chks directory that
generates internal files required to perform the checks that includes the log file generated by
the corresponding engine. If you do not get enough information from the rcqa.log file to
debug the issue, you can refer to the individual log file of the internal engine available in the
debug directories.

Options and Arguments

Example

The following command runs library checks:

rcqa:/> signoff_checks library

Related Information

Debug Directories in Using Encounter RTL Compiler Quality Analyzer

file Specifies the name of the file to direct the output.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 483 Product Version 9.1

signoff_checks physical

signoff_checks physical
[> file]

Runs physical netlist checks. Use this command only after loading a valid configuration file.

After running the checks, the RCQA software creates an rcqa_phys_chks directory that
generates internal files required to perform the checks that includes the log file generated by
the corresponding engine. If you do not get enough information from the rcqa.log file to
debug the issue, you can refer to the individual log file of the internal engine available in the
debug directories.

Options and Arguments

Example

The following command runs physical netlist checks:

rcqa:/> signoff_checks physical

Related Information

Debug Directories in Using Encounter RTL Compiler Quality Analyzer

file Specifies the name of the file to direct the output.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 484 Product Version 9.1

signoff_checks power

signoff_checks power
[-diagnose] [-license string]
[> file]

Runs low power checks. Use this command only after loading a valid configuration file.

After running the checks, the RCQA software creates an rcqa_pow_chks directory that
generates internal files required to perform the checks that includes the log file generated by
the corresponding engine. If you do not get enough information from the rcqa.log file to
debug the issue, you can refer to the individual log file of the internal engine available in the
debug directories.

Note: If you specify a CPF file, the power checks must be run first before running the DFT
checks.

Options and Arguments

Example

The following command runs low power checks and enables the GXL license:

rcqa:/> signoff_checks power -license GXL

Related Information

Debug Directories in Using Encounter RTL Compiler Quality Analyzer

-diagnose Opens up the Conformal Low Power engine for debugging.
After quitting the tool, it reports the checks that you can
analyze using the Message browser.

file Specifies the name of the file to direct the output.

-license string Specifies the license of the child technology.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 485 Product Version 9.1

write_config_template

write_config_template
[> file]

Writes out a configuration file template that lists out the supported file variables.

Options and Arguments

Examples

The following command writes out a configuration file template to a file named
config.file:

rcqa:/> write_config_template > config.file

Related Information

Supported Variables for Configuration Files in Using Encounter RTL Compiler Quality
Analyzer

Sample Configuration Files in Using Encounter RTL Compiler Quality Analyzer

file Specifies the name of the file to direct the output.

Command Reference for Encounter RTL Compiler
Quality Analyzer

July 2009 486 Product Version 9.1

Command Reference for Encounter RTL Compiler
11
Design for Test

■ analyze_scan_compressibility on page 490

■ analyze_testability on page 495

■ check_atpg_rules on page 498

■ check_dft_pad_configuration on page 500

■ check_dft_rules on page 501

■ compress_scan_chains on page 508

■ concat_scan_chains on page 520

■ configure_pad_dft on page 522

■ connect_scan_chains on page 523

■ define_dft on page 528

■ define_dft abstract_segment on page 530

■ define_dft boundary_scan_segment on page 535

■ define_dft dft_configuration_mode on page 538

■ define_dft fixed_segment on page 540

■ define_dft floating_segment on page 542

■ define_dft jtag_instruction on page 543

■ define_dft jtag_instruction_register on page 547

■ define_dft jtag_macro on page 549

■ define_dft mbist_clock on page 554

■ define_dft preserved_segment on page 557

■ define_dft scan_chain on page 560
July 2009 487 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ define_dft scan_clock_a on page 566

■ define_dft scan_clock_b on page 569

■ define_dft shift_enable on page 572

■ define_dft shift_register_segment on page 575

■ define_dft test_clock on page 577

■ define_dft test_mode on page 581

■ dft_trace_back on page 584

■ fix_dft_violations on page 586

■ fix_scan_path_inversions on page 590

■ identify_multibit_cell_abstract_scan_segments on page 591

■ identify_shift_register_scan_segments on page 593

■ identify_test_mode_registers on page 595

■ insert_dft on page 598

■ insert_dft analyzed_test_points on page 600

■ insert_dft boundary_scan on page 607

■ insert_dft dfa_test_points on page 611

■ insert_dft jtag_macro on page 614

■ insert_dft lockup_element on page 617

■ insert_dft mbist on page 618

■ insert_dft ptam on page 622

■ insert_dft scan_power_gating on page 625

■ insert_dft shadow_logic on page 627

■ insert_dft test_point on page 631

■ insert_dft user_test_point on page 636

■ insert_dft wrapper_cell on page 638

■ read_dft_abstract_model on page 641

■ read_io_speclist on page 643
July 2009 488 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ replace_scan on page 644

■ report_scan_compressibility on page 645

■ report dft_chains on page 647

■ report dft_registers on page 648

■ report dft_setup on page 649

■ report dft_violations on page 650

■ report scan_power on page 651

■ reset_scan_equivalent on page 652

■ set_compatible_test_clocks on page 653

■ set_scan_equivalent on page 654

■ write_atpg on page 656

■ write_bsdl on page 659

■ write_compression_macro on page 662

■ write_dft_abstract_model on page 666

■ write_et_atpg on page 669

■ write_et_bsv on page 674

■ write_et_dfa on page 678

■ write_et_mbist on page 682

■ write_et_rrfa on page 687

■ write_io_speclist on page 691

■ write_scandef on page 693
July 2009 489 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
 analyze_scan_compressibility

analyze_scan_compressibility
 -library atpg_libraries
[-chains number_of_full_scan_chains...]
[-compressor {xor | misr | mimic_bidi_misr}]
[-decompressor {broadcast | xor}]
[-mask {wide0|wide1|wide2}]
[-effort atpg_effort]
[-fault_sample_size fault_sample_size]
[-ratio_list list_of_compression_ratios]
[-directory directory]
[-dont_run_atpg]
[design]

Analyzes a design for scan-based compressibility and produces actual compression results
for each compression setting.

Note: To use this command you need to have a license for the Encounter Test Architect tool.

Options and Arguments

-chains integer Specifies the number of scan chains to be analyzed. This option
must be specified if no scan chains are defined for the design.

Note: This option is ignored if the design already has scan
chains defined.

Default: none

-compressor {xor | misr | mimic_bidi_misr}

Specifies the type of compression logic for analysis:

■ xor analyzes an XOR-based compressor

■ misr analyzes an on-product MISR compressor

■ mimic_bidi_misr analyzes an on-product MISR
compressor and mimics the behavior of the design as
though the pads can be configured bidirectionally.

Default: xor
July 2009 490 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-decompressor {broadcast | xor}

Specifies the type of decompression logic for analysis:

■ broadcast specifies broadcast-based decompression
logic (simple scan fanout).

■ xor specifies an XOR-based spreader network in addition
to the broadcast-based decompression logic.

Default: broadcast

design Specifies the name of the top-level design on which to perform
analysis.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-directory atpg_directory

Specifies the directory to run and store ATPG results.

Note: ATPG results tend to consume high amounts of disk
space for larger designs.

Default: ./.asc

-dont_run_atpg Specifies to only insert the different compression options and
produces a list of the ATPG jobs to be run.

Note: This option can be used in combination with the
report_scan_compressibility command as the list of
ATPG jobs is produced. The ATPG jobs may be run with either
of the following methods:

■ Run on a different workstation.

■ Run in parallel mode to reduce runtime if a Load Sharing
Facility (LSF) environment is available.

Important

Neither of the preceding methods are automatically
invoked by the analyze_scan_compressibility
command or the report_scan_compressibility
command.
July 2009 491 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-effort {low | medium | high}

Specifies the effort to be used for ATPG.

Note: Higher effort levels on larger designs cause increased
runtimes.

Default: medium

-fault_sample_size integer_sample_size

Specifies the number of faults to simulate to predict test
coverage. This number affects the number of partitions or slices
to be run depending on the total number of faults in the design.
Specifying a higher number obtains more accurate results while
specifying a lower number reduced runtime.

Defaults: 20000 or for full ATPG -1

-library atpg_library...

Specifies the ATPG library or libraries.

-mask {wide0| wide1 | wide2}

Specifies the scan channel masking logic type for analysis.

The masking types that can be used depend on the compressor
type specified with the -compressor option.

Default: wide1

Note: The syntax indicates which types are available for each of
the compressor types.

-ratio_list list_of_compression_levels

Specifies the list of compression ratios to be analyzed.

Default: "20 50 100".
July 2009 492 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command performs XOR-based compression analysis on wide1 logic
masking for a compression list of "20 50 100". It only inserts the compression options
with the -dont_run_atpg option. The command is followed by manually invoking the
list of ATPG runs.

rc:/> analyze_scan_compressibility -chains 8 -compressor xor -mask wide1 \
 -ratio_list "20 50 100" -dont_run_atpg -library $atpg_libraries

analyze_scan_compressibility ...
...
...

■ The following command performs MISR-based compression analysis, with wide2
masking, an xor decompressor, a ratio list of "10 20", eight scan chains, and assumes
the pads are bidirectional for MISR-based compression.

rc:> analyze_scan_compressibility -chains 8 -decompressor xor \
-compressor mimic_bidi_misr -ratio_list "10 20" -mask wide2

analyze_scan_compressibility ...
...
...

Design-DLX_CORE
Compressor-mimic_bidi_misr
Decompressor-xor
Mask-wide2
####################################
Analyze_dft_compressibility Results
####################################

Achieved compression table with fullscan topup vectors
###
IC TATR TDVR Cov CL Cycles Runtime
###
fs 1 1 99.86% 161 57318 1:20
10 7 17 99.88% 17 8159 1:50
20 10 19 99.85% 9 5581 2:00

Achieved compression table without fullscan topup vectors
###
IC TATR TDVR Cov CL Cycles
###
fs 1 1 99.86% 161 57318
10 7 23 98.02% 17 7193
20 14 43 97.28% 9 3971
Total atpg runtime for exp. 5:10 hrs.

IC - Inserted compression
TATR - Test application time reduction
TDVR - Test data volume reduction
Cov - Atpg coverage
CL - Channel Length
Cycles - Total no. of cycles for test
Runtime- Atpg runtime
fs - fullscan run
July 2009 493 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ The following command performs a preview of an XOR-based compression analysis,
with wide1 masking, with an xor decompressor, a ratio list of "5 10", and eight scan
chains

rc:> analyze_scan_compressibility -chains 8 -decompressor xor \
-library rules/tsmc13.v -ratio_list "5" -directory $outdir/newdirx \
 -dont_run_atpg -fault_sample_size 5000 -preview

analyze_scan_compressibility -directory $outdir/newdirx....

Preview of design:
Total number of DFT violations: 40
Total number of Test Clock Domains: 3
Number of user specified non-Scan registers: 5

Number of registers that fail DFT rules: 60
Number of registers that pass DFT rules: 1350

Percentage of total registers that are scannable: 95%

 Max chain length:169
 Min chain length:168
###
IC TAC No.of.SC No.of.Chann MaxCL MaxML
###
fs - 8 - - -
5 5 8 40 34 5
10 9.9 8 80 17 10

IC-Inserted compression
TAC-Tool achieved compression
No.of SC- No. of full scan chains
No.of Chann-No. of internal scan channels
Max.CL- Maximum length of internal channel
Max.ML- Maximum length of mask register channel

Related Information

Analyzing and Reporting Scan Compressibility in Design for Test in Encounter RTL
Compiler.

Compressing Scan Chains in Design for Test in Encounter RTL Compiler

Affected by these constraints: define_dft test_clock on page 577

define_dft shift_enable on page 572
July 2009 494 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
analyze_testability

analyze_testability [-library string]
[-effort {low|medium|high}]
[-atpg_options string]
[-build_model_options string]
[-fault_sample_size integer]
[-etlog file] -directory string [design]

Invokes Encounter Test to perform Automatic Test Pattern Generator (ATPG) based testability
analysis in either assume or fullscan mode.

Note: To use this command you need to have the Encounter Test software installed and your
operating system PATH environment variable must include the path to the Encounter Test
software. For more information on the exact product requirements, refer to Encounter Test
Product Requirements for Advanced Features in Design for Test in Encounter RTL
Compiler.

Options and Arguments

-atpg_options string

Specifies a string containing the extra options to run
ATPG-based testability analysis.

Note: For more information on these options, refer to the
create_tests command in the Command Line Reference
(of the Encounter Test documentation).

-build_model_options string

Specifies a string containing the extra options to build a model.

Note: For more information on these options, refer to the
build_model command in the Command Line Reference (of
the Encounter Test documentation).

design Specifies the name of the top-level design on which you want to
perform test analysis and test-point selection.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-directory string Specifies the working directory for Encounter Test.
July 2009 495 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example performs only ATPG-based testability analysis. The command
generates a report on the fault coverage in the log file.

analyze_testability

■ The following command instructs to build a model using the IEEE standard Verilog
parser.

analyze_testability -build_mode_options "vlogparser=IEEEstandard"

-effort {low | medium | high}

Specifies the effort to be used for the ATPG-based testability
analysis.

Default: low

-et_log file Specifies the name of the Encounter Test log file. This file will
be generated in the specified directory.

Default: eta_from_rc.log

-fault_sample_size integer

Specifies the number of faults simulated to predict the test
coverage. This number affects the number of partitions or slices
to be run depending on the total number of faults in the design.

The default sample size gives a good estimation of fault
coverage while limiting the run time. Use a higher number to get
a better accuracy, or a smaller number to reduce your run time.

Default: 20(K)

-library string Specifies the list of Verilog structural library files, for example,
file1 file2. Refer to the write_et_atpg -library
option description for additional information.

Note: This option is only required when you invoke this
command on a mapped netlist.
July 2009 496 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Using Encounter Test Software to Analyze Testability in Design for Test in Encounter RTL
Compiler.

Affected by these constraints: define_dft test_mode on page 581

define_dft test_clock on page 577
July 2009 497 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
check_atpg_rules

check_atpg_rules [-library string] [-compression]
[-directory string] [design]

Generates a template script to run Encounter Test to verify if the design and its test structures
are ATPG-ready. More specifically, the generated script allows you to check for

■ Tristate drivers for contention

These conditions might cause manufacturing test problems

■ Feedback loops

Failure to break combinational feedback loops might cause reduced test coverage.

■ Clock signal races

Checks for any flip-flop with a potential race condition between its data and clock signal.

■ Test clock control

This command generates the following files:

■ et.exclude—A file listing objects to be excluded from the ATPG analysis

■ et.modedef—A file describing the test mode when running ATPG in assumed scan
mode

■ topmodulename.ASSUMED.pinassign—–A pin-assignment file that captures the
top-level scan-related signals (shift-enable, test-mode, test-clock) and their test function
used to build the testmode before actual scan chains exist in the design

■ topmodulename.FULLSCAN.pinassign—–A pin-assignment file that captures the
top-level scan-related signals (shift-enable, test-mode, test-clock and scan data IOs) and
their test function used to build the testmode when actual scan chains exist in the design

■ If the ATPG-based testability analysis is run in compression mode, the following
pin-assignment files are generated in addition to the
topmodulename.FULLSCAN.pinassign file. In this case, All three files include the
compression test signals with their appropriate test functions to validate their specific test
mode:

❑ topmodulename.COMPRESSION_DECOMP.pinassign—A file generated only
when inserting XOR-based decompression logic

❑ topmodulename.COMPRESSION.pinassign—A file generated to verify the
broadcast-based decompression logic
July 2009 498 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ runet.tsv—A template script file for Encounter Test to verify the design and its test
structures

Options and Arguments

Example
rc:/> check_atpg_rules

Encounter Test scripts to check whether a design is ATPG ready have been written
to directory ’./check_atpg_rules’.

Invoke the scripts as ’et -e ./check_atpg_rules/runet.tsv’

-compression Performs additional checks if the design has compression logic.

design Specifies the name of the top-level design for which you want to
check if it ATPG-ready.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-directory string Specifies the working directory for Encounter Test.

Note: If the script files already exist, rerunning the command will
overwrite them.

Default: ./check_atpg_rules

-library string Specifies the list of Verilog structural library files, for example,
file1 file2. Refer to the write_et_atpg -library
option description for additional information.

Note: This option is only required when you invoke this
command on a mapped netlist.
July 2009 499 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
check_dft_pad_configuration

check_dft_pad_configuration [design] [> file]

Checks and reports the data direction control of the pad logic for the test I/O ports.

Options and Arguments

Related Information

Checking the Pad Configuration in Design for Test in Encounter RTL Compiler.

design Specifies the name of the top-level design to be checked. You
should specify this name in case you have multiple top designs
loaded.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

file Specifies the file to which to redirect the detailed output.

If no file is specified, the output is written to standard out
(stdout) and to the log file.
July 2009 500 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
check_dft_rules

check_dft_rules [design] [-advanced]
[-max_print_violations integer | > file]
[-max_print_registers integer]
[-max_print_fanin integer]
[-dft_configuration_mode dft_config_mode_name]
[-mbist [-interface_file_dirs string]]

Evaluates the design for DFT-readiness. Flip-flops that pass the DFT rule checks are later
mapped to scan flip-flops during synthesis and included in a scan chain during scan
connection. Flip-flops that fail the DFT rule checks and flip-flops marked with either a
dft_dont_scan attribute or a preserve attribute, or flip-flops instantiated in lower-level
blocks marked with a preserve attribute, are not mapped to scan flip-flops and are excluded
from the scan chains. The DFT rule checker also analyzes the libraries and reports on the
valid scan cells.

Table 11-1 lists the DFT rule violations that this command checks.
.

Note: (*) indicates that the check is performed using the -advanced option.

To maximize fault coverage, you should try to fix any DFT rule violations, so that all flip-flops
can be included in a scan chain. You can either modify the RTL or use the DFT fix capabilities
using the fix_dft_violations command.

Table 11-1 Checking For and Auto-Fixing of DFT Rule Violations

DFT Rule Violation Checked? Auto-Fixed?

Uncontrollable asynchronous set or reset signals Checked Yes

Gated clocks and derived clocks Checked Yes

Flip-flop’s clock port connected to tied lines Checked Yes

Conflicting clock and asynchronous set or reset signals Checked No

Tristate contention for internal and external nets Checked(*) Yes

Same asynchronous set or reset data race conditions Checked(*) Yes

Clock and data race conditions Checked(*) No

Floating nets violations Checked(*) No

X-source violations Checked(*) Yes

Floating conditions Not checked No
July 2009 501 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Tip

To include the RTL file name and line number at which the DFT violation occurred
in the messages produced by check_dft_rules, set the
hdl_track_filename_row_col root attribute to true before elaboration.

Table 11-2 lists the MBIST rules violations checked by the command. The command does not
auto-fix detected MBIST rules violations.

You can find the objects created by the check_dft_rules command in:

/designs/design/dft/test_clock_domains

The detected violations are placed in:

/designs/design/dft/report/violation

Options and Arguments

Table 11-2 Checked MBIST Rule Violations

MBIST Rule

Test_Control is properly controlled at the MBIST engine pin via chip port

MBIST engine clock pins are properly controlled from chip ports

Interface files are consistent with JTAG instructions and MBIST logic inserted in the design

-advanced Specifies to perform checking for tristate contention, same
asynchronous set or reset data race conditions, clock and data
race conditions, x-source generators, and floating nets
violations.

design Specifies the name of the top-level design to be checked. You
should specify this name in case you have multiple top designs
loaded.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.
July 2009 502 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-dft_configuration_mode dft_configuration_mode_name

Specifies the object name of the scan mode to be checked. A
scan mode is defined using the define_dft
dft_configuration_mode command.

Scan modes can be used to build the top-level scan chains with
specific elements in different modes of operation (multi-mode),
or when concatenating default scan chains into a single longer
scan chain in a different scan mode of operation.

file Specifies the file to which to redirect the detailed output.

-interface_file_dirs dir1 dir2 ...

Checks the content of MBIST interface files against the MBIST
logic inserted into the design.

-max_print_fanin integer

Limits the number of pins and ports reported in the fanin cone
for any violation.

Note: This option affects DFT checks performed for same
asyncronous set or reset data race conditions, clock and data
race conditions, and x-source generators.

Default: 20

-max_print_registers integer

Limits the number of registers reported for any violation.

Default: 20

-max_print_violations integer

Controls the number of DFT violations for which the details are
printed to the screen and log file. Specify -1 to write the details
of all violations to the log file.

Default: 20

-mbist Determines whether the MBIST logic inserted in the design
satisfies the conditions necessary to control it from the chip
tester accessible pins.

Note: The -interface_file_dirs option must be specified
with this option.
July 2009 503 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example defines the shift-enable signal and its active polarity, then runs the
DFT rule checker. The output of the check_dft_rules command is written to the
DFT.rules file.The return value of the command (2) corresponds to the number of
violations found.

rc:/> define_dft shift_enable scan_en -active high
rc:/> check_dft_rules > DFT.rules
Checking DFT rules for ’top’ module under ’muxed_scan’ style

Checking DFT rules for clock pins
...
Checking DFT rules for async. pins
...

Detected 2 DFT rule violation(s)
... see the log file for more details

Number of user specified non-Scan registers: 0
Number of registers that fail DFT rules: 4
Number of registers that pass DFT rules: 1

 Percentage of total registers that are scannable: 20%
rc:/> sh more DFT.rules

Checking DFT rules for ’top’ module under ’muxed_scan’ style
Processing techlib techlib_25
Identified a valid scan cell ’SDFFHQX1’

 active clock edge: rising
Identified a valid scan cell ’SDFFHQX2’

 active clock edge: rising
...
Identified 60 valid usable scan cells
Detected 2 DFT rule violation(s)

Summary of check_dft_rules

Number of usable scan cells: 60

Clock Rule Violations:

Internally driven clock net: 1
Tied constant clock net: 0

Undriven clock net: 0
Conflicting async/clock net: 0

Misc. clock net: 0

Async. set/reset Rule Violations:

Internally driven async net: 1
Tied active async net: 0

Undriven async net: 0
Misc. async net: 0

Total number of DFT violations: 2
Clock Violation
0: internal or gated clock signal in module ’top’, net ’Iclk’, inst/pin ’g4/z’
(file: test3.v, line 11) [CLOCK-05]
Effective fanin cone:
clk
en

Async Violation
1: async signal driven by a sequential element in module ’top’, net ’Iset’,
July 2009 504 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
inst/pin ’Iset_reg/q’ (file: test3.v, line 13) [ASYNC-05]
Effective fanin cone:
Iset_reg/q

Violation # 0 affects 4 registers
Violation # 1 affects 4 registers

Note - a register may be violating multiple DFT rules
Total number of Test Clock Domains: 1
DFT Test Clock Domain: clk

Test Clock ’clk’ (Positive edge) has 1 registers
Number of user specified non-Scan registers: 0

Number of registers that fail DFT rules: 4
Number of registers that pass DFT rules: 1

Percentage of total registers that are scannable: 20%

■ The following example shows tristate net checking with the check_dft_rules
-advanced option.

rc:/> check_dft_rules -advanced
Checking DFT rules for ’test’ module under ’muxed_scan’ style

Processing techlib tsmc_25 for muxed_scan scan cells
Identified 60 valid usable scan cells

Checking DFT rules for clock pins
Info : Added DFT object. [DFT-100]

: Added test clock domain ’clk’.
Info : Added DFT object. [DFT-100]

: Added test clock ’clk’.
Checking DFT rules for async. pins
Checking DFT rules for shift registers.
Checking DFT rules for tristate nets.
Checking DFT rules for clock data race conditions.
Checking DFT rules for set reset data race conditions.
Checking DFT rules for x-sources.

Detected 1 DFT rule violation(s)
Summary of check_dft_rules

Number of usable scan cells: 60

Clock Rule Violations:

Internally driven clock net: 0
Tied constant clock net: 0

Undriven clock net: 0
Conflicting async & clock net: 0

Misc. clock net: 0

Async. set/reset Rule Violations:

Internally driven async net: 0
Tied active async net: 0

Undriven async net: 0
Misc. async net: 0

Advanced DFT Rule Violations:

Tristate net contention violation: 1
Potential race condition violation: 0

X-source violation: 0

Total number of DFT violations: 1
July 2009 505 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Warning : DFT Tristate net contention Violation. [DFT-315]
 : # 0 <vid_0_tristate_net>: tristate net ’tbus’ connected to pin
’out_reg/d’ potentially driven by conflicting values [TRISTATE_NET-01]
: To remove the net contention violation in scan-shift mode, either modify the
RTL, or use the ’-tristate_net’ option of the ’fix_dft_violations’ command.

Tristate net drivers:
i_block2/g1/z
i_block1/g1/z
i_block3/g1/z

Violations sorted by type and number of affected registers
Note - a register may be violating multiple DFT rules.

There are ’1’ tristate net violations.

Related Information

Running the DFT Rule Checker in Design for Test in Encounter RTL Compiler.

Defining Scan Configuration Modes in Design for Test in Encounter RTL Compiler

Concatenating Scan Chains in Design for Test in Encounter RTL Compiler

Affected by these constraints: define_dft abstract_segment on page 530

define_dft dft_configuration_mode on page 538

define_dft shift_enable on page 572

define_dft test_clock on page 577

define_dft test_mode on page 581

Affects these commands: connect_scan_chains on page 523

fix_dft_violations on page 586

report dft_registers on page 648

synthesize on page 294
July 2009 506 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Affected by these attributes: dft_controllable

dft_dont_scan

dft_identify_test_signals

dft_identify_top_level_test_clocks

dft_scan_style

(instance) preserve

(subdesign) preserve

dft_identify_xsource_violations_from_timing_models

Sets these attributes: dft_status

dft_violation

type

Violations Attributes
July 2009 507 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
compress_scan_chains

compress_scan_chains -ratio integer
[-chains actual_scan_chain]...
[-allow_shared_clock] [-auto_create] [-power_aware]
[-decompressor {broadcast

| xor [-spread_enable test_signal]}]
[-master_control test_signal]
[-compression_enable test_signal] [-target_period integer]
[-jtag_control_instruction jtag_instruction]

[-allow_multiple_jtag_control]]
[-compressor xor

[-mask {wide1|wide2} [-mask_clock {port|pin}]
[-mask_load test_signal] [-mask_enable test_signal]
[-create_mask_or_misr_chain
-mask_or_misr_sdi {pin|port}
-mask_or_misr_sdo {pin|port} [-shared_output]]]

[-mask_sharing_ratio integer
[-apply_timing_constraints [-timing_mode_names mode_list]]
[-write_timing_constraints file]

| -compressor misr
[-serial_misr_read]

[-misr_observe test_signal]
[-misr_clock {port|pin}]
[{-misr_reset_enable test_signal] | [-misr_reset_clock test_signal]}]
[-misr_read test_signal | -dont_exploit_bidi_scanio]
[-misr_shift_enable test_signal]
[-mask_sharing_ratio integer
[-mask {wide0 | wide1 | wide2}
[-mask_clock {port|pin}] [-mask_load test_signal]
[-mask_enable test_signal_list]
[-create_mask_or_misr_chain
-mask_or_misr_sdi {pin|port}
-mask_or_misr_sdo {pin|port} [-shared_output]]

| -compressor hybrid
[-serial_misr_read]

[-misr_observe test_signal]
 [-misr_bypass test_signal]

[-misr_clock {port|pin}]
[{-misr_reset_enable test_signal] | [-misr_reset_clock test_signal]}]
[-misr_shift_enable test_signal]
[-mask {wide0 | wide1 | wide2}
[-mask_sharing_ratio integer
[-mask_clock {port|pin}] [-mask_load test_signal]
[-mask_enable test_signal_list]
[-create_mask_or_misr_chain
-mask_or_misr_sdi {pin|port}
-mask_or_misr_sdo {pin|port} [-shared_output]]]

 [-preview] [-inside instance] [design]
July 2009 508 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Adds decompression and compression logic to reduce the effective length of the actual scan
chains.

Note: To use this command you need to have a license for the Encounter Test Architect tool.

Options and Arguments

-allow_multiple_jtag_control

When controlling the compression testmode from a JTAG
macro, (that is, the -jtag_control_instruction option is
specified), compress_scan_chains checks for the presence
of other compression macros that are also JTAG controlled.
RC-DFT does not automatically support such a configuration
and therefore insertion of a second JTAG controlled
compression macro is disallowed by default. Specify this option
to bypass this check and insert additional JTAG controlled
compression macros. When this option is specified, the tool
assumes you will manually perform any additional stitching
needed and will appropriately modify any files generated for
Encounter Test.

Note: You must also specify the
-jtag_control_instruction option with this option.

-allow_shared_clock

Allows the mask or MISR clock to be shared with an existing
full-scan test clock.

Note: The mask or MISR clock can only be shared with a test
clock if you added gating logic which prevents the scan flops
from pulsing during the channel mask load or MISR reset
sequences. Since functional clocks are typically used for
scanning, this requirement means that the functional clocks
must be gated during test.

Important

When specified with the -auto_create option, a
-mask_load pin is automatically created. The
mask_load pin must additionally be used to gate off the
clock being shared. If this gating logic is not added, the
mask loading or MISR reset procedure will corrupt the
test data in the design.
July 2009 509 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-apply_timing_constraints

Applies timing constraints to the appropriate compression
control signals to prevent the mapper from considering these
paths for timing optimization.

Timing constraints will be applied in all user-specified timing
modes.

Note: If your design has multiple timing modes but you did not
specify the -timing_mode_names option to list the timing
modes for which to write the constraints, no additional
constraints are applied.

-auto_create Automatically creates the necessary test pins as top-level ports.

If you omitted any of the following options
-compression_enable, -spread_enable, -mask_clock,
-mask_load, -mask_enable, -mask_or_misr_sdi,
-mask_or_misr_sdo, -misr_clock, -misr_observe,
-misr_reset_enable, -misr_read,-misr_bypass, the
appropriate ports will be created and named using the following
format:

prefixOption

For example, prefixcompression_enable, where
prefix is the value of the dft_prefix root attribute.

-chains actual_scan_{chain...}

Specifies the names of the actual scan chains to be
compressed.

By default all actual scan chains are compressed.

Note: When inserting MISR logic, all scan chains must
eventually be compressed.
July 2009 510 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-compression_enable test_signal

Specifies the name of the test signal that enables configuring
the actual scan chains in compression mode.

Note: If you do not specify the -auto_create or
-jtag_control_instruction options, this test signal must
have been defined using the define_dft test_mode
command. If you request to build the compression logic with a
master control signal (-master_control), the input port
driving the compression enable signal can be an existing
functional pin (specified through the -shared_in option of
define_dft test_mode). If you do not specify the
-master_control option, you must define the compression
enable signal without the -shared_in option.

-compressor {xor | misr| hybrid}

Specifies the type of compression logic to be built:

■ xor specifies to build an XOR-based compressor

■ misr specifies to build a MISR-based compressor

■ hybrid specifies to build a MISR compression with MISR
bypass capability. Bypassing the MISR allows you to
perform compression using just the XOR compressor.

Default: xor

-create_mask_or_misr_chain

Specifies to build a separate full-scan chain for the mask and
MISR registers.

Note: To place the mask or MISR registers in a separate chain,
an additional scan data input pin and scan data output pin are
needed. You can either specify these pins using the
-mask_or_misr_sdi and -mask_or_misr_sdo options,
or make sure that the -auto_create option is specified.
July 2009 511 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-decompressor {broadcast | xor}

Specifies the type of decompression logic to be built:

■ xor specifies to build an XOR-based spreader network in
addition to the broadcast-based decompression logic

■ broadcast specifies to build a broadcast-based
decompression logic (simple scan fanout).

Default: broadcast

design Specifies the name of the top-level design whose scan chains
must be compressed. You should specify this name in case you
have multiple top designs loaded.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dont_exploit_bidi_scanio

Disables use of bidirectional scan I/O for a MISR-based
compressor.

Note: This option is mutually exclusive with the -misr_read
option.

-inside instance Specifies the instance in which to instantiate the compression
logic.

By default, the compression logic is inserted as a hierarchical
instance in the top-level of the design.

-jtag_control_instruction jtag_instruction

Specifies which JTAG instruction will be used to target the
compression macro’s test data register.

-mask {wide0| wide1 | wide2}

Inserts scan channel masking logic of the specified type.

The masking types that can be used depend on the compressor
type specified with the -compressor option.

By default, no masking logic is inserted.

Note: The syntax indicates which types are available for each of
the compressor types.
July 2009 512 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-mask_clock {pin|port}

Specifies the clock that controls the mask registers.

Note: The input port associated with this option can be an
existing functional pin. This clock cannot be shared with an
existing full-scan test clock pin unless you also specify the
-allow_shared_clocks option.

-mask_enable test_signal

Specifies the name of the test signal that controls whether
mask bits should be applied during the current scan cycle.

For wide2 masking, two mask enable signals must be
specified.

Note: If you do not specify the -auto_create option, this test
signal must have been defined using the define_dft
test_mode command. The input port driving this test signal can
be an existing functional pin (specified through the-shared_in
option of the define_dft test_mode command).

-mask_load test_signal

Specifies the name of the test signal that enables loading of the
mask data into the mask data registers.

Note: If the mask_clock is dedicated (that is, is only used for
mask register loading), this signal is not needed. If this signal is
shared (is used to clock the MISR or other logic in the circuit),
this signal is needed to gate non mask load clock pulses from
corrupting the mask registers. If the mask_clock is shared with
other logic, you can use this signal to protect the shared logic
from corruption during the mask load sequence.

-mask_or_misr_sdi {pin|port}

Specifies the scan data input pin or port of the mask or MISR
chain.

Note: The input port associated with this option can be an
existing functional pin.
July 2009 513 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-mask_or_misr_sdo {pin|port}

Specifies the scan data output pin or port of the mask or MISR
chain.

Note: If the output port associated with this option is an existing
functional pin, you must specify the -shared_out option.

-mask_sharing_ratio integer

Specifies the number of internal scan channels sharing a mask
register. The specified integer may not exceed the value
specified for the compression ratio.

Note: This option is only valid with wide1 and wide2 masking.

-master_control test_signal

Specifies the master control signal that gates the compression
enable signal used for compression.

Note: This test signal must be dedicated for test and must have
been defined using the define_dft test_mode command.

-misr_bypass test_signal

Specifies the test signal used to bypass the MISR-based logic.
This test signal is required in hybrid compression mode.

Note: If you do not specify the -auto_create or
-jtag_control_instruction options, this test signal must
have been defined using the define_dft test_mode
command. The input port driving this test signal can be an existing
functional pin (specified through the -shared_in option of the
define_dft test_mode command).

-misr_clock {pin|port}

Specifies the clock that controls the MISR registers.

Note: This input port cannot be shared with an existing full-scan
test clock unless it is only used to accumulate the MISR
signature or if the -allow_shared_clocks option is
specified. The -misr_clock option is only used to accumulate
the MISR signature if there are separate -mask_clock and
-misr_reset_clock signals specified.
July 2009 514 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-misr_reset_clock test_signal

Specifies a separate dedicated test signal that is used to
asynchronously reset the MISR.

Note: This option is mutually exclusive with the
-misr_reset_enable option.

-misr_observe test_signal

Specifies the test signal used to select Serial MISR Read. This
is required when the -serial_misr_read option is specified
unless -auto_create or -jtag_control_instruction is
also specified.

Note: You must also specify the -serial_misr_read option
with this option.

-misr_read test_signal

Specifies the test signal to configure any bidirectional scan I/O
pads for MISR compression.

This option is mutually exclusive with the
-dont_exploit_bidi_scanio option. Using scan I/O
bidirectionally during MISR compression is only available with
the -compressor misr option. When using the -compressor
hybrid option, all scan I/O are used unidirectionally.

-misr_reset_enable test_signal

Specifies the test signal used to reset the MISR registers.

Notes:

■ This option is mutually exclusive with the
-misr_reset_clock option.

■ If you do not specify the -auto_create option, this test
signal must have been defined using the define_dft
test_mode command. The input port driving this test
signal can be an existing functional pin (specified through
the -shared_in option of the define_dft test_mode
command).
July 2009 515 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-misr_shift_enable test_signal

Specifies the test signal used to enable MISR accumulation
during scan shifting.When this signal is de-asserted, the
contents of the MISR register will not change.

Note: If this option is omitted, the default shift-enable test signal
for the design is used. If this option is specified, you must have
defined this test signal using the define_dft shift_enable
command. The input port driving this test signal can be an
existing functional pin (specified through the -shared_in
option of the define_dft shift_enable command).

-power_aware Ensures that the mux logic added during compression obeys
the power-domain boundaries defined using CPF.

-preview Reports the requested ratio, the maximum original scan chain
length, the maximum subchain length, and the number of
internal scan channels that would be created without making
modifications to the netlist. Use this option to verify your
compression architecture prior to inserting the compression
logic.

-ratio integer Controls the maximum length of the internal scan channels.
The length of the internal scan channels is determined by
dividing the longest actual scan chain length by the ratio.

-serial_misr_read Specifies to include support for reading MISR bits serially
through the scan data pins.

-spread_enable test_signal

Specifies the name of the test signal that enables applying the
input test data to an XOR-based spreader network.

Use this option when -decompressor is set to xor.

Note: If you do not specify the auto_create or
-jtag_control_instruction options, this test signal must
have been defined using the define_dft test_mode
command. The input port driving this test signal can be an
existing functional pin (specified through the -shared_in
option of the define_dft test_mode command).

-shared_output Specifies that the scan data output port of the dedicated mask
or MISR chain must be shared with a functional port.

The tool creates the additional logic required to share the port.
July 2009 516 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command requests XOR-based compression logic without masking, and
requests creation of the necessary ports for the required test signals. In this case only a
compression enable signal is required and thus one test port is created.

rc:/> compress_scan_chains -ratio 5 -compressor xor -auto_create
Will create a test port for ’compression_enable’
Checking out license ’Encounter_Test_Architect’... (1 seconds elapsed)
...

-target_period integer

Specifies a target clock period (in picoseconds) used to
optimize the compression macro. If the value zero (0) is
specified, synthesis is performed with a low effort compile, and
without applying external (input/output delay) constraints.

Default: value for test_clock period of the scan chains
being compressed

-timing_mode_names mode_list

Specifies the timing modes for which to generate the additional
timing constraints that apply to the compression control signals.

The timing modes are taken into account when you specify the
-apply_timing_constraints and
-write_timing_constraints options.

Note: This applies only to multi-mode designs. Modes are
created with the create_mode command.

-write_timing_constraints file

Specifies the file to which to write the timing constraints applied
to the appropriate compression control signals to prevent the
mapper from considering these paths for timing optimization.
The timing constraints are not written if you specify the
-preview option.

Timing constraints will be applied in all user-specified timing
modes.

Note: If your design has multiple timing modes but you did not
specify the -timing_mode_names option to list the timing
modes for which to write the constraints, constraints for all
modes are written to the file.
July 2009 517 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ The following command requests XOR-based compression logic with masking logic of
type wide1, and requests creation of the necessary ports for the required test signals.
In this case three extra test signals are required for the masking logic and thus four test
ports are created.

rc:/> compress_scan_chains -ratio 5 -compressor xor -mask wide1 -auto_create
Will create a test port for ’compression_enable’
Will create a test port for ’mask_load’
Will create a test port for ’mask_enable’
Will create a test port for ’mask_clock’
Checking out license ’Encounter_Test_Architect’... (1 seconds elapsed)
....

■ The following command requests an XOR-based compression with masking logic of type
wide1, with decompression logic of type xor, and requests creation of the necessary
ports for the required test signals. Compared to the second example, one extra test
signal— the spread_enable signal—is required for the decompression logic, and thus
five test ports are created.

rc:/> compress -ratio 5 -compressor xor -decompressor xor -mask wide1 \
-auto_create
Will create a test port for ’compression_enable’
Will create a test port for ’spread_enable’
Will create a test port for ’mask_load’
Will create a test port for ’mask_enable’
Will create a test port for ’mask_clock’
Checking out license ’Encounter_Test_Architect’... (2 seconds elapsed)
...

■ The following command requests a MISR-based compression with masking logic of type
wide1, and requests creation of the necessary ports for the required test signals.
Compared the two second example, one extra test signal—the misr_reset_enable
signal—is required to reset the MISR registers, and thus five test ports are created.

rc:/> compress -ratio 5 -compressor misr -mask wide1 -auto_create
Will create a test port for ’compression_enable’
Will create a test port for ’misr_reset_enable’.
Will create a test port for ’misr_clock’
Info - Defaulting the misr shift enable signal to the default shift_enable
/designs/test/dft/test_signals/SE
Will create a test port for ’mask_load’
Will create a test port for ’mask_enable’
Info - will share the ’misr_clock’ and the ’mask_clock’
....
July 2009 518 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Compressing Scan Chains in Design for Test in Encounter RTL Compiler

Manually Inserting a Scan Compression Macro in Design for Test in Encounter RTL
Compiler

Affected by these constraints: define_dft jtag_instruction on page 543

define_dft shift_enable on page 572

define_dft test_mode on page 581

Affected by these commands: connect_scan_chains on page 523

Affects this command: report dft_chains on page 647

Sets these attributes: compressed

dft_compression_signal

dft_mask_clock

dft_misr_clock

type
July 2009 519 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
concat_scan_chains

concat_scan_chains [-preview]
-chains actual_scan_chain(s)
[-dft_configuration_mode dft_config_mode_name]
-name string [design]

Inserts muxing logic into the scan path of actual scan chains such that the scan chains are
concatenated to become a single, longer scan chain in a specific test mode of operation.

Note: An actual scan chain may be specified only once per test mode, that is, multiple
configurations of the same scan chain in the same test mode are disallowed.

Related Information

Concatenating Scan Chains in Design for Test in Encounter RTL Compiler

Controlling Scan Configuration in Design for Test in Encounter RTL Compiler

-chains scan_chain(s)

Names of the actual scan chains to be concatenated; where the
scan chains are concatenated in the specified order.

design Specifies the name of the top-level design for which to
concatenate the scan chains. Specify this name if you have
multiple top designs loaded.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dft_configuration_mode dft_configuration_mode_name

Specifies the object name of the scan mode used to
concatenate the actual scan chains.

-name string Name of the concatenated chain.

-preview Reports how the actual scan chains would be concatenated,
but does not perform the concatenation.

Affected by these constraints: define_dft dft_configuration_mode on page 538

define_dft shift_enable on page 572

define_dft test_mode on page 581

set_compatible_test_clocks on page 653
July 2009 520 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Affected by this command: check_dft_rules on page 501

Affects this command: report dft_chains on page 647

write_dft_abstract_model on page 666

write_scandef on page 693

Sets these attributes: Actual Scan Chain attributes

Actual Scan Segment attributes

Affected by these attributes: dft_lockup_element_type

dft_mix_clock_edges_in_scan_chains
July 2009 521 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
configure_pad_dft

configure_pad_dft -mode {input | output | tristate}
-test_control test_signal {pin|port}

Inserts the required logic to configure the data direction control for a bidirectional or tristate
pad during test mode.

Note: This command can configure a generic pad.

Options and Arguments

Related Information

-mode {input | output | tristate}

Specifies in which mode the pad must be configured in test
mode.

input Specifies to configure the pad in input mode.

output Specifies to configure the pad in output
mode.

tristate Specifies to disable the pad.

{pin|port} Specifies the pin or top-level port that is connected to the I/O
pad that the RC-DFT engine needs to configure.

-test_control test_signal

Specifies the test signal to use to control the pad.

Note: You must have specified the test signal using either the
define_dft shift_enable or define_dft test_mode
constraint.

Affected by these constraints: define_dft shift_enable on page 572

define_dft test_mode on page 581

Affects these commands: check_dft_rules on page 501

connect_scan_chains on page 523
July 2009 522 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
connect_scan_chains

connect_scan_chains [design]
[-preview] [-auto_create_chains]
[-dont_exceed_min_number_of_scan_chains]
[-incremental] [-chains chain_list]
[-dft_configuration_mode dft_config_mode_name]
[-elements element_list]
[-pack | -create_empty_chains]
[-physical]
[-power_domain power_domain_list] [-update_placement]

Configures and connects scan flip-flops which pass the DFT rule checks into scan chains.
This command works at the current level of the hierarchy and all lower hierarchies instantiated
in this module. The design must be mapped to the target library before connecting scan
chains in a design.

The command returns the number of scan chains that the scan configuration engine creates
(or would create if you use the -preview option).

You can find the objects created by the connect_scan_chains command in:

/designs/design/dft/actual_scan_chains
/designs/design/dft/actual_scan_segments

Options and Arguments

-auto_create_chains Allows the scan configuration engine to add new chains that are
not defined through a define_dft scan_chain constraint.

Without this option, the scan configuration engine reports an
error if it needs more scan chains than have been defined with
the define_dft scan_chain command.

-chains chain_list Connects only the specified user-defined chain names. If the
list is empty, none of the user-defined chains can be connected
at this time. New chains are created if you specify the
-auto_create_chains option.

The specified user-defined chains must have been defined
using a define_dft scan_chain constraint.

If omitted, all user-defined chains can be connected.
July 2009 523 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-create_empty_chains

Allows the scan configuration engine to create empty scan
chains by making a direct connection from their scan data input
to their scan data output if the number of scan chains to be
configured is less than the minimum number of scan chains
required in the design.

Note: Do not use this option when configuring scan chains to be
used as internal scan channels that are loaded and unloaded
using on-chip compression logic.

If this option is not specified, the scan configuration engine will
move scan flops between compatible chains to satisfy the
minimum number of scan chains requirement. This can result in
configured scan chains having a sequential depth of one
element.

-dft_configuration_mode dft_configuration_mode_name

Specifies the object name of the scan mode in which to build
the scan chains.

-dont_exceed_min_number_of_scan_chains

Specifies to use the exact same number of scan chains as
specified by dft_min_number_of_scan_chains attribute
when building the scan chain.

design Specifies the name of the top-level design to be checked. You
should specify this name in case you have multiple top designs
loaded.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.
July 2009 524 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-elements element_list

Considers only the specified elements for scan chain
connection. An element can be a flip-flop, segment, or a
hierarchical instance.

If you specify a hierarchical instance, all flops in this hierarchical
instance that pass the DFT rule checker and that are mapped to
scan for DFT, will be added to the chains.

If some of the scan flops in a hierarchical instance belong to a
segment that crosses the boundary of this instance, these scan
flops will only be connected if the remaining elements of the
segment are also specified with the -elements option—either
directly or indirectly through another hierarchical instance.

Note: If you specify this option with the -power_domain
option, the specified elements must belong to the specified
power domains.

-incremental Adds new chains in incremental mode, without changing
already connected scan chains stored in
/designs/design/dft/report/actual_scan_chains

Do not use user-defined chains with the same names as the
actual_scan_chains.

-pack Packs the scan chains to their maximum limit instead of
balancing the chains (that is, attempting to create chains with
similar lengths).

You can specify a chain-specific constraint using the
-max_length option of the define_dft scan_chain
command or a global constraint by setting the value of the
dft_max_length_of_scan_chains attribute.

-physical Specifies to use the placement locations of the scan flops to
connect the scan chains.

The placement information is obtained from the DEF file read in
with the read_def command.

-power_domain power_domain_list

Considers only the scan flops that belong to the specified power
domain(s) for scan chain connection.
July 2009 525 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Controlling Scan Configuration in Design for Test in Encounter RTL Compiler

Library-Domain Aware Scan Chain Configuration in Design for Test in Encounter RTL
Compiler

Power-Domain Aware Scan Chain Configuration in Design for Test in Encounter RTL
Compiler

Physical Scan Chain Synthesis in Design for Test in Encounter RTL Compiler

-preview Reports how the scan chains will be connected, but makes no
modifications to the netlist. Use this option to verify your
scan-chain architecture prior to connecting the scan chains.

-update_placement Specifies to update the placement of the DFT logic that is
added during the scan chain connection process.

Related commands: write_compression_macro on page 662

Affected by these constraints: define_dft abstract_segment on page 530

define_dft dft_configuration_mode on page 538

define_dft fixed_segment on page 540

define_dft floating_segment on page 542

define_dft preserved_segment on page 557

define_dft scan_chain on page 560

define_dft scan_clock_a on page 566

define_dft scan_clock_b on page 569

define_dft shift_enable on page 572

define_dft shift_register_segment on page 575

set_compatible_test_clocks on page 653

Affected by these commands: check_dft_rules on page 501

fix_dft_violations on page 586

synthesize on page 294
July 2009 526 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Affects this command: concat_scan_chains on page 520

report dft_chains on page 647

Sets these attributes: Actual Scan Chain attributes

Actual Scan Segment attributes

Affected by these attributes: dft_lockup_element_type

dft_max_length_of_scan_chains

dft_min_number_of_scan_chains

dft_mix_clock_edges_in_scan_chains

dft_prefix

dft_scan_map_mode
July 2009 527 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft

define_dft {abstract_segment | fixed_segment
| boundary_scan_segment | dft_configuration_mode | jtag_macro
| floating_segment | mbist_clock | preserved_segment | scan_chain
| scan_clock_a | scan_clock_b | shift_enable
| shift_register_segment | test_clock | test_mode }

Defines a DFT object. A DFT object can be a test signal, scan segment, or scan chain.

Options and Arguments

abstract_segment Defines an abstract scan-chain segment object.

boundary_scan_segment Defines a boundary-scan segment object.

dft_configuration_mode Defines a scan mode for DFT configuration purposes.

fixed_segment Defines a fixed scan-chain segment object.

floating_segment Defines a floating scan-chain segment object.

jtag_macro Defines a pre-instantiated third-party JTAG Macro.

jtag_instruction Defines a user-defined instruction that is serially loaded into
a boundary scan device.

jtag_instruction_register

Customizes the instruction register to allow adding
user-defined instructions.

mbist_clock Defines an MBIST clock object.

preserved_segment Defines a preserved scan-chain segment object.

scan_chain Defines a scan chain.

scan_clock_a Defines the scan clock of the master latch for the LSSD
scan style.

scan_clock_b Defines the scan clock of the slave latch for the LSSD scan
style.

shift_enable Defines a test_signal object of type shift_enable.

shift_register_segment Defines a shift register scan-chain segment object.

test_clock Defines a test clock object.

test_mode Defines a test_signal object of type test_mode
July 2009 528 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Related commands: define_dft abstract_segment on page 530

define_dft boundary_scan_segment on page 535

define_dft dft_configuration_mode on page 538

define_dft fixed_segment on page 540

define_dft floating_segment on page 542

define_dft jtag_instruction on page 543

define_dft jtag_instruction_register on page 547

define_dft jtag_macro on page 549

define_dft mbist_clock on page 554

define_dft preserved_segment on page 557

define_dft scan_chain on page 560

define_dft scan_clock_a on page 566

define_dft scan_clock_b on page 569

define_dft shift_enable on page 572

define_dft shift_register_segment on page 575

define_dft test_clock on page 577

define_dft test_mode on page 581
July 2009 529 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft abstract_segment

define_dft abstract_segment [-name segment_name]
{-module subdesign|-instance instance|-libcell cell}
-sdi subport -sdo subport
-clock_port subport [-rise|-fall] [-off_state {high|low}]
[-tail_clock_port subport
[-tail_edge_rise | -tail_edge_fall]
[-tail_clock_off_state {high|low}]]

{ { -shift_enable_port subport -active {high|low}
| -connected_shift_enable }

| { -scan_clock_a_port subport -scan_clock_b_port subport
| -connected_scan_clock_a -connected_scan_clock_b } }

[-test_mode_port subport
-test_mode_active {low|high}]...

-length integer [-skew_safe]
[-dft_configuration_mode dft_config_mode_name]

Defines an abstract segment. An abstract segment can be defined for objects of type
blackbox, logic abstract module, or libcell timing model.

An abstract segment is a user-specified scan segment used at the next level of integration to
define the sets of scan chains previously created for the object.

The command returns the directory path to the object that it creates. You can find the objects
created by the define_dft abstract_segment constraints in:

/designs/top_design/dft/scan_segments

Options and Arguments

-active {low|high} Specifies the active value for the shift-enable port.

-clock_port subport

Specifies the clock port—at the boundary of the blackbox or
logic abstract module—driving the flip-flops at the head of the
segment.

-connected_scan_clock_a (-connected_scan_clock_b)

Indicates that the scan_clock_a (scan_clock_b) port of the
module boundary is driven by external logic (preconnected).
The external logic connected to the scan_clock_a
(scan_clock_b) pin of the module will not be modified by the
scan configuration engine.

Note: This option applies only for the clocked LSSD scan style.
July 2009 530 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-connected_shift_enable

Indicates that the shift enable port of the module boundary is
driven by external logic (preconnected) or that the shift enable
signal is internally generated within the module boundary. In
either case, the external logic connected to the shift enable pin
of the module, or the internal logic driving the shift enable pins
of the flip-flops in the module will not be modified by the scan
configuration engine.

This option cannot be specified together with the
-shift_enable option.

-dft_configuration_mode dft_configuration_mode_name

Specifies in which scan mode the abstract segment will be
connected in the scan chains.

-instance instance Specifies the instance name of the module for which the
abstract segment is defined.

-length integer Specifies the length of the abstract segment.

-libcell cell Specifies the library cell for which the abstract segment is
defined. This option applies to library cells that are
implemented as timing models and whose description includes
the relevant test-related pins (such as scan data input and
output, clock, shift-enable) to infer the scan chain architecture.

-module subdesign Specifies the subdesign (module) to which the element
belongs.

-name segment_name Defines a name for the segment that you can use to reference
in the define_dft scan_chain constraint.

-off_state {high|low}

Specifies the off state of the system clock specified through the
-clock_port option.

Note: This option applies only to the clocked LSSD scan style.

-rise | -fall Specifies the active edge of the clock specified through the
-clock_port option.

Default: -rise
July 2009 531 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-scan_clock_a_port (-scan_clock_b_port) subport

Specifies the scan_clock_a (scan_clock_b) port at the
boundary of the blackbox or logic abstract module to which the
segment belongs. Specify this option to have the
connect_scan_chains command make the connection from
the top-level scan_clock_a (scan_clock_b) signals to the
scan_clock_a (scan_clock_b) port of the module.

Note: This option applies only for the clocked LSSD scan style.

-sdi (-sdo) Specifies the scan data input (scan data output) of the
segment.

■ For a segment in a blackbox, specify a subport (port of the
blackbox or logic abstract module).

■ For a segment defined for a libcell, specify a pin of the
libcell.

-shift_enable_port subport

Specifies the shift enable port at the boundary of the blackbox
or logic abstract module to which the segment belongs. Specify
this option if you want the connect_scan_chains command
to make the connection from the top-level shift-enable signals to
the shift-enable ports of the modules.

This option cannot be specified together with the
-connected_shift_enable option.

-skew_safe Indicates whether the abstract segment has a data lockup
element connected at the end of its scan chain.

-tail_clock_off_state {high|low}

Specifies the off state of the system clock specified through the
-tail_clock_port option.

Note: This option applies only to the clocked LSSD scan style.

-tail_clock_port port

Specifies the clock port—at the boundary of the blackbox or
logic abstract module—driving the flip-flops at the tail of the
segment. This option is only required if the clock used at the tail
of the abstract segment is different from the clock specified
through the -clock_port option.
July 2009 532 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example defines an abstract segment with length 3 in blackbox module b.
The clock driving the flip-flops at the tail of the segment is the same as the clock driving
the first elements in the segment.

rc:/> define_dft abstract_segment -name a1 -module b -length 3 \
-sdi {p4[0]} -sdo {p5[0]} -shift_enable {p6[0]} -active high -clock p3 -rise

■ The following example defines an abstract segment in a timing model reference
COMBELEM with length 20.

rc:/> define_dft abstract_segment -name combElem_seg -libcell COMBELEM \
-sdi A -sdo Z -shift_enable_port B -active hi -clock_port D2 -rise -length 20

-tail_edge_rise | -tail_edge_fall

Specifies the active edge of the clock specified through the
-tail_clock_port option.

Default: -tail_edge_rise

-test_mode_active {low | high}

Specifies the active value for the test-mode port.

This option should immediately follow the corresponding
-test_mode_port option.

-test_mode_port subport

Specifies the test mode port at the boundary of the blackbox
module to which the segment belongs.

Specify this option when the block-level design includes
test-mode activated logic.

When the test-mode signals are specified, the propagated
values of the top-level test-mode signals must match the
expected block-level test-mode values and the segment must
also pass the clock-controllability rule checks in order for the
segment to be included into a top-level scan chain.

Note: The tool does not make connections to the test-mode
ports of the block-level design. The connections should already
exist in the netlist.
July 2009 533 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ The following example defines an abstract segment ABS with length 10 in instance o1.
The same clock clk with active rising edge is used for all flip-flops of the segment.

define_dft abstract_segment -instance o1 -sdi sdi -sdo sdo \
-shift_enable_port se -active hi -clock_port clk -rise -length 10 -name ABS

Related Information

Defining Abstract Segments in Design for Test in Encounter RTL Compiler

Using Abstract Segments in Design for Test in Encounter RTL Compiler

Affects this constraint: define_dft dft_configuration_mode on page 538

define_dft scan_chain on page 560

Affects these commands: check_dft_rules on page 501

connect_scan_chains on page 523

report dft_chains on page 647

Sets these attributes: Scan Segment Attributes
July 2009 534 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft boundary_scan_segment

define_dft boundary_scan_segment [-name segment_name]
{-module subdesign | -instance instance | -libcell cell}
{-bsdl_string string | -bsdl_file file}
[-differential_pair {positive_leg_pin_name negative_leg_pin_name}]
[-mode_a mode_a_pin]... [-mode_b mode_b_pin]... [-mode_c mode_c_pin]...
[-highz highz_pin] -tdi tdi_pin -tdo tdo_pin [-clockdr clockdr_pin]
[-capture_dr capturedr_pin] [-updatedr updatedr_pin]
[-shiftdr shiftdr_pin] [-index bsr_position]

Defines a boundary scan segment with its associated pins for connection along the TDI-TDO
path in the boundary scan register, connection to the JTAG_Macro, and optionally defines its
position in the boundary scan register.

The command returns the directory path to the object that it creates. You can find the objects
created by the define_dft boundary_scan_segment command in:

/designs/top_design/dft/boundary_scan_segments

Options and Arguments

-bsdl_file file Specifies the file containing the BSDL abstract string for the
boundary scan segment.

-bsdl_string string

Specifies the BSDL abstract string for the boundary scan
segment.

-capturedr capturedr_pin

Specifies the name of the CAPTURE_DR pin on the boundary
scan segment.

-clockdr clockdr_pin

Specifies the name of the CLOCK_DR pin on the boundary scan
segment.

-differential_pair {positive_leg_pin_name negative_leg_pin_name}

Specifies the differential pair in the form of a positive leg pin
name and negative leg pin name on the boundary scan
segment.

-highz highz_pin Specifies the name of the HIGHZ pin on the boundary scan
segment
July 2009 535 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-index bsr_position

Specifies the relative position of the boundary scan segment in
the BSR. Specify an integer value of zero or greater.

-instance instance Specifies the instance name of the module for which the
boundary scan segment is defined.

-libcell cell Specifies the library cell for which the boundary scan segment
is defined. This option applies to library cells that are
implemented as timing models and whose description includes
the JTAG_Macro related pins specified on the command line
when defining the boundary scan segment.

-mode_a mode_a_pin

Specifies the name of the MODE_A pin on the boundary scan
segment

-mode_b mode_b_pin

Specifies the name of the MODE_B pin on the boundary scan
segment

-mode_c mode_c_pin

Specifies the name of the MODEC pin on the boundary scan
segment

-module subdesign Specifies the subdesign (module) to which the element
belongs.

-name segment_name Defines a name for the boundary scan segment.

-shiftdr shiftdr_pin

Specifies the name of the SHIFT_DR pin on the boundary scan
segment.

-tdi tdi_pin Required. Specifies the name of the TDI pin on the boundary
scan segment.

-tdo tdo_pin Required. Specifies the name of the TDO pin on the boundary
scan segment.

-updatedr updatedr_pin

Specifies the name of the UPDATE_DR pin on the boundary
scan segment.
July 2009 536 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ The following example defines an boundary scan segment using a set of differential port
pairs.

rc:/> define_dft boundary_scan_segment-instance i_pads \
-bsdl_file pads_bcell.abstract -mode_a MODE_A -mode_b MODE_B -mode_c \
MODE_C -highz HIGHZ -tdi TDI -tdo TDO -clockdr CLOCKDR -updatedr UPDATEDR\
-shiftdr SHIFTDR -index 4 \
-differential_pair {in1 in2} \
-differential_pair {out1 out2}

■ The following example defines a boundary scan segment with three mode_a, two
mode_b, and one mode_c pins where:

❑ Each mode_a pin on the boundary-scan segment will be connected to the
JTAG_MACRO JTAG_INSTRUCTION_DECODE_MODE_A output pin.

❑ Each mode_b pin on the boundary-scan segment will be connected to the
JTAG_MACRO JTAG_INSTRUCTION_DECODE_MODE_B output pin.

❑ Each mode_c pin on the boundary-scan segment will be connected to the
JTAG_MACRO JTAG_INSTRUCTION_DECODE_MODE_C output pin.

rc:/> define_dft boundary_scan_segment-instance i_pads \
-bsdl_file pads_bcell.abstract -mode_a MODE_A1 -mode_a MODE_A2 \
-mode_a MODE_A3 -mode_b MODE_B1 -mode_b MODE_B2 -mode_c MODE_C \
-highz HIGHZ -tdi TDI -tdo TDO -clockdr CLOCKDR \
-updatedr UPDATEDR -shiftdr SHIFTDR -index 4 -differential_pair {in1 in2}\
-differential_pair {out1 out2}

Related Information

Defining Boundary Scan Segments in Design for Test in Encounter RTL Compiler

Inserting Boundary Scan Logic in Design for Test in Encounter RTL Compiler

Affects these commands: insert_dft boundary_scan on page 607

write_bsdl on page 659

Sets this attribute: bcell_segmen

differential
July 2009 537 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft dft_configuration_mode

define_dft dft_configuration_mode
[-name scan_mode_name]
[-mode_enable_high test_signal]...
[-mode_enable_low test_signal]...
[-jtag_instruction jtag_instruction]
[design]

Defines a scan mode. Scan modes can be used to build the top-level scan chains with specific
elements in different modes of operation (multi-mode), or when concatenating default scan
chains into a single longer scan chain in a different mode of operation.

You can find the objects created by the define_dft dft_configuration_mode
command in:

/designs/top_design/dft/dft_configuration_modes

design Specifies the name of the top-level design for which the scan
mode is defined. Specify this name if you have multiple top
designs loaded.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-jtag_instruction jtag_instruction_name

Specifies the JTAG instruction which controls the scan chains in
the current mode.

-mode_enable_high {test_signal...}

Name of the test signal(s) set to a logic_1 value that controls
scan chains in the current mode.

-mode_enable_low {test_signal...}

Name of the test signal(s) set to a logic_0 value that controls
the scan chains in the current mode.

-name Name of the scan mode.
July 2009 538 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

The following example defines scan mode scanModeA whose pin1 is specified to have an
active high logic value and pin2 is specified to have an active low logic value in this mode of
operation:

define_dft dft_configuration_mode -name scanModeA design\
-mode_enable_high pin1
-mode_enable_low pin2

Related Information

Defining Scan Chain Configuration Modes in Design for Test in Encounter RTL Compiler

JTAG-Controlled Scan Modes in Design for Test in Encounter RTL Compiler

Affects these commands: report dft_chains on page 356

check_dft_rules on page 501

concat_scan_chains on page 520

connect_scan_chains on page 523

define_dft abstract_segment on page 530

write_atpg on page 656

write_dft_abstract_model on page 666

write_et_atpg on page 669

write_et_bsv on page 674

write_et_mbist on page 682

write_et_rrfa on page 687

write_scandef on page 693

Affects these attributes: DFT Configuration Mode Attributes
July 2009 539 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft fixed_segment

define_dft fixed_segment [-name segment_name]
{pin|port|instance|segment_name} ...

Defines a fixed segment. In a fixed segment, the elements will be connected in the specified
order during scan chain connection; they cannot be reordered by a physical scan reordering
tool.

A fixed segment is a user-specified scan segment which can be associated with either

■ A user-defined top-level chain—created using the define_dft scan_chain
command

■ A tool-created scan chain—created using the connect_scan_chains command

The command returns the directory path to the object that it creates. You can find the objects
created by the define_dft fixed_segment constraints in:

/designs/top_design/dft/scan_segments

Options and Arguments

Examples

■ The following example defines the fixed segment used in the example for define_dft
scan_chain on page 560.

define_dft fixed_segment -name segBody *seq/out_reg_1 *seq/out_reg_3

{pin|port|instance|segment_name}

Specifies an element in the scan segment being defined. List
the elements in the order they should appear in the scan chain
(in shift order, that is, left-most corresponds to first bit
shifted-in). An element can be hierarchical pin, a port, a flip-flop
instance, a combinational gate, or a scan segment.

Note: If the segment goes through a multi-input/output
combinational gate, you must indicate the scan path through the
gate by specifying its input and output pin as two separate
consecutive elements.

-name segment_name Defines a name for the segment that you can use to reference
in the define_dft scan_chain constraint.
July 2009 540 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ The following example defines a fixed segment that contains two combinational
components, four sequential registers, a scan abstract segment, and a combinational
component endpoint.

define_dft fixed_segment -name fixedSeg \
i_core/i_anor1/B0 i_core/i_anor1/Y i_core/i_anor2/B0 i_core/i_anor2/Y \
i_core/i_flop11 i_core/i_flop22 i_core/i_flop33 i_core/i_flop44 \
absSeg \
i_core/bufToAnchorSeg/A i_core/bufToAnchorSeg/Y

Related Information

Creating Head, Body, and Tail Segments in Design for Test in Encounter RTL Compiler

Affects this constraint: define_dft scan_chain on page 560

Affects these commands: connect_scan_chains on page 523

report dft_chains on page 647

Sets these attributes: Scan Segment Attributes
July 2009 541 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft floating_segment

define_dft floating_segment [-name segment_name]
instance|segment_name} ...

Defines a floating segment. In a floating segment, the order of the elements can be changed
during scan configuration and by a physical scan reordering tool.

A floating segment is a user-specified scan segment which can be associated with either

■ A user-defined top-level chain—created using the define_dft scan_chain
command

■ A tool-created scan chain—created using the connect_scan_chains command

The command returns the directory path to the object that it creates. You can find the objects
created by the define_dft floating_segment constraints in:

/designs/top_design/dft/scan_segments

Options and Arguments

Examples

■ The following example defines the floating segments used in the example for define_dft
scan_chain on page 560.

rc:/designs/test> define_dft floating_segment -name segHead \
*seq/out_reg_4 *seq/out_reg_5

rc:/designs/test> define_dft floating_segment -name segTail *seq/out_reg_0

Related Information

Creating Head, Body, and Tail Segments in Design for Test in Encounter RTL Compiler

-name segment_name Defines a name for the segment that you can use to reference
in the define_dft scan_chain constraint.

Affects this constraint: define_dft scan_chain on page 560

Affects these commands: connect_scan_chains on page 523

report dft_chains on page 647

Sets these attributes: Scan Segment Attributes
July 2009 542 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft jtag_instruction

define_dft jtag_instruction -name string -opcode string
[-register string] [-length integer]
[-register_tdi {pin|port}] [-register_tdo {pin|port}]
[-register_shiftdr {pin|port}] [-register_shiftdr_inverted]
[-register_reset_inverted] [-register_capturedr {pin|port}]
[-register_clockdr {pin|port}] [-register_updatedr {pin|port}]
[-register_tck {pin|port}] [-register_reset {pin|port}]
[-register_runidle {pin|port}] [-register_decode {pin|port}]
[-capture string]
 [-tap_tdo {pin|port}] [-tap_decode {pin|port}] [-private]
[-design design]

Defines a user-defined instruction that is serially loaded into a boundary scan device.

The command returns the directory path to the object that it creates. You can find the objects
created by the define_dft jtag_instruction in:

/designs/top_design/dft/boundary_scan/jtag_instructions/instruction

Options and Arguments

-capture string Specifies the values that must be captured into a register during
the CaptureDR state.

-design design Specifies the name of the design for which the JTAG instruction
is defined.

If you omit the design name and multiple designs are loaded,
the top-level design of the current directory of the design
hierarchy is used.

-length integer Specifies the length of the custom test data register (TDR).

-name string Specifies the name of the user-defined instruction.

-opcode string Specifies the binary code for this instruction.

-private Specifies that the defined instruction is private.

-register string Specifies the name of the custom test data register (TDR).

-register_capturedr {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the JTAG_CAPTUREDR pin on
the JTAG_MACRO subdesign.
July 2009 543 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-register_clockdr {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the JTAG_CLOCKDR pin on
the JTAG_MACRO subdesign.

-register_decode {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the
JTAG_INSTRUCTION_DECODE_instruction pin on the
JTAG_MACRO subdesign, where instruction is the name
that you specified through the -name option.

-register_reset {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the JTAG_RESET pin on the
JTAG_MACRO subdesign.

-register_reset_inverted

Specifies that the JTAG_RESET pin of the custom test register
(TDR) has an active low polarity.

-register_runidle {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the JTAG_RUNIDLE pin on
the JTAG_MACRO subdesign.

-register_shiftdr {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the JTAG_SHIFTDR pin on
the JTAG_MACRO subdesign.

-register_shiftdr_inverted

Specifies that the JTAG_SHIFTDR pin of the custom test
register (TDR) has an active low polarity.

-register_tck {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the JTAG_TCK pin on the
JTAG_MACRO subdesign.
July 2009 544 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example defines a private instruction PROGRAM_TCB for custom test data
register TCB_REG that has a length of 8 bits. The opcode for the instruction is 0101.

define_dft jtag_instruction -name PROGRAM_TCB -opcode 0101 -register TCB_REG
-length 8 -private

-register_tdi {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the JTAG_TDI pin on the
JTAG_MACRO subdesign.

-register_tdo {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the JTAG_register_TDO
pin on the JTAG_MACRO subdesign, where register is the
name that you specified through the -register option

-register_updatedr {pin|port}

Specifies the name of the pin on the custom test data register
(TDR) that must be connected to the JTAG_UPDATEDR pin on
the JTAG_MACRO subdesign.

-tap_decode {pin|port}

Specifies the name of the instruction-specific decode pin that
must be created on the JTAG_MACRO subdesign.

-tap_tdo {pin|port}

Specifies the name of the instruction-specific test data output
(TDO) pin that must be created on the JTAG_MACRO subdesign.
July 2009 545 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Inserting Boundary Scan Logic in Design for Test in Encounter RTL Compiler

Inserting JTAG Macro Logic in Design for Test in Encounter RTL Compiler

Inserting Memory Built-In-Self-Test Logic in Design for Test in Encounter RTL Compiler

Affects these commands: insert_dft boundary_scan on page 607

insert_dft jtag_macro on page 614

insert_dft mbist on page 618

Related command: define_dft jtag_instruction_register on page 547

Sets these attributes: JTAG Instruction Attributes
July 2009 546 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft jtag_instruction_register

define_dft jtag_instruction_register
-name string
[-length integer] [-capture string]
[-design design]

Customizes the instruction register to allow adding user-defined instructions.

The command returns the directory path to the object that it creates. You can find the objects
created by the define_dft jtag_instruction_register in:

/designs/top_design/dft/boundary_scan/register_name

Options and Arguments

Examples

■ The following example defines instruction register INSTR_REGISTER with length 3. A
register of length 3 allows you to create 23 instructions, or four user-defined instructions
besides the four mandatory instructions.

define_dft jtag_instruction_register -name INSTR_REGISTER -length 3

-capture string Specifies the capture value of the instruction register. According
to the IEEE 1149.1 standard the last two bits of the capture
value must be 01.

Default: 01

-design design Specifies the name of the design for which the instruction
register is customized.

If you omit the design name and multiple designs are loaded,
the top-level design of the current directory of the design
hierarchy is used.

-length integer Specifies the length of the instruction register. The length of the
register is determined by the number of user-defined
instructions that you want to add. If n is the number of bits in the
instruction register, a total of 2n instructions can be defined
including the four mandatory instructions.

Default: 2

-name string Specifies the name of the user-defined instruction register.
July 2009 547 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Inserting Boundary Scan Logic in Design for Test in Encounter RTL Compiler

Inserting JTAG Macro Logic in Design for Test in Encounter RTL Compiler

Inserting Memory Built-In-Self-Test Logic in Design for Test in Encounter RTL Compiler

Related commands: define_dft jtag_instruction on page 543

Affects these commands: insert_dft boundary_scan on page 607

insert_dft jtag_macro on page 614

insert_dft mbist on page 618

Related attributes: JTAG Instruction Register Attributes
July 2009 548 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft jtag_macro

define_dft jtag_macro
[-module subdesign] [-libcell libcell]
[-instance instance]
[-bsr_shiftdr pin|port|subport]
[-bsr_clockdr pin|port|subport]
[-bsr_updatedr pin|port|subport]
[-reset pin|port|subport]
[-runidle pin|port|subport]
[-shiftdr pin|port|subport]
[-clockdr pin|port|subport]
[-updatedr pin|port|subport]
[-capturedr pin|port|subport]
[-mode_a pin|port|subport]
[-mode_b pin|port|subport]
[-mode_c pin|port|subport]
-tdi pin|port|subport
[-boundary_tdo pin|port|subport]
-tdo pin|port|subport
[-highz pin|port|subport]
[-tdo_enable pin|port|subport]
-tck pin|port|subport
-tms pin|port|subport
[-trst pin|port|subport]
[-dot6_acdcsel pin|port|subport]
[-dot6_preset_clock pin|port|subport]
[-dot6_trcell_enable pin|port|subport]
[-dot6_acpulse pin|port|subport]
[-por pin|port|subport] [-name string]

Identifies a pre-instantiated JTAG Macro.

Options and Arguments

-boundary_tdo {pin|port|subport}

Specifies the boundary register TDO input pin on the
JTAG_MACRO.

-bsr_clockdr {pin|port|subport}

Specifies the clock data register (CLOCKDR) output pin for the
boundary-scan register.

-bsr_shiftdr {pin|port|subport}
July 2009 549 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Specifies the shift data register (SHIFTDR) output pin for the
boundary-scan register.

-bsr_updatedr {pin|port|subport}

Specifies the update data register (UPDATEDR) output pin for
the boundary-scan register.

-clockdr {pin|port|subport}

Specifies the clock data register (CLOCKDR) output pin custom
test data register.

-capturedr {pin|port|subport}

Specifies the capture data register (CAPTUREDR) output pin
custom test data register.

--dot6_acdcsel {pin|port|subport}

Specifies the logical OR of the decoded EXTEST_PULSE and
EXTEST_TRAIN instructions.

-dot6_acpulse {pin|port|subport}

Specifies the AC test signal output of the JTAG_MACRO.

-dot6_preset_clock {pin|port|subport}

Specifies the preset_clock output pin that provides a
positive-active edge-sensitive clock signal to test receivers that
have edge-sensitive initialization.

-dot6_trcell_enable {pin|port|subport}

Specifies the logical OR of EXTEST, EXTEST_PULSE and
EXTEST_TRAIN used to enable the test receiver cells.

-highz {pin|port|subport}

Specifies the HIGHZ output pin to place the I/O pads in their
HIGHZ state.

-instance instance Specifies the instance name of the module where the
JTAG_MACRO resides.

-libcell cell Specifies the library cell for where the JTAG_MACRO resides.

-mode_a {pin|port|subport}

Specifies the mode_a output pin to configure boundary cells in
the boundary-scan register.
July 2009 550 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-mode_b {pin|port|subport}

Specifies the mode_b output pin to configure boundary cells in
the boundary-scan register.

-mode_c {pin|port|subport}

Specifies the mode_c output pin to configure boundary cells in
the boundary-scan register.

-module subdesign Specifies the subdesign (module) to which the element
belongs.

-name subdesign Specifies the name of the JTAG_MACRO. If not specified, an
object will be added under the
boundary_scan/jtag_macros vdir with a default name of
jtag_macro_n.

-por {pin|port|subport}

Specifies the power-on reset input pin on the JTAG_MACRO.

-reset {pin|port|subport}

Specifies the reset output pin indicating that the JTAG_MACRO
is in the Test-Logic-Reset state.

-runidle {pin|port|subport}

Specifies the JTAG_RUNIDLE output pin indicating that the
JTAG_MACRO is in the Run-Test-Idle state.

-shiftdr {pin|port|subport}

Specifies the shift data register (SHIFTDR) output pin custom
test data register.

-tck {pin|port|subport}

Specifies the TAP controller TCK input pin on the JTAG_MACRO.
This option is required.

-tdi {pin|port|subport}

Specifies the TAP controller TDI output pin on the
JTAG_MACRO. This option is required.

-tdo {pin|port|subport}

Specifies the TAP controller TDO input pin on the JTAG_MACRO.
This option is required.

-tdo_enable {pin|port|subport}
July 2009 551 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example defines a third party TAP controller with a specified instance
location.

rc:/> define_dft jtag_macro -instance user_defined_jtag \
-highz MY_JTAG_INSTRUCTION_DECODE_CTRL_HIGHZ \
-bsr_clockdr MY_JTAG_BOUNDARY_CLOCKDR -bsr_shiftdr MY_JTAG_BOUNDARY_SHIFTDR \
-bsr_updatedr MY_JTAG_BOUNDARY_UPDATEDR \
-mode_a MY_JTAG_INSTRUCTION_DECODE_MODE_A \
-mode_b MY_JTAG_INSTRUCTION_DECODE_MODE_B \
-mode_c MY_JTAG_INSTRUCTION_DECODE_MODE_C -tdi MY_JTAG_TDI -tdo MY_JTAG_TDO \
-tms MY_JTAG_TMS -tck MY_JTAG_TCK -trst MY_JTAG_TRST \
-tdo_enable MY_JTAG_ENABLE_TDO -boundary_tdo MY_JTAG_BOUNDARY_TDO \
-por MY_JTAG_POR -name JM1

■ The following example defines a third party TAP controller without a TRST input pin.

rc:/> define_dft jtag_macro -module MY_JTAG_MACRO \
-highz MY_JTAG_INSTRUCTION_DECODE_CTRL_HIGHZ \
-bsr_clockdr MY_JTAG_BOUNDARY_CLOCKDR -bsr_shiftdr MY_JTAG_BOUNDARY_SHIFTDR \
-bsr_updatedr MY_JTAG_BOUNDARY_UPDATEDR \
-mode_a MY_JTAG_INSTRUCTION_DECODE_MODE_A \
-mode_b MY_JTAG_INSTRUCTION_DECODE_MODE_B \
-mode_c MY_JTAG_INSTRUCTION_DECODE_MODE_C -tdi MY_JTAG_TDI -tdo MY_JTAG_TDO \
-tms MY_JTAG_TMS -tck MY_JTAG_TCK -tdo_enable MY_JTAG_ENABLE_TDO \
-boundary_tdo MY_JTAG_BOUNDARY_TDO -por MY_JTAG_POR -name JM1

Related Information

Defining Pre-Existing JTAG Macro Logic in Design for Test in Encounter RTL Compiler

Specifies the enable output pin which drives the JTAG TDO
output enable pin.

-tms {pin|port|subport}

Specifies the TAP controller TMS input pin on the
JTAG_MACRO.This option is required.

-trst {pin|port|subport}

Specifies the TAP controller TRST input pin on the
JTAG_MACRO.

-updatedr {pin|port|subport}

Specifies the update data register (UPDATEDR) output pin
custom test data register.

Sets these attributes: JTAG Macro Attributes
July 2009 552 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
July 2009 553 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft mbist_clock

define_dft mbist_clock test_clock -name mbist_clock
[-design design] [-domain mbist_clock_domain]
[-period integer] [-divide_period integer]
|-hookup_pin pin [-hookup_period string] [-hookup_polarity string]]
{pin|port} [{pin|port}] ...

Defines an MBIST clock and associates a clock waveform with the clock. The clock waveform
can be different from the system clocks.

If you do not define MBIST clocks, the DFT rule checker automatically analyzes the MBIST
clocks and creates these objects with a default waveform. The waveform information is useful
in determining how to order scan flip-flops in a chain, and where to insert data-lockup
elements in the chain.

MBIST clock waveforms are used to order flip-flops that belong to the same MBIST clock
domain to minimize the addition of lockup elements. Flip-flops that are triggered first are
ordered and connected last in a chain.

The command returns the directory path to the mbist object that it creates.You can find the
objects created by the define_dft test_clock constraints in:

/designs/design/dft/mbist_clocks

Options and Arguments

-design design Specifies the name of the design for which the MBIST clock is
defined.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-divide_period integer

Together with the -period option, determines the MBIST clock
period interval. The clock period is specified in picoseconds and
is derived by dividing -period by -divide_period.

Default: 1
July 2009 554 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-domain mbist_clock_domain

Specifies the clock domain associated with the MBIST clock.

Clocks belonging to the same domain can be mixed in a chain.

If you omit this option, a new DFT clock domain is created and
associated with the MBIST clock.

Flip-flops belonging to different test clocks in the same domain
can be mixed in a chain. Lockup elements can be added
between the flip-flops belonging to different test clocks.

-hookup_period integer

Specifies the period interval at the hookup pin. The hookup
period is is specified in picoseconds and is derived by dividing
-period by -divide_period.

Default: value of -period option

-hookup_pin pin Specifies the core-side hookup pin to be used for the top-level
MBIST clock during DFT synthesis.

Note: When you specify this option, the RC-DFT engine does
not validate the controlability of any logic between the top-level
test clock and its designated hookup pin under test-mode setup.

-hookup_polarity {inverted | non_inverted}

Specifies the polarity of the MBIST clock signal at the core-side
hookup pin.

-name test_clock Specifies the name of the MBIST clock that is being defined.

Each clock object in your design must have a unique name. If
you define a new MBIST clock with the same name as an
existing clock, an error message will be issued.

Note: The clock name allows you to search for the clock later
(through the find command) or to recognize it in reports.

-period integer Together with the -divide_period option, determines the
clock period interval. The clock period is specified in
picoseconds and is derived by dividing -period by
-divide_period.

Default: 50000 (20 MHz test clock)
July 2009 555 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ The following example defines three MBIST clocks, four MBIST clock ports and two
MBIST clock domains.

define_dft mbist_clock -name CLK1X -domain domain_1 -period 20000 CLK1
define_dft mbist_clock -name CLK2X -domain domain_1 -period 20000 CLK2 CLK2b
define_dft mbist_clock -name CLK3X -domain domain_2 -period 20000 CLK3

The four MBIST clock ports are CLK1, CLK2, CLK2b, and CLK3. MBIST clock CLK2X
comprises equivalent test clocks CLK2 and CLK2B (they can be mixed in the same scan
chain without any lockup element). Test clocks CLK1X, CLK2X belong to the same MBIST
clock domain and are compatible (requires lockup elements between compatible chain
segments triggered by the different test clocks). MBUST clock CLK3X belongs to its own
domain.

Related Information

Specifying an Internal Clock Branch as a Separate Test Clock in Design for Test in
Encounter RTL Compiler

Defining an Equivalent Test Clock for Different Top-level Clock Pins in Design for Test in
Encounter RTL Compiler

Root Attributes in Attribute Reference for Encounter RTL Compiler

{pin|port} Specifies the MBIST clock input pin or port.

If you specify multiple pins, these pins are assumed to have
zero skew: they can be mixed without lockup latches.

Affects these commands: check_dft_rules on page 501

connect_scan_chains on page 523

fix_dft_violations on page 586

report dft_chains on page 647

Sets these attributes: MBIST Clock Attributes
July 2009 556 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft preserved_segment

define_dft preserved_segment [-name segment_name]
{ {instance|segment_name}... [-sdi pin] [-sdo pin]
| -analyze -sdi {pin|port} -sdo {pin|port} }
[-connected_shift_enable]
[-connected_scan_clock_a]
[-connected_scan_clock_b]
[-allow_reordering]

Defines a preserved segment. In a preserved segment, the elements of the mapped segment
are already connected in the specified order, and they cannot be reordered by a physical scan
reordering tool.

A preserved segment is a user-specified scan segment which can be associated with either

■ A user-defined top-level chain—created using the define_dft scan_chain
command

■ A tool-created scan chain—created using the connect_scan_chains command

The command returns the directory path to the object that it creates. You can find the objects
created by the define_dft preserved_segment constraints in:

/designs/top_design/dft/scan_segments

Options and Arguments

-allow_reordering Indicates whether the order of the elements can be changed
during scan configuration and by a physical scan reordering
tool.

-analyze Analyzes the connectivity of the scan segment, and returns the
elements of the segment given its endpoints.

-connected_scan_clock_a (-connected_scan_clock_b)

Indicates that the scan_clock_a (scan_clock_b) port of the
module boundary is driven by external logic (preconnected).
The external logic connected to the scan_clock_a
(scan_clock_b) pin of the module will not be modified by the
scan configuration engine.

This option applies only for the clocked LSSD scan style.
July 2009 557 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example defines a pre-existing segment in instance u_a using its scan
data input and output pins.

rc:/> define_dft preserved_segment -name segmenta -analyze \
-sdi */u_a/SIa -sdo */u_a/SOa

-connected_shift_enable

Indicates that the shift enable port of the module boundary is
driven by external logic (preconnected) or that the shift enable
signal is internally generated within the module boundary. In
either case, the external logic connected to the shift enable pin
of the module, or the internal logic driving the shift enable pins
of the flip-flops in the module will not be modified by the scan
configuration engine.

{instance|segment_name}

Specifies an element in the scan segment being defined. List
the elements in the order they should appear in the scan chain
(in shift order, that is, left-most corresponds to first bit
shifted-in). An element can be a flip-flop instance, a
combinational instance, or a scan segment.

Additionally, the hierarchical scan data input and output pins of
the segment can be specified using the -sdi and -sdo options
respectively. If the hierarchial SDI and SDO pins of the segment
are both at the boundary of the same lower module, the
RC-DFT engine also traces the shift-enable signal back from
the scan registers in the segment to the same module
boundary. It hooks up the shift-enable signal at the module
boundary whenever applicable (only if you did not specify the
-connected_shift_enable option).

Specifies an element in the scan segment being defined. List
the elements in the order they should appear in the scan chain
(in shift order, that is, left-most corresponds to first bit
shifted-in). An element can be a flip-flop instance, a buffer, an
inverter, a (hierarchal) pin, or a scan segment.

-name segment_name Defines a name for the segment that you can use to reference
in the define_dft scan_chain constraint.

-sdi (-sdo) Specifies the scan data input (scan data output) of the
segment. Specify a hierarchical pin name or port.
July 2009 558 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ The following example defines a pre-existing segment by specifying its hierarchical scan
data input and output pins, and its elements consisting of two combinational
components, four sequential registers, a scan abstract segment, and a combinational
component endpoint.

define_dft preserved_segment -name preservedSeg \
-sdi i_core/i_anor1/B0 -sdo i_core/bufToAnchorSeg/Y \
i_core/i_anor1 i_core/i_anor2 \
i_core/i_flop11 i_core/i_flop22 i_core/i_flop33 i_core/i_flop44 \
absSeg \

i_core/bufToAnchorSeg

Related Information

Creating Head, Body, and Tail Segments in Design for Test in Encounter RTL Compiler

Affects this constraint: define_dft scan_chain on page 560

Affects these commands: connect_scan_chains on page 523

report dft_chains on page 647

Sets these attributes: Scan Segment Attributes
July 2009 559 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft scan_chain

define_dft scan_chain [-name name]
{[-sdi sdi -sdo sdo [-create_ports]
{-shared_output [-shared_select test_signal] |
-non_shared_output}

 [-shift_enable test_signal]
[-head segment] [-tail segment] [-body segment]
[-complete | -max_length integer]
[-domain test_clock_domain [-edge {rise|fall}]]
[-terminal_lockup {level_sensitive|edge_sensitive}]
[-hookup_pin_sdi pin] [-hookup_pin_sdo pin]
[-configure_pad {tm_signal | se_signal}]
|-analyze -sdo sdo [-sdi sdi] [-dont_overlay]
{-shared_out | -non_shared_out} }

Creates a scan chain or analyzes an existing chain with the specified input and output scan
data ports.

If you created a scan chain, the command returns the directory path to the scan_chain
object that it creates. For newly created scan chains you can find the objects created by the
define_dft scan_chain constraints in:

/designs/top_design/dft/scan_chains

If you successfully analyzed an existing scan chain, the command returns the directory path
to the actual_scan_chain object that it creates. For successfully analyzed scan chains,
you can find the objects created by the define_dft scan_chain constraints in:

/designs/top_design/dft/report/actual_scan_chains

Options and Arguments

-analyze Analyzes the connectivity of an existing top-level scan chain in
a structural netlist compiled in a previous RC session. You must
at least specify the scan data output pin and optionally the scan
data input pin to identify the chain.

-body segment Indicates that the specified segment (an ordered set of scan
flip-flops) is part of the body of the scan chain. The segment
must have been previously defined with a define_dft
xxx_segment constraint, where xxx is either abstract,
fixed, floating, preserved, or shift_register.

-complete Specifies that the defined chain is complete and no other
flip-flops should be added to the chain.
July 2009 560 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-configure_pad {tm_signal | se_signal}

Specifies the test signal (test mode or shift enable signal) that
the RC-DFT engine must use if it needs to configure the pad
connected to the scan data input or output signal to control the
data direction during test mode.

Recommendation: If the scan data input and output pin are
shared with functional pins, it is recommended to use the shift
enable test signal to configure pads. This will allow the pads to
shift-in and shift-out data when shift-enable signal is active
(scan-shift mode), and will allow the pads to operate in functional
mode when shift-enable signal is inactive (capture mode).

Note: You must have specified the test signal using either the
define_dft shift_enable or define_dft test_mode
constraint.

-create_ports Specifies whether to create the scan data input and output
ports if they do not exist.

If you do not specify the scan data input or output signals using
the -sdi and -sdo options, the ports can be created and
named as prefix_sdi_num and prefix_sdo_num, where
prefix is the value of the dft_prefix attribute.

-domain test_clock_domain

Specifies the DFT clock domain to associate with the scan
chain. This clock domain must have been previously identified
by the check_dft_rules command or defined with the
define_dft test_clock constraint.

If you omit this option, and segments have been defined for the
chain, the scan chain is automatically associated with the
appropriate DFT clock domain. In the absence of segments, the
scan chain can be assigned to any DFT clock domain.

Note: This option only applies to the muxed scan style.
July 2009 561 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-dont_overlay Prevents that RTL Compiler reassociates (or overlays)
user-defined segments of type preserve or fixed to its analyzed
scan chains. Consequently, the segments are not
re-established as a fixed entity (and hence are reorderable)
when determining how to partition the chains for physical-based
reordering. If these segments include multi-input combinational
logic gates in the scan data path, the write_scandef
command uses these gates to partition the analyzed scan
chains into n-reorderable segments (referred to as scanDEF
chains). The register before a multi-input combinational logic
gate becomes the STOP point for one scanDEF chain, while the
register after a combinational gate becomes the START point of
another scanDEF chain.

-edge {rise|fall} Specifies whether to use the falling or rising edge of the test
clocks in the specified DFT clock domain. You can specify this
option only if you specified -domain.

If you omit this option, the scan flip-flops triggered by the
different active edges of the test clocks will be placed on their
own scan chain.

This option is ignored if you enabled the
dft_mix_clock_edges_in_scan_chains attribute.

Note: This option only applies to the muxed scan style.

-head segment Indicates that the specified segment (an ordered set of scan
flip-flops) must be placed at the head (closest to the scan data
input) of the scan chain. The segment must have been
previously defined with a define_dft xxx_segment
constraint, where xxx is either abstract, fixed, floating,
preserved, or shift_register.

-hookup_pin_sdi pin

Specifies the core-side hookup pin to be used for the scan data
input signal during scan chain connection.

Note: When you specify this option, the RC-DFT engine does
not validate the control ability of any logic between the top-level
scan data input signal and its designated hookup pin under
test-mode setup.
July 2009 562 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-hookup_pin_sdo pin

Specifies the core-side hookup pin to be used for the scan data
output signal during scan chain connection.

Note: When you specify this option, the RC-DFT engine does
not validate the control ability of any logic between the top-level
shift_enable signal and its designated hookup pin under
test-mode setup.

-max_length integer

Specifies the maximum length that you allow for this scan chain.

If you omit this option, the maximum length defaults to the value
of the dft_max_length_of_scan_chains design attribute.

Note: This option is ignored if the scan chain is defined with the
-complete option, or if the number of flip-flop instances in a
head, body, or tail segment exceeds the maximum value.

-name name Specifies the name of the scan chain.

If you omit this option, a default name is used.

-sdi sdi Specifies the scan data input signal.

■ If you want to create a chain, specify a top-level port or a
hierarchical pin name in case of an existing port or pin. If
you want the tool to create the port, use the
create_ports option and a primary input port with the
specified name will be created.

■ If you want to analyze an existing chain, specify a top-level
port, a hiearchical pin, subport, or instance pin.

-sdo sdo Specifies the scan data output signal.

■ If you want to create a chain, specify a top-level port or a
hierarchical pin name in case of an existing port or pin. If
you want the tool to create the port, use the
create_ports option and a primary output port with the
specified name will be created.

■ If you want to analyze an existing chain, specify a top-level
port, a hiearchical pin, subport, or instance pin.
July 2009 563 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-shared_select test_signal

Specifies the select control signal to the mux inserted for a
shared output port.

Default: The default shift-enable signal or chain-specific
shift-enable signal is used as the select control signal to the
mux.

{-shared_output | -non_shared_output}

Specifies whether an existing functional output port can be
used as scan data output port. If the functional port can be used
for scan data purposes, a mux is inserted in the scan data path
by the connect_scan_chains command.

One of these options must be specified when the specified scan
data output signal is already connected in the circuit.

-shift_enable test_signal

Designates a chain-specific shift-enable port or pin.

If you omit this option, the default shift-enable signal specified
using a define_dft shift_enable constraint is used.

-tail segment Indicates that the specified segment (an ordered set of scan
flip-flops) must be placed at the tail (closest to the scan data
output) of the scan chain. The segment must have been
previously defined with a define_dft xxx_segment
constraint, where xxx is either abstract, fixed, floating,
preserved, or shift_register.

-terminal_lockup {level_sensitive | edge_sensitive}

Specifies the type of lockup element that configuration can
insert at the tail end of the chain to connect to the specified
scan data output signal.

If this option is not specified, no terminal lockup element will be
inserted.

Note: This option only applies to the muxed scan style.
July 2009 564 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ The following example creates a chain containing 3 segments previously defined:

rc:/des*/test> define_dft scan_chain -sdi in[0] -sdo out[0] -shared_out \
-head segHead -tail segTail -body segBody -name chain1

...
Info : Added scan chain. [DFT-151]

: scan chain successfully defined.
/designs/test/dft/scan_chains/chain1

■ The following example analyzes an existing scan chain:

rc:/> define_dft scan_chain -name topChain -sdi SI -sdo SO -analyze

...
Info : Added scan chain. [DFT-151]

: scan chain successfully defined.
/designs/test/dft/report/actual_scan_chains/topChain

Related Information

Controlling Scan Configuration in Design for Test in Encounter RTL Compiler

Affected by this constraint: define_dft abstract_segment on page 530

define_dft fixed_segment on page 540

define_dft floating_segment on page 542

define_dft preserved_segment on page 557

define_dft shift_enable on page 572

define_dft shift_register_segment on page 575

define_dft test_clock on page 577

Affects these commands: connect_scan_chains on page 523

report dft_chains on page 647

Affected by this attribute: dft_max_length_of_scan_chains

dft_mix_clock_edges_in_scan_chains

dft_prefix

Sets these attributes: Scan Chain Attributes
July 2009 565 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft scan_clock_a

define_dft scan_clock_a
[-name name] [-no_ideal] driver
[-period integer] [-divide_period integer]
[-rise integer] [-divide_rise integer]
[-fall integer] [-divide_fall integer]
[[-hookup_pin pin [-hookup_polarity string]]
[-configure_pad {tm_signal|se_signal}]

| [-create_port]]

Defines the scan clock of the master latch (scan_clock_a) of the clocked LSSD scan cell.
The scan_clock_a signal controls the scan shifting of the master latch and is required for
the clocked-LSSD scan style. The signal is created with active high polarity.

You can define only one signal for the design. If you specify more than one signal, the last
definition overwrites the existing one.

The command returns the directory path to the test_signal object that it creates. You can
find the object created by the define_dft scan_clock_a constraints in:

/designs/design/dft/test_signals

Options and Arguments

-configure_pad {tm_signal | se_signal}

Specifies the test signal that the RC-DFT engine must use if it
needs to configure the pad connected to the scan_clock_a
signal to control the data direction during test mode.

Note: You must have specified the test signal using either the
define_dft shift_enable or define_dft test_mode
constraint.

-create_port Specifies whether to create the port if it does not exist.

-divide_fall integer

Together with the -fall option, determines the time that the
falling edge occurs with respect to the beginning of the clock
period. The time is specified as a percentage of the period and
is derived by dividing -fall by -divide_fall.

Default: 100
July 2009 566 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-divide_period integer

Together with the -period option, determines the clock period
interval. The clock period is specified in picoseconds and is
derived by dividing -period by -divide_period.

Default: 1

-divide_rise integer

Together with the -divide_rise option, determines the time
that the rising edge occurs with respect to the beginning of the
clock period. The time is specified as a percentage of the period
and is derived by dividing -rise by -divide_rise.

Default: 100

driver Specifies the driving pin or port for the scan clock of the master
latch (scan_clock_a) of the clocked LSSD scan cell.

-fall integer Together with the -divide_fall option, determines the time
that the falling edge occurs with respect to the beginning of the
clock period. The time is specified as a percentage of the period
and is derived by dividing -fall by -divide_fall.

Default: 60

-hookup_pin pin Specifies the core-side hookup pin to be used for the
scan_clock_a signal during scan chain connection.

Note: When you specify this option, the RC-DFT engine does
not validate the controlability of any logic between the top-level
scan_clock_a signal and its designated hookup pin under
test-mode setup.

-hookup_polarity {inverted|non_inverted}

Specifies the polarity of the scan_clock_a signal at the
core-side hookup pin.

-name name Specifies the test_signal object name of the
scan_clock_a signal.

If you omit this option, the RC-DFT engine assigns a name
based on the hierarchical path of the driver, using underscores
as delimiters in the path.
July 2009 567 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ The following example defines sca as the driver for the scan_clock_a signal and
assigns SCA as the test_signal object name.

define_dft scan_clock_a -name SCA sca

Related Information

Defining Scan Clock Signals in Design for Test in Encounter RTL Compiler

-no_ideal Marks the scan_clock_a signal as non-ideal. This allows
buffering of the scan_clock_a network during optimization.

By default, the scan_clock_a signal is marked ideal.

Note: If the test signal is marked as ideal, RTL Compiler sets the
ideal_network attribute to true on the pin or port for the
scan_clock_a signal

-period integer Together with the -divide_period option, determines the
clock period interval. The clock period is specified in
picoseconds and is derived by dividing -period by
-divide_period.

Default: 50000 (20 MHz test clock)

-rise integer Together with the -divide_rise option, determines the time
that the rising edge occurs with respect to the beginning of the
clock period. The time is specified as a percentage of the period
and is derived by dividing -rise by -divide_rise.

Default: 50

Affects these commands: connect_scan_chains on page 523

report dft_chains on page 647

write_atpg on page 656

Sets these attributes: Test Signal Attributes

Affected by this attribute: dft_scan_style
July 2009 568 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft scan_clock_b

define_dft scan_clock_b
[-name name] [-no_ideal] driver
[-period integer] [-divide_period integer]
[-rise integer] [-divide_rise integer]
[-fall integer] [-divide_fall integer]
[[-hookup_pin pin [-hookup_polarity string]]
[-configure_pad {tm_signal|se_signal}]

| [-create_port]]

Defines the scan clock of the slave latch (scan_clock_b) of the clocked LSSD scan cell.
The scan_clock_b signal controls the scan shifting of the slave latch and is required for the
clocked-LSSD scan style. The signal is created with active high polarity.

You can define only one signal for the design. If you specify more than one signal, the last
definition overwrites the existing one.

The command returns the directory path to the test_signal object that it creates. You can
find the object created by the define_dft scan_clock_b constraints in:

/designs/design/dft/test_signals

Options and Arguments

-configure_pad {tm_signal | se_signal}

Specifies the test signal that the RC-DFT engine must use if it
needs to configure the pad connected to the scan_clock_b
signal to control the data direction during test mode.

Note: You must have specified the test signal using either the
define_dft shift_enable or define_dft test_mode
constraint.

-create_port Specifies whether to create the port if it does not exist.

-divide_fall integer

Together with the -fall option, determines the time that the
falling edge occurs with respect to the beginning of the clock
period. The time is specified as a percentage of the period and
is derived by dividing -fall by -divide_fall.

Default: 100
July 2009 569 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-divide_period integer

Together with the -period option, determines the clock period
interval. The clock period is specified in picoseconds and is
derived by dividing -period by -divide_period.

Default: 1

-divide_rise integer

Together with the -divide_rise option, determines the time
that the rising edge occurs with respect to the beginning of the
clock period. The time is specified as a percentage of the period
and is derived by dividing -rise by -divide_rise.

Default: 100

driver Specifies the driving pin or port for the scan clock of the slave
latch (scan_clock_b) of the clocked LSSD scan cell.

-fall integer Together with the -divide_fall option, determines the time
that the falling edge occurs with respect to the beginning of the
clock period. The time is specified as a percentage of the period
and is derived by dividing -fall by -divide_fall.

Default: 80

-hookup_pin pin Specifies the core-side hookup pin to be used for the
scan_clock_b signal during scan chain connection.

Note: When you specify this option, the RC-DFT engine does
not validate the controlability of any logic between the top-level
scan_clock_b signal and its designated hookup pin under
test-mode setup.

-hookup_polarity {inverted|non_inverted}

Specifies the polarity of the scan_clock_b signal at the
core-side hookup pin.

-name name Specifies the test_signal object name of the
scan_clock_b signal.

If you omit this option, the RC-DFT engine assigns a name
based on the hierarchical path of the driver, using underscores
as delimiters in the path.
July 2009 570 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ The following example defines sca as the driver for the scan_clock_b signal and
assigns SCB as the test_signal object name.

define_dft scan_clock_b -name SCB scb

Related Information

Defining Scan Clock Signals in Design for Test in Encounter RTL Compiler

-no_ideal Marks the scan_clock_b signal as non-ideal. This allows
buffering of the scan_clock_b network during optimization.

By default, the scan_clock_b signal is marked ideal.

Note: If the test signal is marked as ideal, RTL Compiler sets the
ideal_network attribute to true on the pin or port for the
scan_clock_b signal

-period integer Together with the -divide_period option, determines the
clock period interval. The clock period is specified in
picoseconds and is derived by dividing -period by
-divide_period.

Default: 50000 (20 MHz test clock)

-rise integer Together with the -divide_rise option, determines the time
that the rising edge occurs with respect to the beginning of the
clock period. The time is specified as a percentage of the period
and is derived by dividing -rise by -divide_rise.

Default: 70

Affects these commands: connect_scan_chains on page 523

report dft_chains on page 647

write_atpg on page 656

Sets these attributes: Test Signal Attributes

Affected by this attribute: dft_scan_style
July 2009 571 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft shift_enable

define_dft shift_enable [-name name] -active {low|high}
[-default] [-no_ideal]
[[-hookup_pin pin [-hookup_polarity string]]
[-configure_pad {tm_signal|se_signal}]

| -create_port]
{pin|port} [-design design]

Specifies the name and active value of the input signal that activates scan shifting. The input
signal can be defined on a top-level port or an internal driving pin. This type of input signal is
required by the muxed_scan style. The active value of the shift-enable signals is propagated
through the design by the check_dft_rules command.

The command returns the directory path to the test_signal object that it creates. You can
find the objects created by the define_dft shift_enable constraints in:

/designs/design/dft/test_signals

Options and Arguments

-active {low | high}

Specifies the active value for the shift-enable signal.

-configure_pad {tm_signal | se_signal}

Specifies the test signal that the RC-DFT engine must use if it
needs to configure the pad connected to the shift-enable signal
to control the data direction during test mode.

Note: You must have specified the test signal using either the
define_dft test_mode or define_dft shift_enable
constraint.

-create_port Specifies whether to create the port if it does not exist.

-default Designates the specified signal as the default shift-enable
signal for chains for which you omit the -shift-enable
option.

Note: You can designate only one signal as the default
shift-enable signal.
July 2009 572 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ When the following constraint is given, the check_dft_rules command propagates a
logic1 from the p_top/SE pin into the design.

define_dft shift_enable -active low -hookup_pin p_top/SE -hookup_polarity inverted

-design design Specifies the name of the design for which the shift enable is
defined.

If you omit the design name and multiple designs are loaded,
the top-level design of the current directory of the design
hierarchy is used.

-hookup_pin pin Specifies the core-side hookup pin to be used for the top-level
shift-enable signal during DFT synthesis.

Note: When you specify this option, the RC-DFT engine does
not validate the controlability of any logic between the top-level
shift_enable signal and its designated hookup pin under
test-mode setup.

-hookup_polarity {inverted | non_inverted}

Specifies the polarity of the shift-enable signal at the core-side
hookup pin.

-name name Specifies the test_signal object name of the shift-enable
signal.

If you omit this option, the RC-DFT engine assigns a name
based on the hierarchical path of the driver, using underscores
as delimiters in the path.

-no_ideal Marks the shift-enable signal as non-ideal. This allows buffering
of the shift-enable network during optimization.

Default: The shift-enable signal is marked ideal.

Note: If the test signal is marked as ideal, RTL Compiler sets the
ideal_network attribute to true on the pin or port for the
shift-enable signal

{pin|port} Specifies the driving pin or port for the shift-enable signal.

Note: If multiple designs are loaded and you did no specify the
-design option, you can also specify the full path to the driver.
July 2009 573 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Defining Shift-Enable Signals in Design for Test in Encounter RTL Compiler

Affects these commands: check_dft_rules on page 501

connect_scan_chains on page 523

insert_dft shadow_logic on page 627

report dft_chains on page 647

Sets these attributes: Test Signal Attributes
July 2009 574 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft shift_register_segment

define_dft shift_register_segment [-name segment_name]
-start_flop instance
-end_flop instance

Defines a shift register. Because a shift register is a shiftable scan chain segment, the
RC-DFT engine can use the functional path of the shift register as the scan path by only
scan-replacing the first flop in the shift register segment, while maintaining the existing
connectivity of the flops.

Note: A shift register segment can only contain flops driven by the same clock and same
clock edge.

A shift register is a user-specified scan segment which can be associated with either

■ A user-defined top-level chain—created using the define_dft scan_chain
command

■ A tool-created scan chain—created using the connect_scan_chains command

The command returns the directory path to the object that it creates. You can find the objects
created by the define_dft shift_register_segment constraint in:

/designs/top_design/dft/scan_segments

Note: Shift register segments are only supported for the muxed scan style.

Options and Arguments

Examples

■ The following example defines a shift register.

define_dft shift_register_segment -name myreg \
-start_flop *seq/out_reg_0 -end_flop *seq/out_reg_7

-end_flop instance Specifies the last flop in the shift register. Specify the
hierarchical instance name of the flop.

-name segment_name Defines a name for the segment that you can use to reference
in the define_dft scan_chain constraint.

-start_flop instance

Specifies the first flop in the shift register. Specify the
hierarchical instance name of the flop.
July 2009 575 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Identifying Shift Registers in the Design in Design for Test in Encounter RTL Compiler

Affects this constraint: define_dft scan_chain on page 560

Affects these commands: connect_scan_chains on page 523

report dft_chains on page 647

Related command: identify_shift_register_scan_segments on page 593

Sets these attributes: Scan Segment Attributes
July 2009 576 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft test_clock

define_dft test_clock -name test_clock
[-design design] [-domain test_clock_domain]
[-period integer] [-divide_period integer]
[-rise integer] [-divide_rise integer]
[-fall integer] [-divide_fall integer]
|-hookup_pin pin [-hookup_polarity string]]
[-controllable] {pin|port} [{pin|port}] ...

Defines a test clock and associates a test clock waveform with the clock. The test clock
waveform can be different from the system clocks.

If you do not define test clocks, the DFT rule checker automatically analyzes the test clocks
and creates these objects with a default waveform. The waveform information is useful in
determining how to order scan flip-flops in a chain, and where to insert data-lockup elements
in the chain.

Test clock waveforms are used to order flip-flops that belong to the same DFT test clock
domain to minimize the addition of lockup elements. Flip-flops that are triggered first are
ordered and connected last in a chain.

The command returns the directory path to the test_clock object that it creates.You can
find the objects created by the define_dft test_clock constraints in:

/designs/design/dft/test_clock_domains

Options and Arguments

-controllable When specifying an internal pin for a test clock, this option
indicates that the internal clock pin is controllable in test mode
(for example, Built-in-Self-Test (BIST)). If you do not specify this
option, the rule checker must be able to trace back from the
internal pin to a controllable top-level clock pin.

Note: If you specify an internal pin as being controllable, you
need to ensure that this pin can be controlled for the duration of
the test cycle. The tool will not validate your assumption.

-design design Specifies the name of the design for which the test clock is
defined.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.
July 2009 577 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-divide_fall integer

Together with the -fall option, determines the time that the
falling edge occurs with respect to the beginning of the clock
period. The time is specified as a percentage of the period and
is derived by dividing -fall by -divide_fall.

Default: 100

-divide_period integer

Together with the -period option, determines the clock period
interval. The clock period is specified in picoseconds and is
derived by dividing -period by -divide_period.

Default: 1

-divide_rise integer

Together with the -rise option, determines the time that the
rising edge occurs with respect to the beginning of the clock
period. The time is specified as a percentage of the period and
is derived by dividing -rise by -divide_rise.

Default: 100

-domain test_clock_domain

Specifies the DFT clock domain associated with the test clock.

Clocks belonging to the same domain can be mixed in a chain.

If you omit this option, a new DFT clock domain is created and
associated with the test clock.

Flip-flops belonging to different test clocks in the same domain
can be mixed in a chain. Lockup elements can be added
between the flip-flops belonging to different test clocks.

-fall integer Together with the -divide_fall option, determines the time
that the falling edge occurs with respect to the beginning of the
clock period. The time is specified as a percentage of the period
and is derived by dividing -fall by -divide_fall.

Default: 90

-hookup_pin pin Specifies the core-side hookup pin to be used for the top-level
test clock during DFT synthesis.

Note: When you specify this option, the RC-DFT engine does
not validate the controlability of any logic between the top-level
test clock and its designated hookup pin under test-mode setup.
July 2009 578 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ The following example defines three test clocks, four test clock ports and two DFT clock
domains.

define_dft test_clock -name CLK1X -domain domain_1 -period 20000 CLK1
define_dft test_clock -name CLK2X -domain domain_1 -period 20000 CLK2 CLK2b
define_dft test_clock -name CLK3X -domain domain_2 -period 20000 CLK3

The four test clock ports are CLK1, CLK2, CLK2b, and CLK3. Test clock CLK2X
comprises equivalent test clocks CLK2 and CLK2B (they can be mixed in the same scan
chain without any lockup element). Test clocks CLK1X, CLK2X belong to the same DFT
clock domain and are compatible (requires lockup elements between compatible chain
segments triggered by the different test clocks). Test clock CLK3X belongs to its own
domain.

-hookup_polarity {inverted | non_inverted}

Specifies the polarity of the test clock signal at the core-side
hookup pin.

-name test_clock Specifies the name of the test clock that is being defined.

Each clock object in your design must have a unique name. If
you define a new test clock with the same name as an existing
clock, an error message will be issued.

Note: The clock name allows you to search for the clock later
(through the find command) or to recognize it in reports.

-period integer Together with the -divide_period option, determines the
clock period interval. The clock period is specified in
picoseconds and is derived by dividing -period by
-divide_period.

Default: 50000 (20 MHz test clock)

{pin|port} Specifies the test clock input pin or port.

If you specify multiple pins, these pins are assumed to have
zero skew: they can be mixed without lockup latches.

-rise integer Together with the -divide_rise option, determines the time
that the rising edge occurs with respect to the beginning of the
clock period. The time is specified as a percentage of the period
and is derived by dividing -rise by -divide_rise.

Default: 50
July 2009 579 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Specifying an Internal Clock Branch as a Separate Test Clock in Design for Test in
Encounter RTL Compiler

Defining an Equivalent Test Clock for Different Top-level Clock Pins in Design for Test in
Encounter RTL Compiler

Root Attributes in Attribute Reference for Encounter RTL Compiler

Affects these commands: check_dft_rules on page 501

connect_scan_chains on page 523

fix_dft_violations on page 586

report dft_chains on page 647

Sets these attributes: Test Clock Attributes
July 2009 580 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
define_dft test_mode

define_dft test_mode [-name name] -active {low | high}
[-no_ideal] [-scan_shift]
[[-hookup_pin pin [-hookup_polarity string]]
[-configure_pad {tm_signal|se_signal}]

| [-create_port | -shared_in]]
{pin|port} [-design design]

Specifies the input signal and constant value that is assigned during a test session. The input
signal can be defined on a top-level port or an internal driving pin.

The active value of the test mode signals is propagated through the design by the
check_dft_rules command. Unless defined with the -scan_shift option, the test signal
is expected to stay active throughout a test session.

The command returns the directory path to the test_signal object that it creates. You can
find the objects created by the define_dft test_mode constraints in:

/designs/design/dft/test_signals

Options and Arguments

-active {low | high}

Specifies the active value for the test mode signal.

-configure_pad {tm_signal | se_signal}

Specifies the test signal that the RC-DFT engine must use if it
needs to configure the pad connected to the test mode signal to
control the data direction during test mode.

Note: You must have specified the test signal using either the
define_dft shift_enable or define_dft test_mode
constraint.

-create_port Specifies whether to create the port if it does not exist.

Note: This option cannot be specified with the -shared_in
option.

-design design Specifies the name of the design for which the test mode signal
is defined.

Note: If you omit the design name and multiple designs are
loaded, the top-level design of the current directory of the design
hierarchy is used. You can also specify the full path to the driver.
July 2009 581 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
{pin|port} Specifies the driving pin or port for the test signal.

Note: If multiple designs are loaded and you did no specify the
-design option, you can also specify the full path to the driver.

-hookup_pin pin Specifies the core-side hookup pin to be used for the top-level
test-mode signal during DFT synthesis.

Note: When you specify this option, the RC-DFT engine does
not validate the controllability of any logic between the top-level
test-mode signal and its designated hookup pin under test-mode
setup.

-hookup_polarity {inverted|non_inverted}

Specifies the polarity of the test-mode signal at the core-side
hookup pin.

-name name Specifies the test_signal object name of the test signal.

If you omit this option, the RC-DFT engine assigns a name
based on the hierarchical path of the driver, using underscores
as delimiters in the path.

-no_ideal Marks the test-mode signal as non-ideal. This allows buffering
of the test-mode network during optimization.

Default: The test-mode signal is marked ideal.

Note: If the test signal is marked as ideal, RTL Compiler sets the
ideal_network attribute to true on the pin or port for the test
signal.

-scan_shift Indicates that this test signal should only be held to its
test-mode active value during the scan shift operation of the
tester cycle. This option is used to designate those test signals
which must be held to their non-controlling functional values to
prevent the state of the flip-flops from being asynchronous set
or reset while ATPG data is being shifted into or out of the scan
chains.

As a consequence of specifying this option, the test signal will
be treated as a clock signal by the ATPG tool. This allows ATPG
to have control over the logic state of the signal during both the
scan-shift and capture operations of tester cycle.

If this option is not specified, the test signal will be held to its
test-mode active value for the duration of the tester cycle.
July 2009 582 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ When the following constraint is given, the check_dft_rules command propagates a
logic1 from the pad_top/TM pin into the design.

define_dft test_mode -active high -hookup_pin pad_top/TM
-hookup_polarity non_inverted

Related Information

Defining Test Mode Signals in Design for Test in Encounter RTL Compiler

-shared_in Specifies whether the input port is also used as a functional
port.

By default, the signal applied to the specified driving pin or port
is considered to be a dedicated test signal.

Note: This option cannot be specified with the -create_port
option.

Affects these commands: check_dft_rules on page 501

fix_dft_violations on page 586

insert_dft shadow_logic on page 627

insert_dft test_point on page 631

Sets these attributes: Test Signal Attributes
July 2009 583 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
dft_trace_back

dft_trace_back
[-mode integer] [-polarity] [-continue] {port|pin} [-print]

Returns the pin or port found by tracing back one level from the specified pin or port based
on the requested mode. If a constant is encountered, the command returns 0 or 1.

Options and Arguments

Examples

■ Following command traces back without performing constant propagation.

rc:/> dft_trace_back -mode 0 /designs/top/instances_hier/g121/pins_in/CME
/designs/top/ports_in/cme

-mode integer Specifies the mode for tracing back.

■ 0 does not perform constant propagation

■ 1 performs tied-constant propagation

■ 2 performs tied-constant and test-mode propagation

■ 3 performs tied-constant, test-mode and shift-enable
propagation

Default: 3

-continue Specifies to continue the trace back until a primary input,
complex gate, or sequential gate is reached. Additionally, the
trace will terminate if a logic constant is returned for the trace
back pin.

{pin|port} Specifies the pin or port from which to start the trace back.

-polarity Specifies whether to report if the polarity changed through the
trace.

A returned value of 0 indicates no inversion.

A returned value of 1 indicates an inversion.

-print Prints the pin and polarity at every trace back.
July 2009 584 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ Following command traces back using the default mode. In this case a constant logic 1
value is reported.

rc:/> dft_trace_back /designs/top/instances_hier/g121/pins_in/CME
1

■ Following command traces back using the default mode and requests to report whether
there was a change in polarity. In this case, a constant logic 1 with no change in logic
polarity is reported.

rc:/> dft_trace_back /designs/top/instances_hier/g121/pins_in/CME -polarity
1 0
July 2009 585 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
fix_dft_violations

fix_dft_violations
{ -clock -test_control test_signal
[-test_clock_pin {pin|port} [-rise | -fall]]

| { -async_set | -async_reset
| -async_set -async_reset }

 [-async_control test_signal]
-test_control test_signal

 [-insert_observe_scan
 -test_clock_pin {pin|port} [-rise | -fall]]}
[-violations violation_object_id_list]
[-tristate_net]
[-xsource [-exclude_xsource instance...]]
[-preview] [-dont_check_dft_rules] [-dont_map]
 [-design design]

Automatically fixes either

■ All DFT violations of the specified types (clock, asynchronous set, asynchronous reset,
tristate, or xsource).

Only the specified violation types are fixed. If you allow to fix asynchronous set and reset
violations using the same test mode signal, you can request both types to be fixed at the
same time.

■ The identified violations

You can further limit the violations that RTL Compiler must fix to by specifying the
violation ID (through the -violations option).

Note: Currently, clock violations are only fixed for the muxed scan style.

Options and Arguments

-async_control test_signal

Specifies the name of the test signal to use to control the
asynchronous violations to be fixed.

-async_reset Fixes the asynchronous reset violations on all instances.

-async_set Fixes the asynchronous set violations on all instances.

-clock Fixes the clock violations on all instances.
July 2009 586 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-design design Specifies the name of the design whose violations must be
checked.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dont_check_dft_rules

Prevents the DFT rules from being checked automatically after
fixing violations.

-dont_map Prevents the inserted logic from being mapped even if the
design is already mapped to the target library.

-exclude_xsource instance

Specifies instances to exclude from automatic fixing of
X-source violations.

-insert_observe_scan

Inserts a flip-flop for observability. If you fix DFT violations in a
generic netlist, the flip-flop is mapped to a scan flip-flop during
synthesis. If you fix DFT violations in a mapped netlist, the
flip-flop is mapped to a scan flip-flop. You need to rerun the
check_dft_rules command to update the DFT status of the
observability flop prior to connecting it in a scan chain.

Note: This option can only be used when fixing an
asynchronous set reset violation and requires the
-test_clock_pin option.

{pin | port} Specifies the test signal pin or port to use to control the set or
reset. By default, the set or reset are controlled by the
-test_control option.

To specify this option, the pin or port must first be declared as a
test_mode signal using the define_dft test_mode
constraint.

-preview Reports how the violations will be fixed, without making
modifications to the netlist.

[-rise | -fall] Specifies to use the rising or falling edge of the test clock to fix
the DFT violation during test-mode operation.

Default: -rise
July 2009 587 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example instructs RTL Compiler to fix all clock, async set, and asynch reset
violations using test mode signal tm and test clock CK1 using the rising edge as the
active edge.

fix_dft_violations -clock -async_set -async_reset
-test_control tm -insert_observe_scan -test_clock_pin CK1 -rise

-test_clock_pin {pin | port}

Specifies the test clock signal to be used. Specify the pin or port
from where the clock signal originates. In most applications, the
clock pin or port is identified when checking the DFT rules.

This option is optional when fixing clock violations. By default,
the RC-DFT engine performs a clock trace to identify a
controllable test clock that appears in the fanin cone of the clock
violation and uses this test clock to fix the actual clock violation.

This option is required when you want to insert observability
flip-flops when fixing async violations. In this case, the test
clock signal drives the clock pin of the observation flip-flops
during test-mode operation.

-test_control test_signal

Specifies the particular test signal to use to fix the violation.

Note: You must have specified the test signal using either the
define_dft shift_enable or define_dft test_mode
constraint.

-tristate_net Specifies to fix tristate net contention design rules violations.

-violations violation_object_id_list

Fixes the violations that are identified by their object name.

Note: The check_dft_rules command creates a
violations directory in the design hierarchy under
/designs/design/dft/report. The objects in this
directory correspond to the violations found during the last
execution of the check_dft_rules command. Use the
report dft_violations command to list all remaining
violations in the design.

-xsource Specifies to fix X-Source design rules violations.
July 2009 588 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
If you do not want to use the same test clock to fix the clock violations and to drive the
clock pin of the observation flip-flops, you need to enter two commands. For example,

fix_dft_violations -clock -test_control tm

fix_dft_violations -async_set -async_reset -test_control tm
-insert_observe_scan -test_clock_pin CK1 -rise

In this case, the RC-DFT engine automatically determines which test clock to use to fix
the clock violations.

■ The following example instructs RTL Compiler to fix all clock, async set, and asynch reset
violations using test mode signal tm and test clock CK1 using the rising edge as the
active edge.

fix_dft_violations -clock -async_set -async_reset
-test_control tm -test_clock_pin CK1 -rise

■ The following example instructs RTL Compiler to fix violations vid_1 and vid_3 if they
are violations of type async_set.

fix_dft_violations -violations {vid_1 vid_3} -async_set -test_control tm

Related Information

Fixing DFT Rule Violations in Design for Test in Encounter RTL Compiler

Affected by these constraints: define_dft shift_enable on page 572

define_dft test_clock on page 577

define_dft test_mode on page 581

Affects these commands: check_dft_rules on page 501

report dft_registers on page 648

report dft_violations on page 650

synthesize on page 294

Sets these attributes: dft_status

dft_violation

Violations Attributes
July 2009 589 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
fix_scan_path_inversions

fix_scan_path_inversions actual_scan_chain...

Fixes inversions for every scan element in the scan path. The command inserts inverters as
required in a scan chain to reset the flops in the chain to logic_0.

Options and Arguments

Related Information

Fixing Scan Path Inversions in Design for Test in Encounter RTL Compiler

actual_scan_chain

Specifies the scan chain(s) to undergo analysis and to insert
inverters.
July 2009 590 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
identify_multibit_cell_abstract_scan_segments

identify_multibit_cell_abstract_scan_segments
[-libcell libcell]... [-preview]
[-dont_check_dft_rules] [-design design]

Identifies multi-bit scan cells in the design, and defines scan abstract segments for each
instance of the multi-bit scan cell.

Multi-bit scan cells implemented using either a parallel or serial bit approach are supported
by the tool.

Options and Arguments

Examples

■ The following example identifies a parallel multi-bit scan cell with two bits; where each bit
would be defined as an abstract scan segment:

rc:/> identify_multibit_cell_abstract_scan_segments -preview

Would execute command:

define_dft abstract_segment -length 1 -sdi SI1 -sdo Q1
-shift_enable_port SE1 -active high -clock_port CP -rise
-libcell/libraries/tcbn65ulp_c070701wc2/libcells/DUALSDFQD0 -name DUALSDFQD0

Would execute command:

define_dft abstract_segment -length 1 -sdi SI2 -sdo Q2
-shift_enable_port SE2 -active high -clock_port CP -rise
-libcell /libraries/tcbn65ulp_c070701wc2/libcells/DUALSDFQD0 -name DUALSDFQD0

-design design Specifies the name of the top-level design on which to identify
abstract segments for multi-bit scan cells.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dont_check_dft_rules

Prevents the DFT rules from being automatically checked after
identifying abstract segments for multi-bit scan cells.

-libcell {cell...} Specifies the multi-bit library cells on which to perform abstract
segment identification.

-preview Reports the identified abstract scan segments without defining
them.
July 2009 591 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ The following example identifies a serial multi-bit scan cell of length 4; where each
instance of the cell would be defined as an abstract scan segment:

rc:/> identify_multibit_cell_abstract_scan_segments -preview

Would execute command:

define_dft abstract_segment -length 4 -sdi SI -sdo Q4
-shift_enable_port SM -active high -clock_port CK -rise
-libcell /libraries/cs60ale_uc_scan/libcells/YSDM4ALU1 -name YSDM4ALU1

Related Information

Mapping to Multi-Bit Scan Cells in Design for Test in Encounter RTL Compiler
July 2009 592 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
identify_shift_register_scan_segments

identify_shift_register_scan_segments
[-min_length integer] [-max_length integer]
[-preview] [-incremental]

Identifies all shift registers in the design whose minimum length either satisfies the default
minimum length, or the specified minimum and maximum length values.

The RC-DFT engine uses the following naming convention for automatically identified
shift-register segments:

DFT_AutoSegment_n

You can find the automatically identified shift-register segments in:

/designs/top_design/dft/scan_segments

Note: A shift register segment contains flops driven by the same clock and same clock edge.

A shift register is a scan segment which can be associated with either

■ A user-defined top-level chain—created using the define_dft scan_chain
command

■ A tool-created scan chain—created using the connect_scan_chains command

Options and Arguments

-incremental Adds new shift register segments in incremental mode, without
changing already identified shift register segments stored in
/designs/design/dft/scan_segments

Note: Without this option, the existing identified shift register
segments will be removed and new segments will be identified
based on the new values specified for the command options.

-max_length integer

Specifies the maximum length that an automatically identified
shift register can have.

If the length of a functional shift register exceeds this length, it
will be broken in multiple scan segments.

Note: There is no default for the maximum length.
July 2009 593 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Identifying Shift Registers in the Design in Design for Test in Encounter RTL Compiler

Identifying Shift Registers in a Mapped Netlist before Creating the Scan Chains in Design for
Test in Encounter RTL Compiler

-min_length integer

Specifies the minimum length a shift register must have to be
automatically identified by the tool.

Default: 2

-preview Reports which shift register segments will be identified, without
adding them to the list of scan segments.

Sets this attribute: user_defined_segment
July 2009 594 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
identify_test_mode_registers

identify_test_mode_registers
-stil file
[-macro string]
[-library string]
[-design design] [-preview] [-et_log string]

Identifies all internal registers whose output signals must remain constant during test mode
and generates the corresponding test-mode signals required for the RC-DFT engine.

Note: To use this command you need to have the Encounter Test software installed and your
operating system PATH environment variable must include the path to the Encounter Test
software. For more information on the exact product requirements, refer to Encounter Test
Product Requirements for Advanced Features in Design for Test in Encounter RTL
Compiler.

Options and Arguments

-design design Specifies the name of the design for which to define the
test-mode signals.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-et_log string Specifies log file for Encounter Test.

-library string Specifies the list of Verilog structural library files. Specify the list
in a quoted string. Refer to the write_et_atpg -library
option description for additional information.

Note: This option is only required when you invoke this
command on a mapped netlist.

-macro string Specifies the name of the macro in the STIL file that contains
the initialization vectors to be simulated.

Default: test_setup

-preview Reports the fixed value registers but does not set the test mode
values.

-stil file Specifies the name of the STIL file that contains the mode
initialization sequence.
July 2009 595 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command requests a report of the list of the registers with fixed values.

rc:/> identify_test_mode_registers -stil newStil -prev

Identifying internal registers with fixed value outputs under test_mode setup.
... Creating intermediate files

WARNING : No user defined shift enable signal found.
ATPG interface file may contain incomplete information
Cadence Design Systems RC file: Cadence ATPG file created successfully.

... Identifying the fixed value registers

Test Function Block Name
+TI tc/ts_reg[0]
+TI tc/ts_reg[1]
+TI tc/ts_reg[2]

Note: The +/-TI Test Function flag denotes the active logic value that a signal
is to be held to during test mode.

+TI denotes a logic value 1; -TI denotes a logic value 0

■ The following command creates the test signals and automatically reruns the DFT rule
checker.

rc:/> identify_test_mode_registers -stil newStil
Identifying internal registers with fixed value outputs under test_mode setup.
... Creating intermediate files

WARNING : No user defined shift enable signal found.
ATPG interface file may contain incomplete information
Cadence Design Systems RC file: Cadence ATPG file created successfully.

... Identifying the fixed value registers

INFO: Setting active high test mode signal on tc/ts_reg[0]/q
INFO: Setting active high test mode signal on tc/ts_reg[1]/q
INFO: Setting active high test mode signal on tc/ts_reg[2]/q

 Checking DFT rules for ’top’ module under ’muxed_scan’ style

...
rc:/> ls dft/test_signals
/designs/top/dft/test_signals:
./ rst tc__ts_reg[1]__q
incr tc__ts_reg[0]__q tc__ts_reg[2]__q
July 2009 596 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Identifying Fixed-Value Registers in Design for Test in Encounter RTL Compiler

Affected by these constraints: define_dft test_mode on page 581

define_dft test_clock on page 577

Sets this attribute: user_defined_signal
July 2009 597 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft

insert_dft
{ analyzed_test_points | boundary_scan | dfa_test_points
| jtag_macro | lockup_element | mbist | ptam
| scan_power_gating | shadow_logic | test_point
| user_test_point | wrapper_cell }

Inserts DFT test logic.

Options and Arguments

analyzed_test_points

Inserts test points selected by Encounter Test or adds shadow
logic.

boundary_scan Inserts boundary scan cells and the corresponding JTAG
controller.

dfa_test_points Inserts test points based on Deterministic Fault Analysis.

jtag_macro Inserts a JTAG Macro controller into a netlist.

lockup_element Inserts lockup elements in the specified analyzed scan chains.

mbist Inserts Memory Built-In-Self-Test (MBIST) logic to test targeted
memories in the design.

ptam Inserts Power Test Access Mechanism (PTAM) control logic into
the design.

scan_power_gating Inserts gating logic at selected flop outputs to minimize switching
power during scan shift

shadow_logic Inserts DFT shadow logic to enable testing of shadow logic
around a module.

test_point Inserts a native test point.

user_test_point Inserts a user-defined test point.

wrapper_cell Inserts an IEEE-1500 style core-wrapper cell.
July 2009 598 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Related commands: insert_dft analyzed_test_points on page 600

insert_dft boundary_scan on page 607

insert_dft dfa_test_points on page 611

insert_dft jtag_macro on page 614

insert_dft lockup_element on page 617

insert_dft mbist on page 618

insert_dft ptam on page 622

insert_dft scan_power_gating on page 625

insert_dft shadow_logic on page 627

insert_dft test_point on page 631

insert_dft user_test_point on page 636

insert_dft wrapper_cell on page 638
July 2009 599 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft analyzed_test_points

insert_dft analyzed_test_points
{ {-input_tp_file file
| [-atpg [-atpg_effort {low|medium|high}]
[-atpg_options string]
[-build_model_options string]
[-build_testmode_options string]]
[-rrfa_effort {low|medium|high}]
[-rrfa_options string]
-directory string [-et_log file] [-verbose]
[-output_tp_file file] }

[-max_number_of_testpoints integer]
[-min_slack integer]
[-share_observation_flop integer]
[-library string]

| -shadow_logic [-minimum_shadow_logic_pins integer]
[-exclude_shadow_logic instance]...}

[-test_control test_signal]
[-test_clock_pin {port|pin}][design]

This command either

■ Automatically inserts shadow logic around blackboxes and timing models (by adding
observable flops in non-share mode)

■ Invokes Encounter Test to

❑ Perform Automatic Test Pattern Generator (ATPG) based testability analysis to
prune out the ATPG detectable faults (if the -atpg option is selected)

Note: Choosing the -atpg option does affect the runtime.

❑ Perform Random Resistance Fault Analysis (RRFA) based testability analysis and
test-point selection

❑ Insert selected test points that have minimal impact on the slack

Note: You need to have the Encounter Test software installed and your operating system
PATH environment variable must include the path to the Encounter Test software. For
more information on the exact product requirements, refer to Encounter Test Product
Requirements for Advanced Features in Design for Test in Encounter RTL Compiler.
July 2009 600 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Tip

The insert_dft analyzed_test_points command is recommended to be
run with the design in default timing mode. Ensure that the design is in default timing
mode before running this command by running the following commands:

set default_mode [filter default true [find / -mode *]] // to retrieve the
default timing mode

report timing -mode $default_mode

Options and Arguments

-atpg Runs ATPG-based testability analysis to prune the ATPG
detectable faults before running random-resistant fault analysis.

-atpg_effort {low | medium | high}

Specifies the effort to be used for the ATPG-based testability
analysis.

Default: low

-atpg_options string

Specifies extra options to run ATPG-based testability analysis in
a string.

For more information on these options, refer to the
create_tests command in the Command Line Reference
(of the Encounter Test documentation).

Note: This option is mutually exclusive with the
-input_tp_file option.

-build_model_options {option1=value option2=value}

Specifies extra options to apply when building the Encounter
Test model.

Note: For more information on these options, refer to the
build_model command in the Command Line Reference (of
the Encounter Test documentation).
July 2009 601 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-build_testmode_options {option1=value option2=value}

Specifies extra options to apply when building the test mode for
Encounter Test.

Note: For more information on these options, refer to the
build_testmode command in the Command Line
Reference (of the Encounter Test documentation).

design Specifies the name of the top-level design on which you want to
perform test analysis and test-point selection.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-directory string Specifies the working directory for Encounter Test.

Note: This option is only required when you run an RRFA-based
analysis

-et_log file Specifies the name of the Encounter Test log file. This file will
be generated in the specified directory.

Default: eta_from_rc.log

-exclude_shadow_logic {instance...}

Excludes automatic shadow logic insertion for the specified
instances. You can only specify instances of blackboxes or
timing models.

-input_tp_file file

Specifies the name of the file containing the test point locations.

The file is specified in Encounter Test format.

If you do not specify this option, the test point locations are read
from

■ The file specified with the -output_tp_file option if you
also specified the -rrfa option

■ The following file in the working directory if you did not
specify any file:
TB/testresults/TestPointInsertion.ASSUMESCAN.expt.

Note: This option is mutually exclusive with -atpg_options
and -rrfa_options.
July 2009 602 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-library string Specifies the list of Verilog structural library files. Refer to the
write_et-atpg -library option description for additional
information.

Note: This option is only required when you invoke this
command on a mapped netlist.

-max_number_of_testpoints integer

Specifies the number of test points to be inserted.

You must specify an integer value greater than 0 when
attempting to insert test points from a file using the
-input_tp_file option.

Default: 0

-min_slack integer Limits the insertion of a test point to those nodes that have the
specified minimum slack (in ps).

Default: 2000

-minimum_shadow_logic_pins integer

Limits shadow logic insertion to blackboxes or timing models that
have more pins (inputs and outputs) than the specified value.

Default: 10

-output_tp_file file

Specifies the output file generated by the RRFA-based analysis.

If you do not specify this option, the test point locations are
written to the following file in the working directory:
TB/testresults/TestPointInsertion.ASSUMESCAN.expt.

-rrfa_effort {low | medium | high}

Specifies the effort to be used for the RRFA-based analysis.

Default: low
July 2009 603 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example performs only RRFA-based testability analysis and creates a file
myfile with the suggested test point locations.

insert_dft analyzed_test_points -output_tp_file myfile

■ The following example inserts10 test points from the specified test point file myfile.

insert_dft analyzed_test_points -max_number_of_testpoints 10 \
-test_control tm -test_clock_pin clk -input_tp_file myfile

-rrfa_options string

Specifies the extra options to run RRFA-based testability
analysis in a string.

For more information on these options, refer to the
analyze_random_resistance command in the
Command Line Reference (of the Encounter Test
documentation).

Note: This option is mutually exclusive with the
-input_tp_file option.

-shadow_logic Automatically inserts registered (no_share) shadow logic
around blackboxes and timing models. Test points are added for
uni-directional pins only. Bidirectional pins and pins associated
with test clock objects are skipped.

-share_observation_flop integer

Specifies the number of observation test nodes that can share
an observation flop through an XOR tree.

Default: 1

-test_clock_pin {port | pin}

Specifies the test clock that drives the clock pin of the inserted
test points during test mode operation. Specify a port or pin that
drives the test clock.

-test_control test_signal

Specifies the test signal to use to control the test points.

Note: You must have specified the test signal using the
define_dft test_mode constraint.

-verbose Specifies to print test point details
July 2009 604 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ The following example performs ATPG-based testability analysis followed by
RRFA-based testability analysis. The command generates a report on the fault coverage
in the log file, and stores the suggested test point locations in the
TB/testresults/TestPointInsertion.ASSUMESCAN.expt file.

insert_dft analyzed_test_points -atpg

■ The following example performs ATPG-based testability analysis, RRFA-based testability
analysis, and inserts10 test points. During RRFA-based testability analysis, test point
locations are written to the TB/testresults/TestPointInsertion.ASSUMESCAN.expt file,
while during test point insertion, they are read from this file.

insert_dft analyzed_test_points -atpg -max_number_of_testpoints 10 \
-test_control tm -test_clock_pin clk

■ The following example automatically inserts shadow logic around all blackboxes.

rc:/> insert_dft analyzed_test_points -shadow_logic -test_control my_tm \
 -test_clock CK
WARNING: pin ’A_CNTR/RAM/CK’ is skipped from shadow DFT insertion since it is
driven by a clock

Total number of test points inserted: 76

Mapping shadow DFT logic...
..
Mapping DFT logic done.
WARNING: pin ’S_CORE/ID/LOCAL_RAM/CK’ is skipped from shadow DFT insertion
since it is is driven by a clock

WARNING: bidirectional pin ’S_CORE/ID/LOCAL_RAM/VI[31]’ skipped from shadow
DFT insertion.
...
...
...
Total number of test points inserted: 80

Mapping shadow DFT logic...
..
Mapping DFT logic done.
WARNING: pin ’S_CORE/IK/IDA/REAL_RAM/CK’ is
skipped from shadow DFT insertion since it is is driven by a clock
...
...
...
Total number of test points inserted: 34

Mapping shadow DFT logic...
..
Mapping DFT logic done.
July 2009 605 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Inserting DFT Shadow Logic in Design for Test in Encounter RTL Compiler

Using Encounter Test to Automatically Select and Insert Test Points in Design for Test in
Encounter RTL Compiler.

Affected by these constraints: define_dft test_mode on page 581

define_dft test_clock on page 577
July 2009 606 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft boundary_scan

insert_dft boundary_scan [-design design]
[-comp_enables_high port [port]...]
[-comp_enables_low port [port]...]
[-exclude_ports port [port]...]
[-functional_clocks port [port]...]
[-custom_cell_directory string]
[-inside instance]
[[-pinmap_file file] | [-physical]] [-power_on_reset pin|port]
[-tck port] [-tdi port] [-tdo port]
[-tms port] [-trst port]
[-dont_map] [-preview] [-preserve_tdo_connection]

Inserts boundary scan cells and the corresponding JTAG Macro (if it is not yet instantiated in
the design).

Note: You must have a license for the Encounter Test Architect tool to use this command.

Options and Arguments

-comp_enables_high (-comp_enables_low) port...

Specifies that the compliance value for the specified ports is
active high (low) during functional mode. The compliance
enable value is the value that a test port (test mode, shift
enable) is tied to during the functional mode of the chip.

The ports with their compliance value are added to a BSDL
COMPLIANCE_PATTERNS statement.

-custom_cell_directory string

Specifies the path to the directory that contains the files
describing the custom boundary cells. Each cell must be
described as a Verilog module in its own file. The basename of
the file must match the name of the cell in the module
description.

-design design Specifies the name of the design in which you want to insert
boundary scan logic. This option is required if you have loaded
multiple designs.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dont_map Prevents the inserted boundary scan logic from being mapped
to technology gates even if the design is already mapped.
July 2009 607 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-exclude_ports ports

Excludes the specified ports from being considered for
boundary scan logic insertion.

-functional_clocks ports

Specifies the ports that are seen as clocks for ATPG. These
ports include

■ async set and reset ports

■ clocks used in functional mode, but not in scan shift mode

-inside instance Specifies a hierarchical instance into which to insert the
JTAG_MACRO.

-physical Specifies to build the boundary scan register using physical
information to minimize its wire length.

The physical placement information is obtained from the DEF
file read in with the read_def command

Note: This option is mutually exclusive to the -pinmap option.

-pinmap_file file Specifies the name of the file containing the mapping between
the design ports and the actual package pins. This mapping is
also used to determine the boundary scan order.

Refer to Pinmap File Format for more information.

Note: This option is mutually exclusive to the -physical
option.

-power_on_reset Specifies the power-on-reset pin which will be connected to the
JTAG_POR input pin on the JTAG_Macro subdesign. This
connection is made when the boundary scan logic is inserted in
the design.
July 2009 608 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-preserve_tdo_connection

Preserves the existing net connection to from-core and tristate
enable pins of the TDO pad cell.

If you do not specify this option, the existing net connections will
be broken and new net connections will be made during
boundary scan insertion from the JTAG_TDO and
JTAG_ENABLE_TDO pins to the from-core and tristate enable
pins of the TDO pad cell, respectively.

Note: If you preserve the TDO connections, such that the net is
driven by user logic other than a pre-instantiated JTAG macro,
boundary scan insertion will insert a JTAG macro and leave its
JTAG_TDO pin unconnected in the netlist.

-preview Shows the potential changes, without making any modifications
to the netlist.

-tck port Specifies the port name of the driver for the test clock of the
JTAG macro. Specify this option when the existing JTAG port
does not use the standard name.

Default: TCK

-tdi port Specifies the port name of the driver for the test data (scan)
input of the JTAG macro. Specify this option when the existing
JTAG port does not use the standard name.

Default: TDI

-tdo port Specifies the port name of the test data (scan) output of the
JTAG macro. Specify this option when the existing JTAG port
does not use the standard name.

Note: An existing TDO port must have a tristate I/O pad.

Default: TDO

-tms port Specifies the port name of the test mode select input of the
JTAG macro. Specify this option when the existing JTAG port
does not use the standard name.

Default: TMS

-trst port Specifies the port name of the (asynchronous) test reset of the
JTAG macro. Specify this option when the existing JTAG port
does not use the standard name.

Default: TRST
July 2009 609 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Inserting Boundary Scan Logic in Design for Test in Encounter RTL Compiler

Related constraints: define_dft jtag_instruction_register on page 547

define_dft jtag_instruction_register on page 547

define_dft shift_enable on page 572

define_dft test_clock on page 577

define_dft test_mode on page 581

Affects these commands: compress_scan_chains on page 508

insert_dft mbist on page 618

insert_dft ptam on page 622

Sets these attributes: boundary_type

Jdft_jtag_macro_exists

JTAG Port Attributes
July 2009 610 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft dfa_test_points

insert_dft dfa_test_points -input_tp_file string
[-max_number_of_testpoints integer]
[-min_slack integer]
[-fault_threshold integer]
[-test_control test_signal]
-test_clock_pin {pin|port}
-share_observation_flop integer]
[-verbose] [design]

This command will insert selected test points identified by Encounter Test Deterministic Fault
Analysis. Test points can be inserted that have minimal impact on the slack and which target
a minimum specified fault count.

Tip

The insert_dft dfa_test_points command is recommended to be run with
the design in default timing mode. Ensure that the design is in default timing mode
before running this command by running the following commands:

set default_mode [filter default true [find / -mode *]] // to retrieve the
default timing mode

report timing -mode $default_mode

Options and Arguments

design Specifies the name of the top-level design on which you want to
perform test analysis and test-point selection.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-fault_threshold integer

Specifies to insert only those test point locations whose fault
count is greater than or equal to the number specified.

Default: 0

-input_tp_file file

Specifies the name of the file containing the test point locations.

The file is specified in Encounter Test format.
July 2009 611 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example inserts the first 500 test points whose fault count is greater than
or equal to 3 from the specified test point file myfile.

insert_dft dfa_test_points -max_number_of_testpoints 500 \
-fault_threshold 3 -test_control tm -test_clock_pin clk -input_tp_file myfile

■ The following example inserts all test points for test nodes with a minimum slack of 3ps,
and will share 3 observation test nodes through an XOR tree from the specified test point
file myfile.

insert_dft dfa_test_points -min_slack 3000 -share_observation_flop 3 \
-test_control tm -test_clock_pin clk -input_tp_file myfile

-max_number_of_testpoints integer

Specifies the number of test points to be inserted.

If this option is not specified, then all the test points from the file
specified with the -input_tp_file option will be processed
for insertion.

Default: All

-min_slack integer Limits the insertion of a test point to those nodes that have the
specified minimum slack (in ps).

Default: 2000

-share_observation_flop integer

Specifies the number of observation test nodes that can share
an observation flop through an XOR tree.

Default: 1

-test_clock_pin {port | pin}

Specifies the test clock that drives the clock pin of the inserted
test points during test mode operation. Specify a port or pin that
drives the test clock.

-test_control test_signal

Specifies the test signal to use to control the test points.

Note: You must have specified the test signal using the
define_dft test_mode constraint.

-verbose Specifies to print test point details
July 2009 612 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Using Encounter Test to Perform a Deterministic Fault Analysis on a Scan Connected Netlist
in Design for Test in Encounter RTL Compiler

Affected by these constraints: define_dft test_clock on page 577

define_dft test_mode on page 581
July 2009 613 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft jtag_macro

insert_dft jtag_macro [-design design]
[-dont_map] [-inside instance] [-insert_without_pad_logic]
[-preserve_tdo_connection] [-create_ports]
[-tck port] [-tdi port] [-tdo port]
[-tms port] [-trst port] [-power_on_reset pin|port]
[-boundary_type IEEE_11491|IEEE_11496]

Inserts a JTAG Macro (if one has not already been defined).

Note: You must have a license for the Encounter Test Architect tool to use this command.

Options and Arguments

-boundary_type {IEEE_11491 | IEEE_11496}

Specifies the boundary scan architecture for which to generate
the inserted JTAG Macro.

Default: IEEE_11491

-create_ports Specifies whether to create the TAP ports if they do not exist.

If you do not specify the TAP signals using the -tdi, -tdo,
-tms, -trst, and -tck options, the ports can be created and
named as prefix_tdi, prefix_tdo, prefix_tms,
prefix_trst, and prefix_tck, where prefix is the
value of the root-level dft_prefix attribute. An additional
port, prefix_tdo_enable will be created. This port is the
enable signal used to control the tristate pin of the top-level
TDO pad. This option must be used in conjuction with the
-insert_without_pad_logic option.

-design design Specifies the name of the design in which you want to insert the
JTAG Macro. This option is required if you have loaded multiple
designs.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dont_map Prevents the inserted JTAG Macro from being mapped to
technology gates even if the design is already mapped.

-inside instance Specifies a hierarchical instance into which to insert the JTAG
Macro.
July 2009 614 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-insert_without_pad_logic

Specifies whether to insert the JTAG Macro into a design that
does not have pad logic

-power_on_reset {pin | port}

Specifies the power-on-reset pin name.

-preserve_tdo_connection

Preserves the existing net connection to from-core and tristate
enable pins of the TDO pad cell.

If you do not specify this option, the existing net connections will
be broken and new net connections will be made from the JTAG
Macro JTAG_TDO and JTAG_ENABLE_TDO pins to the
from-core and tristate enable pins of the TDO pad cell,
respectively.

Note: If you preserve the TDO connections, such that the net is
driven by user logic other than the JTAG Macro, the JTAG
MacroJTAG_TDO pin will be left unconnected in the netlist.

-tck port Specifies the port name of the driver for the test clock of the
JTAG Macro. Specify this option when the existing JTAG port
does not use the standard name.

Default: TCK

-tdi port Specifies the port name of the driver for the test data (scan)
input of the JTAG Macro. Specify this option when the existing
JTAG port does not use the standard name.

Default: TDI

-tdo port Specifies the port name of the test data (scan) output of the
JTAG Macro. Specify this option when the existing JTAG port
does not use the standard name.

Note: An existing TDO port must have a tristate I/O pad.

Default: TDO

-tms port Specifies the port name of the test mode select input of the
JTAG Macro. Specify this option when the existing JTAG port
does not use the standard name.

Default: TMS
July 2009 615 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example inserts the JTAG Macro into the top-level netlist, creates TAP
ports on the top-level netlist, and preserves the existing net connection to from-core and
tristate enable pins of the TDO pad cell.

insert_dft jtag_macro -create_tap_ports design=design_name \
 -preseve_tdo_commection -insert_without_pad_logic

■ The following example inserts the JTAG Macro into a specified hierarchical instance and
connects it to TAP ports without pad logic.

insert_dft jtag_macro -inside instance_level design=design_name \
 -insert_without_pad_logic

Related Information

Inserting JTAG Macro Logic in Design for Test in Encounter RTL Compiler

-trst port Specifies the port name of the (asynchronous) test reset of the
JTAG Macro. Specify this option when the existing JTAG port
does not use the standard name.

Default: TRST

Related constraints: define_dft jtag_instruction on page 543

define_dft jtag_instruction_register on page 547

Affects these commands: compress_scan_chains on page 508

insert_dft mbist on page 618

insert_dft ptam on page 622

Sets this attribute: JTAG_PORT Attributes

Jdft_jtag_macro_exists
July 2009 616 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft lockup_element

insert_dft lockup_element
actual_scan_chain [actual_scan_chain]...
[-terminal_lockup]

Inserts a lockup element as needed in the specified analyzed scan chains.

Analyzed scan chains are chains whose connectivity is traced by the RC-DFT engine when
you define them using the -analyze option of the define_dft scan_chain command.

Use this command on mapped netlists whose existing (configured) scan chains were either
created by hand or using a third-party DFT insertion tool.

Tip

The RC-DFT engine determines the type of lockup element to be inserted from the
value of the dft_lockup_element_type design attribute.

Options and Arguments

Example

The following example inserts lockup elements as needed in all analyzed scan chains.

insert_dft lockup_element [filter analyzed true \
[find /designs/design/dft -actual_scan_chain *]]

Related Information

Analyzing Chains in a Scan-Connected Netlist in Design for Test in Encounter RTL
Compiler

actual_scan_chain Specifies the name of an analyzed scan chain.

-terminal_lockup Allows to add a terminal lockup element to the specified
analyzed scan chains.

Affected by this attribute: dft_lockup_element_type
July 2009 617 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft mbist

insert_dft mbist
[-config_file config_file] [-connect_to_jtag] [-dont_create_jtag_ports]
[-test_control test_signal] [-interface_file_dirs string]
[-dont map] [-dont_check_dft_rules] [diagnose_mbist string]
[-run_mbist string] [raa_mbist string] [repair_mbist string]
[-dont_check_mbist_rules] [-read_mbist string]
[-continue_mbist string] [-diagnose_rombist string]
[-instance string] [-module_prefix string] [-directory dir_path]
[-preview]

Inserts Memory Built-In-Self-Test (MBIST) logic to test targeted memories in the design.

Options and Arguments

-config_file Specifies the file that contains the user-defined configuration
parameters which selects the MBIST features and controls for
the insertion of the test logic for targeted memories.

This option can be used in conjunction with the
-interface_file_dirs option as part of a bottom-up flow.

-connect_to_jtag Connects tap pins to the inserted MBIST logic.

-continue_mbist string

Specifies the CONTINUE_MBIST instruction as configured in
the IEEE 1149.x information hierarchy for the design.
Default: CONTINUE_MBIST

-diagnose_mbist string

Specifies the DIAGNOSE_MBIST instruction as configured in
the IEEE 1149.x information hierarchy for the design.
Default: DIAGNOSE_MBIST

-diagnose_rombist string

Specifies the DIAGNOSE_ROMBIST instruction as configured in
the IEEE 1149.x information hierarchy for the design.
Default: DIAGNOSE_ROMBIST
July 2009 618 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-directory directory_path

Specifies the directory to which the interface files are written for
subsequent input to other commands, including insert_dft
mbist in support of bottom-up design flows.
Default: current_working_directory/mbist

-dont_check_dft_rules

Prevents the DFT rules from being automatically checked after
MBIST insertion.

-dont_check_mbist_rules

Prevents the MBUST rules from being automatically checked
after MBIST insertion.

-dont_create_jtag_ports

Prevents creation of MBIST control ports for the TAP at the top
level instance specified by the -instance option.

-dont_map Prevents the inserted logic from being mapped even if the
design is already mapped to the target library.

-instance string Specifies the name of the top level instance.

-interface_file_dirs

Specifies a list of interface file directories where MBIST pattern
control files are written from a block level execution of this
command. In support of bottom-up design flows, these files
represent the block being inserted into the larger design
processed in this execution of the command. Separate the
directory names with blank spaces.

-module_prefix string

Specifies an additional character string to append to the default
prefix tem. The string is placed on all modules created and
inserted by the insert_dft mbist command.

-preview Specifies to create a configuration file template without
performing insertion. The template file can be used to review
configuration file content or as a basis to further edit content.

Note: This option cannot be used with the -config_file
option.
July 2009 619 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command inserts the MBIST logic as described in the configuration file, by
default, to the design module at the highest level of hierarchy of the design.

insert_dft mbist -config_file ../et_inputs/my_configuration.txt

■ The following command inserts the MBIST logic as described in the configuration file,
into the design module chip_top of the design.

insert_dft mbist -config_file ./et_inputs/my_configuration.txt\
-design chip_top

■ The following command inserts the MBIST logic as described in the configuration file,
into design module chip_top placing test mode initialization files and pin assign files
into a specified directory.

insert_dft mbist -config_file ../et_inputs/my_configuration.txt \
-design chip_top \
-directory ./my_et_files

-raa_mbist string Specifies the RAA_MBIST instruction as configured in the IEEE
1149.x information hierarchy for the design.
Default: RAA_MBIST

-read_mbist string Specifies the READ_MBIST instruction as configured in the
IEEE 1149.x information hierarchy for the design.
Default: READ_MBIST

-repair_mbist string

Specifies the REPAIR_MBIST instruction as configured in the
IEEE 1149.x information hierarchy for the design.
Default: REPAIR_MBIST

-run_mbist string Specifies the RUN_MBIST instruction as configured in the IEEE
1149.x information hierarchy for the design.
Default: RUN_MBIST

-test_control test_signal

Designates a test-control test signal, held at a constant value
during a test session. This signal must be at a value of zero
during memory BIST operations.
July 2009 620 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Inserting Memory Built-In-Self-Test Logic in Design for Test in Encounter RTL Compiler

Encounter Test Product Requirements for Advanced Features in Design for Test in
Encounter RTL Compiler

Affected by these constraints: define_dft test_mode on page 581

Affects these commands: insert_dft boundary_scan on page 607

insert_dft jtag_macro on page 614

Related commands: write_et_atpg on page 669

write_et_bsv on page 674

write_et_mbist on page 682

write_et_rrfa on page 687
July 2009 621 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft ptam

insert_dft ptam
-power_test_enable {pin|port}
[-power_test_enable_active {low|high}]
[-shift_enable test_signal]
[-instruction string]
[-connect_to_jtag]
[-directory string] [-preview] [-dont_map] [-dont_check_dft_rules]

Inserts Power Test Access Mechanism (PTAM) logic to facilitate chip power management
during test.

Note: Some files may require customization according to the setup requirements.

Options and Arguments

-connect_to_jtag

Connects the PTAM logic to the JTAG macro instance. The
JTAG macro instance must first be created using either the
insert_dft boundary_scan command or the
insert_dft jtag_macro command. If
-connect_to_jtag is not specified and a JTAG macro
instance is detected in the current session, a warning message
will be issued to notify of the JTAG macro instance’s existence,
otherwise there will be no attempt to connect to a JTAG macro
instance.

-directory string Specifies the directory to which the mode initialization and pin
assign files are written.

Default: current_working_directory/ptam

-dont_check_dft_rules

Prevents the DFT rules from being automatically checked after
PTAM insertion.

-dont_map Prevents the inserted logic from being mapped even if the
design is already mapped to the target library.

-instruction string

Specifies the name of the instruction which must be loaded into
the IEEE 1149.x TAP controller instruction register to access
the PTAM test data register.
July 2009 622 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command inserts the PTAM logic into design chip_top.

insert dft ptam -instruction PTAM -power_test_enable /chip_top/PwrTe \
-directory ${workdir}/testmode_data

-power_test_enable {pin | port}

Identifies the power-test-enable pin or port. Asserting this pin to
an active state will enable the PTAM logic to override the
design’s power manager control pins. This serves as a master
mode control signal.

Note: This cannot be the same pin or port identified by
define_dft test_mode that control pin sharing if the PTAM
I/O are shared

-power_test_enable_active {high | low}

Specifies the active value for the power-test-enable pin or port.

Default: high

-preview Shows the potential changes without making any modifications
to the netlist.

-shift_enable test_signal

Designates a shift-enable test signal used to override the PTAM
gating logic of the power manager output control signals during
scan test.

If you omit this option, the default shift-enable signal specified
using define_dft shift_enable is used as selected by its
default_shift_enable attribute.
July 2009 623 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Inserting Power Test Access Mechanism (PTAM) Logic in Design for Test in Encounter
RTL Compiler

Encounter Test Product Requirements for Advanced Features in Design for Test in
Encounter RTL Compiler

Affected by these commands: read_cpf on page 760

define_dft shift_enable on page 572

create_isolation_rule in the Common Power Format
Language Reference

create_power_domain in the Common Power Format
Language Reference

create_state_retention_rule in the Common Power
Format Language Reference
July 2009 624 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft scan_power_gating

insert_dft scan_power_gating
-max_number_of_testpoints integer
[-min_slack integer] -test_control test_signal | [-preview]
[-report_virtual_scan_power integer... [-preview]]
[-dont_check_dft_rules] [-input_tp_file file]
[-output_tp_file file] [design]

Inserts gating logic at selected flop outputs to minimize switching power during scan shift.
This command must be run prior to building the actual scan chains in the design.

design Specifies the name of the top-level design on which to perform
test point insertion.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dont_check_dft_rules

Prevents the DFT rules from being automatically checked after
inserting scan power gating.

-input_tp_file file

Specifies the name of the file containing the test point locations.
The file is specified in Encounter Test format.

If you do not specify this option, the test point locations are read
from the following:

■ The file specified with the -output_tp_file option

■ The following file in the working directory if you did not
specify any file:
TB/testresults/TestPointInsertion.ASSUMESCAN.expt.

-max_number_of_testpoints integer

Specifies the maximum number of test points to be inserted.
Selection is based of the specified number of identified test
points and the weight of the point resulting from logic cone
analysis.The weight indicates the probability of a higher power
level if toggling occurs.

-min_slack integer Limits the insertion of a test point to those nodes that have the
specified minimum slack (in ps).

Default: 2000
July 2009 625 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Gating Functional Paths to Reduce Scan Shift Power in Design for Test in Encounter RTL
Compiler.

-output_tp_file file

Specifies the name of the generated output file containing the
recommended test points.

If you do not specify this option, the test point locations are
written to the following file in the working directory:
TB/testresults/TestPointInsertion.ASSUMESCAN.expt.

-preview Reports the test points to be added, without modifying the
design.

-report_virtual_scan_power {integer...}

Performs a virtual insertion of the test points into the design
and measures their impact on the reduction of scan power.
Specify an integer value in MHZ for the scan clock frequency
and/or flop-toggle frequency to use in the measurement. If a
flop frequency is not specified, its value defaults to half the
value of the scan clock frequency.

Note: This option is only valid with the -preview option.

-test_control test_signal

Specifies the test signal to enable the testpoint. This option is
not required when the command is run with the -preview
option.

Note: You must have specified the test signal using either the
define_dft shift_enable or define_dft test_mode
-scan_shift constraint.

Affected by these constraints: define_dft shift_enable on page 572

define_dft test_mode on page 581
July 2009 626 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft shadow_logic

insert_dft shadow_logic -around instances
[-test_control test_signal]
{-mode bypass
|-mode no_share -test_clock_pin {port|pin}

[-rise |-fall]
|-mode share -test_clock_pin {port|pin}

[-fall |-rise] }
[-exclude pins | -only pins] [-group pins]...
[-balance] [-dont_map] [-preview]

Allows to insert two basic types of DFT shadow logic around a particular instance: bypass
and scannable logic. Each shadow logic flip-flop can implement one control point and one
observation point at the same time.

If you want to share observation and control points, either by setting -mode to share or
bypass, the following sharing criteria are observed:

■ If you specify -group, the specified inputs and outputs are grouped together as
indicated

■ For the remaining inputs and outputs that are not listed with -group, the first input will
share the flip-flop with or be connected to the first output, the second input with the
second output, and so on. The order is that specified in the HDL interface declaration.

Note: Test points are added for uni-directional pins only. Bidirectional pins and pins
associated with test clock objects are skipped.

Options and Arguments

-around instances Specifies the instances around which the DFT shadow logic
must be inserted. Specify a hierarchical instance name.

-balance Groups unmatched input and output pins to have a balanced
number of groups.

-dont_map Prevents the inserted logic from being mapped even if the
design is already mapped to the target library

-exclude pins Prevents the specified pins from being considered for shadow
logic insertion.
July 2009 627 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-group pins Specifies the pins to group when also using -mode share or
-mode bypass. Each group can have multiple input pins and
multiple output pins. Format the groups as follows:

{inputi ... outputj...}

Separate the pins by spaces. If you have more than one group,
you must specify multiple -group options.

Note: If -mode is set to bypass, each group must have at least
one input and one output. Otherwise, the number of inputs or
outputs can be equal or larger than zero.

-mode Specifies the type of shadow logic to insert.

bypass Implements bypass logic. If you specify this
option, you must balance the number of
inputs and outputs.

no_share Inserts one scannable observation test point
per input and one scannable control test
point per output.

share Pairs each input with an output and uses one
scannable control and observation test point
for each pair. If there are a different number
of inputs and outputs, uses one scannable
observe (or control) test point is used for
each remaining input (or output).

-only pins Restricts the pins to be considered for shadow logic insertion to
the specified ones.

-preview Shows the potential changes, without making any modifications
to the netlist.

[-rise|-fall] Specifies the edge of the test clock that is active during test
mode operation. These options are only valid in conjunction
with -test_clock_pin.

Default: -rise

-test_clock_pin {port | pin}

Specifies the test clock that drives the clock pin of the shadow
flip-flops. You can specify a port or pin that drives the test clock.
July 2009 628 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

In the following examples, the logic before the ATPG-untestable module is not observable and
the logic after it is not controllable. Following is the Verilog input code for the ATPG-untestable
module and its instantiation:

module blackbox (i1,i2, o1,o2,o3)
input i1,i2;
output o1,o2,o3;

...
blackbox U1 (.i1(n_1), .i2(n_2), .o1(n_3), .o2(n_4), .o3(n_5));
...

■ Using the following examples, bypass logic is used to make the two inputs observable
and the three outputs controllable. The first command pairs input i1 to output o1, and
input i2 to output o3 (skipping o2).The second command pairs input i1 and output o2.

define_dft test_mode -name my_TM -active high TM
insert_dft shadow_logic -around U1 -test_control my_TM -mode bypass \
-exclude o2
insert_dft shadow_logic -around U1 -test_control my_TM -mode bypass \
-only {i1 o2}

■ The following example uses scannable test points and shares these test points as control
and observation points.

define_dft test_mode -name my_TM -active high TM
insert_dft shadow_logic -around U1 -test_control my_TM -test_clock_pin CK \
-mode share

■ The following example uses scannable test points but does not share these test points
for control and observation points.

define_dft test_mode -name my_TM -active high TM
insert_dft shadow_logic -around U1 -test_control my_TM -test_clock CK \
-mode no_share

-test_control test_signal

Specifies the test signal to use to control DFT logic (the
multiplexers after the controlling points).

Note: You must have specified the test signal using either the
define_dft shift_enable or define_dft test_mode
constraint.
July 2009 629 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ The following example uses scannable test points, shares these test points for control
and observation points, and controls by grouping which pins share a common test point.
More specifically, i1 and o2 share a test point, and i2 and o1. In addition, no control
point is inserted for the net driven by U1/o3.

define_dft test_mode -name my_TM -active high TM
insert_dft shadow_logic -around U1 -test_control my_TM -test_clock CK \
-exclude o3 -mode share -group {i1 o2} -group {i2 o1}

Related Information

Inserting DFT Shadow Logic in Design for Test in Encounter RTL Compiler

Affects these commands: check_dft_rules on page 501

report dft_registers on page 648

Related constraints: define_dft shift_enable on page 572

define_dft test_clock on page 577

define_dft test_mode on page 581
July 2009 630 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft test_point

insert_dft test_point -location {pin|port}...
[-test_control test_signal]
-type { control_0 | control_1 } |

{{async_0 | async_1 | async_any
| control_node -node {pin|port}
| control_observe_0 | control_observe_1
| control_observe_node -node {pin|port}
| control_scan
| observe_scan [-max_observe_share integer]
| scan | sync_0 | sync_1 | sync_any }
-test_clock_pin {pin|port} [-rise|-fall] }

[-dont_map]

Allows you to manually specify a control or observation test point to be added to the design.
Control test points always require the specification of a test-mode signal. Test points that use
scannable flip-flops to observe or control a node always require a test-clock signal.

For all of the scannable test points, you need to run check_dft_rules after the test point
is inserted.

The command returns the path name of the inserted test point when it is a flip-flop.

Important

You can only specify multiple locations when you request to insert a test point of type
observe_scan. In this case, the tool builds a balanced XOR-tree with all the
specified location pins. Additionally, you can control the maximum number of pin
locations to be observed by the same observation flop by specifying the
-max_observe_share option. If a test-control signal is also specified, the tool
builds the XOR-tree after each input is AND-ed or OR-ed with the test-control signal.
This prevents switching along the XOR-tree when not it test mode. If the test control
is active high, gating happens by AND-ing, otherwise by OR-ing. The output of the
last XOR-gate is fed to the D input of the observation flip-flop.
July 2009 631 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Options and Arguments

-dont_map Prevents the inserted logic from being mapped even if the
design is already mapped.

-location {port | pin}

Specifies the location of the control point or observation point.
Specify an existing hierarchical pin name or a top-level port. For
observation test points, the pin can be an input or output pin.
For control test points, the result is different depending on the
direction of the location. See the Examples on page 634.

Note: You can only specify multiple locations for a test point of
type observe_scan.

Note: If you specify a bidirectional pin, no logic will be inserted
unless you specify the direction of the pin.

-max_observe_share integer

Specify the maximum number of locations to be shared for an
observe test point.

Note: This option applies only when you set -type to
observe_scan.

-node {pin | port} Specifies the pin or port to insert when -type is set to
control_node or control_observe_node and when the
signal specified by -test_control is active.

[-rise | -fall] Specifies the edge of the specified test clock that is active
during test mode operation. These options are only valid in
conjunction with -test_clock.

Note: You must use the same clock edge when inserting a
control flip-flop and an observation flip-flop.

Default: -rise

-test_clock_pin {port | pin}

Specifies the test clock that drives the clock pin of the inserted
flip-flops during test mode operation. You can specify a port or
pin that drives the test clock.

 This option is required for all type point types set using the
-type option except those of type control_0 or control_1.
July 2009 632 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-test_control test_signal

Specifies the test signal to use to control or observe the
specified location point.

Note: You must have specified the test signal using either the
define_dft shift_enable or define_dft test_mode
constraint.

Note: Test points of type observe_scan do not require a test
signal.

-type Specifies the type of test point to insert at the specified location
when the signal specified by -test_control is active.
Possible values are:

async_0 Inserts an asynchronous control test
point that forces the control point to the
value 0.

async_1 Inserts an asynchronous control test
point that forces the control point to the
value 1.

async_any Inserts an asynchronous control test
point that forces the control point to
take either the original value or the
inverted value.

control_0 Inserts a constant value 0.

control_1 Inserts a constant value 1.

control_node Inserts an arbitrary node.

control_observe_0 Inserts a control and an observation
point. The control point is forced to the
value 0.

control_observe_1 Inserts a control and an observation
point. The control point is forced to the
value 1.

control_observe_node Inserts a control and an observation
point. The control point is forced to the
value of the node specified by -node.
July 2009 633 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following example inserts a scannable observation test point, using CLK to drive:

insert_dft test_point -location X/out -test_clock_pin CLK -type observe_scan

■ The following example inserts a control-1 and scannable observation point:

insert_dft test_point -location X/out -test_control TM \
-test_clock_pin CLK -type control_observe_1

control_scan Inserts a flip-flop to force a particular
value at the specified location during
test mode operation. The flip-flop must
be remapped to a scan flop before
connecting it to a scan chain later on.

Note: This option requires you to
specify the -test_clock_pin
option.

observe_scan Inserts a flip-flop to observe the
specified location. The flip-flop must be
remapped to a scan flip-flop before
connecting it to a scan chain later on.

This option requires you to specify the
-test_clock_pin option.

scan Inserts a scannable control and
observation test point.

Note: This option requires you to
specify the -test_clock_pin
option.

sync_0 Inserts a synchronous control test
point that forces the control point to the
value 0.

sync_1 Inserts a synchronous control test
point that forces the control point to the
value 1.

sync_any Inserts a synchronous control test
point that forces the control point to
take either the original value or the
inverted value.
July 2009 634 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ The following example inserts a scannable control point:

insert_dft test_point -location X/out -test_control TM \
-test_clock_pin CLK -type control_scan

■ The following example inserts a scannable control and observation test point:

insert_dft test_point -location X/out -test_control TM \
-test_clock_pin CLK -type scan

■ The following example inserts an async control-0 test point at hierarchical pin X/out:

insert_dft test_point -location X/out -test_control TM -type async_0 \
-test_clock_pin CK -fall.

■ The following example inserts a synchronous control test point that forces the control
point to the value 1 at hierarchical pin X/out:

insert_dft test_point -location X/out -test_control TM -type sync_1 \
-test_clock_pin CK -fall.

■ The following example inserts two observation test points, one for pin1, pin2 and
pin3, and the other for pin4, pin5 and pin6.

insert_dft test_point -type observe_scan -max_observe_share 3 \
-location pin1 pin2 pin3 pin4 pin5 pin6

Related Information

Inserting a Control and Observation Test Point in Design for Test in Encounter RTL
Compiler.

Affects these commands: check_dft_rules on page 501

connect_scan_chains on page 523

synthesize on page 294

Related constraints: define_dft shift_enable on page 572

define_dft test_clock on page 577

define_dft test_mode on page 581

Related attributes: Test Clock Attributes

Test Signal Attributes
July 2009 635 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft user_test_point

insert_dft user_test_point -location {pin|port|subport}
-cell {design|subdesign|libcell}
{-cfi {pin|port}] | -no_cfi} [-cfo {pin|port}]
 -connect string [-connect string]...
-name name

Inserts a user-defined test point at the specified location, and hooks it up to the specified pins.

Options and Arguments

Examples

■ The following example inserts design MyUserTI in design top at the in1[2] input port.
Port MyCFI will be connected to input port in1[2].

insert_dft user_test_point -location top/in1[2] -cell /designs/MyUserTI \
-cfi MyCFI -cfo MyCFO -connect {MyShiftEn se} -connect {MyWRCK wck}

-cell {design|subdesign|libcell}

Specifies the module or library cell to instantiate. The module
can be loaded as a parallel design, or as a subdesign.

-cfi {pin | port} Specifies the cell functional input (CFI) pin or port name.

-cfo {pin | port} Specifies the cell functional output (CFO) pin or port name.

-connect string Specifies a string consisting of a cell pin and the corresponding
source-signal pin to which the cell pin must be connected.

This string has the following format:

{cell_pin source_pin}

Use this option to specify most connections to the cell, except
for the connections to the CFI and CFO pins.

-location {pin|port|subport}

Specifies a pin, port or subport that identifies where the test
point must be inserted.

-name name Specifies the instance name to be given to the user-defined test
point.

-no_cfi Specifies that the user test point cell has no CFI pin.
July 2009 636 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Inserting a User-Defined Control and Observation Test Point in Design for Test in
Encounter RTL Compiler.

Affects these commands: check_dft_rules on page 501

connect_scan_chains on page 523

synthesize on page 294
July 2009 637 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
insert_dft wrapper_cell

insert_dft wrapper_cell -location pin_list
[-floating_location_ok]
[-skipped_locations_variable Tcl_variable]
[-shared_through {buffer|combinational}]
[-wck pin] -wsen pin
{-decoded_select_cfi pin
|-wint pin -wext pin [-wcap pin]}
[-guard {0|1} -wig pin -wog pin] [-name segment_prefix]

Selects a built-in IEEE 1500 standard wrapper cell based on the given specifications, inserts
it at the specified location, and hooks it up to the specified control signals.

The cell logic is automatically identified as a wrapper-cell segment. You can use the segment
into another segment or chain.

The command returns the directory path to the scan_segment objects that it creates. If
multiple locations are specified, the command returns multiple segments. You can find the
objects created by the insert_dft wrapper_cell in:

/designs/top_design/dft/scan_segments

Important

Any segment inserted by this command cannot be removed.

Options and Arguments

-decoded_select_cfi pin

Specifies the source pin name of the decoded control logic for
the select-cfi signal.

Use this option to connect an already decoded signal.
Otherwise, control decoder logic may have to be inserted for
each cell, and extra control wires will have to be hooked up to
each wrapper cell.

-floating_location_ok

Specifies to insert a wrapper cell even if the specified pin
(location) is floating.

-guard {0|1} Specifies the guard (safe_ value) out of a cell. The safe value
prevents testing of one block from interfering with another block.

If this option is not specified, no guard value will be included.
July 2009 638 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-location pin_list

Specifies one or more pins that identify where the wrapper cell
must be inserted.

Use the RC pin name to identify the input or output of a
blackbox instance.

-name segment_prefix

Specifies the segment name prefix.

If you specified a single location pin, and there is no name
conflict, the segment name will correspond to the specified
prefix, otherwise a unique name will be generated for each
segment that is derived from the specified prefix.

-shared_through {buffer | combinational}

Specifies whether the functional flop in the wrapper cell must be
shared. If a shared cell is inserted, the command traces through
the logic to identify a shareable functional flop (or flops).

A functional flop in a wrapper cell can be shared if

1. It is directly connected to the core pin through

❑ a series of buffers (buffer)

❑ complex combination logic (combinational)

2. It is mapped to a scan flip-flop for DFT purposes.

3. The clock pin to the flop is controllable; that is, the flip-flop
must pass the DFT rules.

4. The flop has no connected set, reset, or enable pin.

5. The functional flop is not already shared with another
wrapper cell.

Note: If you use this option and the cell cannot be shared with
the functional flop, the RC-DFT engine gives a message and
inserts a dedicated cell if you specified the -wck option,
otherwise an error message is given.

-skipped_locations_variable Tcl_variable

Writes the locations where no wrapper cells can be inserted to
the specified Tcl variable. If you omit this option, the command
fails if you have any such locations specified.
July 2009 639 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples
insert_dft wrapper_cell -location /top/core/in[0] -wsen /top/SEN \
-wint /top/WINT -wck /top/clk1

Related Information

Advanced DFT Topics in the Design for Test in Encounter RTL Compiler manual.

-wcap driver Specifies the capture control source pin or port name.

Note: This option is ignored if you specified the
-decoded_select_cfi option.

-wck driver Specifies the test clock source pin or port name. This pin is
required if you want to insert a dedicated wrapper cell.

-wig driver Specifies the in-guard control source pin or port name.

-wint driver Specifies the control source pin or port name for inward facing
test mode.

Note: This option is ignored if you specified the
-decoded_select_cfi option.

-wext driver Specifies the control source pin or port name for outward facing
test mode.

Note: This option is ignored if you specified the
-decoded_select_cfi option.

-wog driver Specifies the out-guard control source pin or port name.

-wsen driver Specifies the shift-enable source pin or port name.

Affects these commands: connect_scan_chains on page 523

Sets this attribute: core_wrapper
July 2009 640 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
read_dft_abstract_model

read_dft_abstract_model
[-ctl] [-segment_prefix string]
[-instance instance]
[-assume_connected_shift_enable] file

Reads in the scan abstract model of a design that is used as a core or IP block in the current
design. The scan abstract model defines the scan chain architecture of the subdesign and is
used as scan chain segments in the configuration of the top-level scan chains of the current
design.

The extracted scan chain information is stored in:

/designs/top_design/dft/scan_segments

Options and Arguments

-assume_connected_shift_enable

Indicates that the shift-enable port specified in the DFT abstract
model for the block being read in is already connected to logic
external to this block. Therefore the scan configuration engine
does not need to modify the existing connection.

Note: If you specify this option and the shift-enable pin is not
connected, the scan configuration engine will not make the
connection.

If you do not specify this option, the scan configuration engine
will make the connection to the shift-enable port specified in the
DFT abstract model. If a connection already existed, it will be
first removed.

-ctl Specifies that the scan abstract model was written using the
Core Test Language (CTL) format (IEEE format P1450.6).

If you omit this option, the scan abstract model is assumed to
consist of a list of define_dft abstract_segment
commands, one scan segment per scan chain in the subdesign.

file Specifies the file that contains the abstract model description.
July 2009 641 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

-instance instance Applies the scan abstract model to the specified hierarchical
instance.

If you read in an abstract model written in native RC format, this
instance must be an instantiation of the subdesign specified
through the -module option in the abstract model.

If you read in an abstract model written in CTL format, this
instance must be an instantiation of the subdesign specified in
the Environment section of the CTL file.

If this option is omitted, the scan abstract model is applied to all
instances of the subdesign.

-segment_prefix string

Adds the specified string as a prefix to the

■ Segment name defined in the native RC format file

■ Chain name defined in the CTL file

Affected by these commands: check_dft_rules on page 501

connect_scan_chains on page 523

synthesize on page 294

Related commands: write_dft_abstract_model on page 666

write_hdl on page 212 (-abstract)

Sets these attributes: Scan Segment Attributes
July 2009 642 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
read_io_speclist

read_io_speclist iospeclist_file

Reads in the specified IOSpecList input file to be used for boundary scan insertion.

The IOSpecList input file is only required to provide information that cannot be inferred from
the design, and the command-line options of the insert_dft boundary_scan command.

You need an IOSpecList input file if

■ The I/O pad cells in your library do not use the standard pin names

■ Your design has pin sharing logic to shared functional output signals that was inserted
before you insert boundary scan logic

■ You want to customize the location of the boundary cells in the boundary register

You can also use an IOSpecList input file if

■ You want to use custom boundary cells

■ You want to use user-defined TAP instructions (such as those required for MBIST or
PTAM) and use specific opcodes specified using JTAG_Inline syntax

Note: You can also use the define_dft jtag_instruction command to enter
user-defined instructions.

Options and Arguments

Related Information

Inserting Boundary Scan Logic in Design for Test in Encounter RTL Compiler

iospeclist_file Specifies the IOSpecList input file.

Affects these commands: insert_dft boundary_scan on page 607

write_io_speclist on page 691
July 2009 643 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
replace_scan

replace_scan [-to_non_scan] [-dont_check_dft_rules] [design]

This command either

■ Replaces non-scan flops with their scan-equivalent flip-flops if the design was previously
mapped.

In this case, the dft_scan_map_mode design attribute must be set to either
tdrc_pass or force_all. If set to tdrc_pass, you must have run the DFT rule
checker.

■ Replaces all scan flops that are part of shift register segments with non scan flops except
for the first element of each shift register segment.

Options and Arguments

Related Information

Controlling Mapping to Scan in a Mapped Netlist in the Design for Test in Encounter RTL
Compiler manual.

design Specifies the design in which you want to replace regular
flip-flops.

-dont_check_dft_rules

Prevents the DFT rules from being automatically checked.

-to_non_scan Replaces all scan flops that are part of shift register segments
to non scan flops except for the first element in the segments.

Affected by these commands: check_dft_rules on page 501

identify_test_mode_registers on page 595

reset_scan_equivalent on page 652

set_scan_equivalent on page 654

Affected by this attribute: dft_scan_map_mode
July 2009 644 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
report_scan_compressibility

report_scan_compressibility -directory atpg_directory

Reports the scan compressibility of a design. This command can only be used with a
directory which has been created by the analyze_scan_compressibility command.

Options and Arguments

-directory atpg_directory

Specifies the directory where the ATPG compression runs
created by the analyze_scan_compressibility command
are stored.
July 2009 645 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command reports the compressibility analysis resulting from the ATPG
directory temp_dir.

rc:> report_scan_compressibility -directory temp_dir

Design-DLX_CORE
Compressor-mimic_bidi_misr
Decompressor-xor
Mask-wide2
####################################
Analyze_dft_compressibility Results
####################################

Achieved compression table with fullscan topup vectors
###
IC TATR TDVR Cov CL Cycles Runtime
###
fs 1 1 99.86% 161 57318 1:20
10 7 17 99.88% 17 8159 1:50
20 10 19 99.85% 9 5581 2:00

Achieved compression table without fullscan topup vectors
###
IC TATR TDVR Cov CL Cycles
###
fs 1 1 99.86% 161 57318
10 7 23 98.02% 17 7193
20 14 43 97.28% 9 3971
Total atpg runtime for exp. 5:10 hrs.

IC - Inserted compression
TATR - Test application time reduction
TDVR - Test data volume reduction
Cov - Atpg coverage
CL - Channel Length
Cycles - Total no. of cycles for test
Runtime- Atpg runtime
fs - fullscan run

Related Information

Analyzing and Reporting Scan Compressibility in Design for Test in Encounter RTL
Compiler.

Compressing Scan Chains in Design for Test in Encounter RTL Compiler

Affected by this command analyze_scan_compressibility on page 490
July 2009 646 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
report dft_chains

Refer to report dft_chains in the Chapter 8, “Analysis and Report.”
July 2009 647 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
report dft_registers

Refer to report dft_registers in the Chapter 8, “Analysis and Report.”
July 2009 648 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
report dft_setup

Refer to report dft_setup in Chapter 8, “Analysis and Report.”
July 2009 649 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
report dft_violations

Refer to report dft_violations in Chapter 8, “Analysis and Report.”
July 2009 650 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
report scan_power

Refer to report scan_power in the Chapter 8, “Analysis and Report.”
July 2009 651 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
reset_scan_equivalent

reset_scan_equivalent [libcell]...

Removes the specified non-scan library cells from the scan-equivalency table which was
previously defined using a (number of) set_scan_equivalent command(s).

If you do not specify any library cells, the command removes all scan-equivalent mappings.

Options and Arguments

Example

The following example removes the snl_ffqx1 cell from the scan-equivalency table.

reset_scan_equivalent snl_ffqx1

Related Information

libcell Specifies a non-scan library cell to be removed from the
scan-equivalency table.

Affects this command: replace_scan on page 644

Related command: set_scan_equivalent on page 654
July 2009 652 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
set_compatible_test_clocks

set_compatible_test_clocks
{-all | list_of_test_clocks} [-design design]

Specifies the compatible test clocks whose related scan flip-flops can be merged into a single
scan chain using lockup elements in between. By default, no test clocks (including different
phases of the same clock) are assumed compatible.

Note: This command applies only to the muxed scan style.

Test clocks that are declared compatible belong to the same DFT clock domain.

Important

Test clocks with different clock periods cannot be made compatible.

Options and Arguments

Related Information

Mixing Different Test Clocks in the Same Scan Chain in Design for Test in Encounter RTL
Compiler

-all Specifies that all test clocks are compatible.

design Specifies the design for which you want to specify
compatible test clocks.

list_of_test_clocks Specifies the compatible test clocks. You must specify the
test clock object name.

Note: To allow combining flip-flops from the same DFT
domain—which are triggered by either edge of the same test
clock—on the same scan chain, you need to set the
dft_mix_clock_edges_in_scan_chains root attribute
to true. By default, only same edge clocks are mixed.

Affects this command: connect_scan_chains on page 523

Related attribute: dft_mix_clock_edges_in_scan_chains
July 2009 653 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
set_scan_equivalent

set_scan_equivalent
-non_scan_cell libcell -scan_cell libcell
[-tieoff_pins string] [-pin_map list_of_pin_groups]

Controls the scan-equivalent cell type that is used during the conversion of a non-scan
flip-flop which passes the DFT rule checks to a scan flop. Use the replace_scan command
to perform the actual conversion to scan.

Note: The RC-DFT engine automatically derives the scan data input, scan data output, and
other test signals from the test_cell description of the scan flop in the target library.

Options and Arguments

Example

The following example assumes that the pin names in the non-scan and scan flip-flops match,
and that there are no extra pins in the scan flop to be tied off.

set_scan_equivalent -non_scan_cell snl_ffqx1 -scan_cell snl_sffqx1

-non_scan_cell libcell

Specifies a non-scan flip-flop library cell.

-pin_map list_of_pin_groups

Indicates how to map a pin from the non-scan flop to a pin in
the scan flop when the pin names in the cells do not match.

The list_of_pin_groups has the following format:

{{non_scan_pin scan_pin} {non_scan_pin
scan_pin}...}

-scan_cell libcell Specifies a scan flip-flop library cell.

-tieoff_pins string Specifies the tie-off value for extra scan cell pins.

The string has the following format:

{{pin value} {pin value} ...}

The value can be a logic 0 or 1.
July 2009 654 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Affects this command: replace_scan on page 644

Related command: reset_scan_equivalent on page 652
July 2009 655 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_atpg

write_atpg
{ -cadence [-compression | > file]
| -mentor [> file]
| -stil [-dft_configuration_mode dft_config_mode_name]
[> file]}

[-decimals_ok] [-picoseconds]
[-test_clock_waveform test_clock]
[-apply_inputs_at integer]
[-apply_bidirs_at integer]
[-dft_configuration_mode dft_config_mode_name]
[-strobe_outputs_at integer]
[-strobe_width integer] [design]

Writes out the scan-chain information for an Automatic Test Pattern Generator (ATPG) tool in
a format readable by the designated ATPG tool.

The ATPG tool uses this information to generate appropriate test patterns. The file extension
given to the interface file(s) is determined by the selected tool.

The interface file is useful only to the third-party tool if the test synthesis tool has connected
the scan chain. Therefore, you should use this command only if the test synthesis tool has
connected the scan chains.

Options and Arguments

-apply_bidirs_at integer

Specifies when in the test clock cycle to apply the bidirectional
signals. Specify this time as a percentage of the test clock
period.

Default: Same value as specified for apply_inputs_at

-apply_inputs_at integer

Specifies when in the test clock cycle to apply the input signals.
Specify this time as a percentage of the test clock period.

Default: 0
July 2009 656 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-cadence Creates pin-assignment files that capture the top-level
scan-related signals (shift-enable, test-mode, test-clock and
scan data IOs) for use by the Encounter Test ATPG tool.

If you use this option without the -compression option, the
command writes out the pin-assignment information for full
scan mode only. The information is written to the specified file.

-compression Creates pin-assignment files for full scan mode, compression
mode and XOR decompression mode. The following files are
generated: topmodulename.FULLSCAN.pinassign,
topmodulename.COMPRESSION.pinassign,and
topmodulename.COMPRESSION_DECOMP.pinassign.

Note: This option is only valid with the -cadence option.

-decimals_ok Writes out decimal numbers. By default, time values are
rounded off to integer numbers because many ATPG tools do
not accept decimal numbers for test waveform time values. Use
the -picoseconds option to minimize round-off errors.

design Specifies the top module for which to write ATPG.

-dft_configuration_mode dft_configuration_mode_name

Writes ATPG information for the specified scan mode name.

Note: This option is only valid with the -stil option.

file Specifies the file to which the output must be written.

If no file is specified, the output is written to standard out
(stdout) and to the log file.

Note: This argument is only valid with the -stil and
-cadence options.

-mentor Creates an interface file in the format used by the Mentor
Graphics ATPG tool. Files generated:

■ top_module.testproc

■ top_module.dofile

-picoseconds Specifies to use picoseconds for the time unit. Use this option
to minimize the round-off errors when rounding-off test
waveform time values to integers.

Default: nanoseconds
July 2009 657 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Creating an Interface File for ATPG Tool in Design for Test in Encounter RTL Compiler

-stil Creates an interface file in the IEEE Standard Test Interface
Language (STIL) format (IEEE format 1450.1).

Note: The generated STIL format is TetraMAX compatible.

-strobe_outputs_at integer

Specifies when in the test clock cycle to strobe the outputs.
Specify this time as a percentage of the test clock period.

Default: 40

-strobe_width integer

Specifies how long the outputs are valid during the test clock
cycle. Specify this time as a percentage of the test clock period.

Default: 0

-test_clock_waveform test_clock

Specifies to use the clock waveform of the specified test clock.

Default: first test clock object found

Affected by this command: compress_scan_chains on page 508

connect_scan_chains on page 523

define_dft scan_clock_a on page 566

define_dft scan_clock_b on page 569

define_dft test_clock on page 577

Affected by these attributes: Actual Scan Chain attributes
July 2009 658 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_bsdl

write_bsdl
[-pinmap_file file]
[-bsdl_package_name files]
[-bsdlout file]
[-include_private_instructions]
[-expose_ports_with_pinmap]
-directory string

Generates a file describing the boundary scan architecture of the design in Boundary Scan
Description Language (BSDL), along with two VHDL package files, STD_1149_1_2001 and
CDNDFT_1149_1_2001, which contain the supported boundary cell descriptions that were
used during boundary scan insertion.

Note: Dedicated test-related signals (such as shift-enable, and test-mode signals defined
without the -shared_in option) are also written to the BSDL file along with their respective
compliance enable values.

Options and Arguments

-bsdl_package_name files

Specifies the name of a VHDL file or a comma-separated list of
VHDL files, each containing one or more custom boundary cell
descriptions that were used during boundary scan insertion.

The name of each package file is added to the BSDL file in a
use statement.

Note: This option is required if you used custom boundary cells
in the design.

-bsdlout string Specifies the name of the BSDL file to be generated.

If you omit this option, the output file is named using the
topmodulename.bsdl.

-directory string Specifies the directory to which the output files must be written.
July 2009 659 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ The following command creates a BSDL file named bsdlout.The name of the package
file for the custom boundary cells is added to the BSDL file.

write_bsdl -directory .-bsdl_package_name MY_BIDIR_PKG -bsdlout bsdloutfile

This causes the following line to be added to file bsdlout:

use MY_BIDIR_PKG.all ;

-expose_ports_with_pinmap

Specifies to only expose functional and test ports with package
pinmap information to the output BSDL file.

 Additionally, this option prevents the writing of other ports
connected in the boundary-scan register without package
pinmap information. The names of these other ports will not
appear in the BOUNDARY_REGISTER section of the BSDL file.
Rather, these port names will be represented with an asterisk
(*) and their associated boundary-scan cells will be
represented as INTERNAL as shown in the following BSDL
snippet:

attribute BOUNDARY_REGISTER of test: entity is
 ...
"8 (BC_OUT, *, INTERNAL, X)," &

When the -expose_ports_with_pinmap is not specified, all
ports in the design will be written to each relevant section of the
BSDL file, regardless of whether any pinmap information has
been provided for any ports.

Package pinmap information may be provided during
boundary-scan insertion or when writing the BSDL file using the
-pinmap_file option.

-include_private_instructions

Specifies to include register access information for private
instructions in the BSDL file.

-pinmap_file file Specifies the name of the pinmap file to be used to create a
BSDL file.

Note: This file can have fewer pin-to-pad bonding requirements
than the pinmap file specified for the boundary scan insertion.

Refer to Pinmap File Format for more information.
July 2009 660 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Inserting Boundary Scan Logic in Design for Test in Encounter RTL Compiler

Affected by this command: insert_dft boundary_scan on page 607

Related constraints: define_dft shift_enable on page 572

define_dft test_clock on page 577

define_dft test_mode on page 581
July 2009 661 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_compression_macro

write_compression_macro
-chains integer
-sub_chains integer
[-decompressor {broadcast | xor}]
[-compressor {xor | opmisr | hybrid}]
[-mask {wide0 | wide1 | wide2}]
[-mask_sharing_ratio integer
[-no_fullscan_muxing]
[-jtag_control]
[-serial_misr_read]
[-file string]
[-info_file string]

Generates the RTL for a customized scan compression macro.

Note: To use this command you need to have a license for the Encounter Test Architect tool.

Options and Arguments

-chains The number of top level scan data input/scan data output pairs.
Typically, this is the number of uncompressed scan chains. For
MISR-based compression, the -chains option must be greater
than or equal to 16.

-compressor {xor | opmisr| hybrid}

Specifies the type of compression logic to be built:

■ xor specifies to build an XOR-based compressor

■ opmisr specifies to build a MISR-based compressor

■ hybrid specifies to build MISR compression with MISR
bypass capability to effectively result in an XOR-based
compressor.

Default: xor
July 2009 662 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-decompressor {broadcast | xor}

Specifies the type of decompression logic to be built:

■ xor specifies to build an XOR-based spreader network in
addition to the broadcast-based decompression logic

■ broadcast specifies to build a broadcast-based
decompression logic (simple scan fanout).

-file Specifies the filename where the compression macro RTL will
be written. If not specified, the RTL will be written to stdout.

-info_file Specifies a file containing more detailed information about the
compression macro. This script can be sourced into the current
session to provide more information about the compression
macro to commands such as write_et so they can generate
accurate input files for Encounter Test.

-jtag_control Specifies to include a JTAG-controlled test data register (TDR)
which generates compression test signals to configure the
compression testmode.

-mask {wide0 |wide1 | wide2}

Inserts scan channel masking logic of the specified type.

The masking types that can be used depend on the compressor
type specified with the -compressor option.

By default, no masking logic is inserted.

-mask_sharing_ratio integer

Specifies the number of internal scan channels sharing a mask
register. The specified integer may not exceed the ratio of the
number of subchains to the number of chains.

Note: This option is only valid with wide1 and wide2 masking.

-no_fullscan_muxing Specifies to exclude additional muxing logic to the compression
macro. By default, additional muxing is added to the
compression macro to concatenate the compressed scan
channels into uncompressed fullscan chains. If such muxing
exists outside the compression macro, specify this option to
exclude this logic from the compression macro.

-serial_misr_read Specifies to include support for reading MISR bits serially
through the scan data pins.
July 2009 663 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command writes an XOR-based compression macro without masking to
the file xor1.v.

rc:/> write_compression_macro -compressor xor. -chains 8 -sub_chains 88 -file \
 xor1.v
Checking out license ’Encounter_Test_Architect’... (1 seconds elapsed)
...

■ The following command writes an XOR-based compression macro with masking logic of
type wide1. The -no_fullscan_muxing option is specified so the logic to concatenate
the compressed sub_chains into fullscan chains will be excluded.

Note: Note, since the -no_fullscan_muxing option is specified, the number of
sub_chains is no longer required to be evenly divisible by the number of chains.

rc:/> write_compression_macro -compressor xor -mask wide1 -chains 8
-sub_chains 85 -no_fullscan_muxing -file xor2.vChecking out license
’Encounter_Test_Architect’... (1 seconds elapsed)....

■

■ The following command writes an MISR-based compression macro with masking logic
of type wide1, with decompression logic of type xor. The compressor type is hybrid
which means the MISR can be bypassed resulting in XOR compression.

rc:/> write_compression_macro -compressor hybrid -decompressor xor \
-mask wide1 -chains 16 -sub_chains 512 -file hybrid1.v
Checking out license ’Encounter_Test_Architect’... (2 seconds elapsed)
...

■ The following command writes a MISR-based compression macro with masking logic of
type wide2. The -info_file option is also specified.

rc:/> write_compression_macro -compressor opmisr -mask wide2 -chains 20 \
 -sub_chains 500 -file opmisr1.v -info_file opmisr1.info
....

-sub_chains integer

Specifies the number of compressed scan channels that exist in
the design or that you will build. The specified integer must be
an even multiple of the integer specified for the -chains option
unless the -no_fullscan_muxing option is also specified.
July 2009 664 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Compressing Scan Chains in Design for Test in Encounter RTL Compiler

Manually Inserting a Scan Compression Macro in Design for Test in Encounter RTL
Compiler
July 2009 665 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_dft_abstract_model

write_dft_abstract_model [-ctl] [design] [> file]
[-dft_configuration_mode dft_config_mode_name]

Writes a scan abstract model for all the top-level scan chains configured in the design.

Note: Currently, this command is not supported for the clocked LSSD scan style with the
-ctl option.

Options and Arguments

Examples

■ In the following example, the different active edges of the different test clocks in the same
test clock domain are allowed to be mixed on the same scan chains. Following shows the
configuration result and the scan abstract models for the scan chains:

rc:> connect_scan_chains
Configuring 1 chains for 27 scan f/f

Configured 1 chains for Domain: ’clkAll’, edge: ’mixed’
AutoChain_1 (DFT_sdi_1 -> DFT_sdo_1) has 27 registers; Domain:clkAll,

edge: mixed

-ctl Writes out a scan abstract model in the Core Test Language
(CTL) format (IEEE format P1450.6).

If you omit this option, the scan abstract model is written in
native RC format that consists of a list of define_dft
abstract_segment commands, one per top-level scan
chain.

design Specifies the design for which to write out the scan abstract
model of the scan chains.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dft_configuration_mode dft_configuration_mode_name

Writes scan chain information related to the specified scan
mode name.

file Specifies the file to which the output must be written.

You can write out the CTL file in compressed format by
specifying a file name with the .gz extension.

Default: output is written to the screen
July 2009 666 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Processing 1 scan chains in ’muxed_scan’ style.
Using default shift enable signal ’SE’: ’/designs/test/ports_in/SE’ active

high.
Connecting scan chain ’AutoChain_1’ with 27 flip-flops.

Mapping DFT logic introduced by scan chain connection...
Mapping DFT logic done.
Reporting 1 scan chain

Chain 1: AutoChain_1
scan_in: DFT_sdi_1
scan_out: DFT_sdo_1
shift_enable: SE (active high)
clock_domain: clkAll (edge: mixed)
length: 27
bit 1 out1_reg_4 <test_clk1/fall>
...
bit 5 out1_reg_8 <test_clk1/fall>
llatch 5 DFT_lockup_g1
bit 6 out2_reg_4 <test_clk2/fall>
...
bit 10 out2_reg_8 <test_clk2/fall>
llatch 10 DFT_lockup_g348
bit 11 out3_reg_4 <test_clk3/fall>
...
bit 18 out1_reg_2 <test_clk1/rise>
bit 19 out1_reg_3 <test_clk1/rise>
llatch 19 DFT_lockup_g349
bit 20 out2_reg_0 <test_clk2/rise>
...
bit 23 out2_reg_3 <test_clk2/rise>
llatch 23 DFT_lockup_g350
bit 24 out3_reg_0 <test_clk3/rise>
...
bit 27 out3_reg_3 <test_clk3/rise>

rc:/> write_dft_abstract_model
scan style is muxed_scan

writing abstract model for 1 scan chain

 define_dft abstract_segment -module test \
 -name test_AutoChain_1 \
 -sdi DFT_sdi_1 -sdo DFT_sdo_1 \
 -shift_enable_port SE -active high \
 -clock_port clk1 -fall \
 -tail_clock_port clk3 -tail_edge_rise \
 -length 27

To avoid naming collisions when reading in a scan abstract model, the segment names are
prefixed with the module name.

Related Information

Creating a Scan Abstract Model in Design for Test in Encounter RTL Compiler

Affected by this command: connect_scan_chains on page 523
July 2009 667 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Affected by these attributes: Actual Scan Chain attributes

Related command: read_dft_abstract_model on page 641

write_hdl on page 212 (-abstract)
July 2009 668 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_et_atpg

write_et_atpg
[-compression] [-effort string] [-force]
[[-configuration_mode_order dft_configuration_mode+]...|
[-dft_configuration_mode dft_config_mode_name+]...]
[-build_model_options string] [-build_testmode_options string]
[-atpg_options string] [-verify_test_structures_options string]
[-library string] [-directory string] [design]

Writes out the necessary files and the template run scripts to run Automatic Test Pattern
Generator (ATPG) using the Encounter Test software.

This command generates the following files:

■ et.exclude—A file listing objects to be excluded from the ATPG analysis in an
assumed scan mode.

■ et.modedef—–A mode definition file, a text file that describes the test mode in assumed
scan mode

■ topmodulename.ASSUMED.pinassign—–A pin-assignment file that captures the
top-level scan-related signals (shift-enable, test-mode, test-clock) and their test function
used to build the testmode before actual scan chains exist in the design

■ topmodulename.FULLSCAN.pinassign—–A pin-assignment file that captures the
top-level scan-related signals (shift-enable, test-mode, test-clock and scan data IOs) and
their test function used to build the testmode when actual scan chains exist in the design

■ If the write_et_atpg command is run with the -compression option, the following
pin-assignment files are generated in addition to the
topmodulename.FULLSCAN.pinassign file. In this case, all three files include the
compression test signals with their appropriate test functions to validate their specific test
mode:

❑ topmodulename.COMPRESSION_DECOMP.pinassign—A file generated only
when inserting XOR-based decompression logic

❑ topmodulename.COMPRESSION.pinassign—A file generated when
inserting broadcast-based decompression logic

■ runet.atpg —– A template script file to run the requested testability analysis

■ topmodulename.et_netlist.v—–A netlist for Encounter Test

■ run_compression_decomp_sim—–An NCVerilog run file used to simulate the test
patterns created by Encounter Test for compression logic built using XOR-based
decompression logic
July 2009 669 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
■ run_compression_sim—–An NCVerilog run file used to simulate the test patterns
created by Encounter Test for compression logic built using broadcast-based
decompression logic

■ run_fullscan_sim—–An NCVerilog run file used to simulate the test patterns created
by Encounter Test in full scan mode.

Note: Some files can be customized according to the setup requirements.

For more information on the exact Encounter Test product requirements, refer to Encounter
Test Product Requirements for Advanced Features in Design for Test in Encounter RTL
Compiler.

Options and Arguments

-atpg_options {option1=value option2=value}

Specifies extra ATPG analysis options.

-build_model_options {option1=value option2=value}

Specifies extra options to apply when building the Encounter
Test model.

-build_testmode_options {option1=value option2=value}

Specifies extra options to apply when building the test mode for
Encounter Test.

-compression Instructs to write out the files needed to run ATPG-based
testability analysis for compression mode.
July 2009 670 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-configuration_mode_order dft_configuration_mode...

Specifies to write Encounter Test script files for a compression
mode.Valid compression mode names are:

COMRESSION, COMRESSION_DECOMP, OPMISRPLUS,
OPMISRPLUS_DECOMP, FULLSCAN

Note: If specified, the FULLSCAN compression mode must be
specified last.

design Specifies the design for which to write out the Encounter Test
input files.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dft_configuration_mode dft_configuration_mode_name...

Writes scan chain information related to the specified scan
mode name(s).

-directory string Specifies the directory to which the output files must be written.

Default: current_working_directory/et_scripts

-effort {low | medium | high}

Specifies the ATPG effort level to expend in resolving faults.
Increasing effort will generally result in resolving more faults,
but will require more processing time, sometimes significantly
more.

Default: low

-force Specifies to continue even when the DFT logic appears to be
incomplete.
July 2009 671 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-library string Specifies the list of Verilog structural library files.

The Verilog libraries required to run Encounter Test ATPG and
NC-Verilog simulation of the generated vectors must be
provided using the -library option of the write_et_atpg
command. These libraries must be in a structural format. The
files can be specified separately on the write_et_atpg
command line or can be referenced using an include file.
Directories of Verilog files can also be specified but they cannot
be referenced in the include file.

For example, if the Verilog files required to run ATPG and
NC-Verilog simulation are:

./padcells.v

./stdcells.v

./memories/*.v

./ip_blocks/*.v

write_et_atpg can be used in either of the following ways:

1. If specifying files separately on the command line:

write_et_atpg -library "./padcells.v ./stdcells.v \
 ./memories ./ip_blocks" ...

2. If using an include file. Create an include file named
include_libraries.v containing:

‘include "./padcells.v"
‘include "./stdcells.v"

And then specify the following:

write_et_atpg -library "include_libraries.v
./memories \
 ./ip_blocks" ...

Note: If you specify a relative path, the command interprets the
path to be the location from where Encounter Test will be run.

-verify_test_structures_options {option1=value option2=value}

Specifies extra options to apply when performing test structure
verification for Encounter Test.
July 2009 672 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command generates the files to run an ATPG-based testability analysis.

write_et_atpg -directory atpg -library $sim/mylib.v
Examining the atpg directory that was generated shows the following files:
rc:/> shell ls atpg
run_compression_decomp_sim
run_compression_sim
runet.atpg
run_fullscan_sim
test.COMPRESSION_DECOMP.pinassign
test.COMPRESSION.pinassign
test.et_netlist.v
test.FULLSCAN.pinassign
test.rc_netlist.v

■ The following command uses the -configuration_mode_order option to generate
the files to run an ATPG-based testability analysis first using the OPMISRPLUS_DECOMP
compression mode and then with the FULLSCAN mode.

write_et -atpg -configuration_mode_order {OPMISRPLUS_DECOMP FULLSCAN} \
 -directory rc_et
July 2009 673 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_et_bsv

write_et_bsv
[-bsdl file] [-bsdl_package_path string] [-bsdl_package_name files]
[-build_model_options string] [-library string]
[-directory string] [design]

Writes out the necessary files and the template run scripts to run boundary scan verification.

This command generates the following files:

■ topmodulename.bsdl—–A BSDL file

■ topmodulename.et_netlist.v—–A netlist for Encounter Test

■ runet.bsv—An Encounter Test run file to run Boundary Scan Verification (BSV).

Note: Some files can be customized according to the setup requirements.

For more information on the exact Encounter Test product requirements, refer to Encounter
Test Product Requirements for Advanced Features in Design for Test in Encounter RTL
Compiler.

Options and Arguments

-bsdl file Specifies the name of the BSDL file to be used for the boundary
scan verification.

If you omit this option but you specified the -bsv option, this
command will automatically run the write_bsdl command to
generate the BSDL file.

Important

You must use this option if you inserted custom
boundary cells in the design. Additionally, the BSDL file
should be written using the write_bsdl command
with the -bsdl_package_name option to list the
custom package file to be used during boundary scan
verification.
July 2009 674 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-bsdl_package_name files

Specifies a package file or a comma-separated list of package
files that describe the custom boundary cells used in the
design.

Note: This option is only required if you used custom boundary
cells in the design. This option cannot be specified without the
-bsdl option.

bsdl_package_path string

Specifies the UNIX directory or a comma-separated list of
directories that indicate(s) where to find the package file(s).

You can use dot (.) to refer to the current working directory.

Note: This option is only required if you used custom boundary
cells in the design. This option cannot be specified without the
-bsdl option.

-build_model_options {option1=value option2=value}

Specifies extra options to apply when building the Encounter
Test model.

design Specifies the design for which to write out the Encounter Test
input files.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-directory string Specifies the directory to which the output files must be written.

Default: current_working_directory/et_scripts
July 2009 675 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-library string Specifies the list of Verilog structural library files.

The Verilog libraries required to run Encounter Test ATPG and
NC-Verilog simulation of the generated vectors must be
provided using the -library option of the write_et_bsv
command. These libraries must be in a structural format. The
files can be specified separately on the write_et_bsv
command line or can be referenced using an include file.
Directories of Verilog files can also be specified but they cannot
be referenced in the include file.

For example, if the Verilog files required to run ATPG and
NC-Verilog simulation are:

./padcells.v

./stdcells.v

./memories/*.v

./ip_blocks/*.v

write_et_bsv can be used in either of the following ways:

1. If specifying files separately on the command line:

write_et_bsv -library "./padcells.v ./stdcells.v \
 ./memories ./ip_blocks" ...

2. If using an include file. Create an include file named
include_libraries.v containing:

‘include "./padcells.v"
‘include "./stdcells.v"

And then specify the following:

write_et_bsv \
 -library "include_libraries.v ./memories \
 ./ip_blocks" ...

Note: If you specify a relative path, the command interprets the
path to be the location from where Encounter Test will be run.
July 2009 676 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command generates the files to run an ATPG-based testability analysis.

write_et_bsv -directory bsv -library $sim/mylib.v

Examining the atpg directory that was generated shows the following files:

rc:/> shell ls bsv

topmodulename.bsdl

runet.bsv

test.et_netlist.v

test.rc_netlist.v

Related Information

Generating Script for Boundary Scan Verification in Design for Test in Encounter RTL
Compiler
July 2009 677 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_et_dfa

write_et_dfa
[-library string] [-directory string] [design] [-effort string]
[-build_model_options string] [-build_testmode_options string]
[-atpg_options string] [-dfa_options string]
[-verify_test_structures_options string]

Writes out the necessary files and the template run scripts to run Deterministic Fault Analysis
using the Encounter Test software. The template script will only be written if actual scan
chains exist in the design. DFA analysis is not supported in assumed scan mode.

This command generates the following files:

■ topmodulename.FULLSCAN.pinassign—–A pin-assignment file that captures the
top-level scan-related signals (shift-enable, test-mode, test-clock and scan data IOs) and
their test function used to build the testmode when actual scan chains exist in the design

■ runet.dfa —– A template script file to run the requested deterministic fault analysis

■ topmodulename.et_netlist.v—–A netlist for Encounter Test

■ TestPointInsertion.testmode_name.dfa—– A file containing test point
locations.

■ run_fullscan_sim—–An NCVerilog run file used to simulate the test patterns created
by Encounter Test in full scan mode.

Note: Some files can be customized according to the setup requirements.

For more information on the exact Encounter Test product requirements, refer to Encounter
Test Product Requirements for Advanced Features in Design for Test in Encounter RTL
Compiler.
July 2009 678 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Options and Arguments

-atpg_options {option1=value option2=value}

Specifies extra ATPG analysis options.

-build_model_options {option1=value option2=value}

Specifies extra options to apply when building the Encounter
Test model.

-build_testmode_options {option1=value option2=value}

Specifies extra options to apply when building the test mode for
Encounter Test.

design Specifies the design for which to write out the Encounter Test
input files.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dfa_options {option1=value option2=value}

Specifies extra options for deterministic fault analysis.

-directory string Specifies the directory to which the output files must be written.

Default: current_working_directory/et_scripts

-effort {low | medium | high}

Specifies the ATPG effort level to expend in resolving faults.
Increasing effort will generally result in resolving more faults,
but will require more processing time, sometimes significantly
more.

Default: low
July 2009 679 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-library string Specifies the list of Verilog structural library files.

The Verilog libraries required to run Encounter Test ATPG and
NC-Verilog simulation of the generated vectors must be
provided using the -library option of the write_et_dfa
command. These libraries must be in a structural format. The
files can be specified separately on the write_et_dfa
command line or can be referenced using an include file.
Directories of Verilog files can also be specified but they cannot
be referenced in the include file.

For example, if the Verilog files required to run ATPG and
NC-Verilog simulation are:

./padcells.v

./stdcells.v

./memories/*.v

./ip_blocks/*.v

write_et_dfa can be used in either of the following ways:

1. If specifying files separately on the command line:

write_et_dfa -library "./padcells.v ./stdcells.v \
 ./memories ./ip_blocks" ...

2. If using an include file. Create an include file named
include_libraries.v containing:

‘include "./padcells.v"
‘include "./stdcells.v"

And then specify the following:

write_et_dfa -library "include_libraries.v
./memories \
 ./ip_blocks" ...

Note: If you specify a relative path, the command interprets the
path to be the location from where Encounter Test will be run.

-verify_test_structures_options {option1=value option2=value}

Specifies extra options to apply when performing test structure
verification for Encounter Test.
July 2009 680 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command generates the files to run deterministic fault analysis.

write_et_dfa -directory dfa -library $sim/mylib.v
Examining the dfa directory that was generated shows the following files:
rc:/> shell ls dfa
runet.dfa
run_fullscan_sim
test.et_netlist.v
test.FULLSCAN.pinassign
test.rc_netlist.v
July 2009 681 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_et_mbist

write_et_mbist
-mbist_interface_file_dir string -mbist_interface_file_list string
[-build_model_options string] [-create_embedded_test_options string]
[-bsv [-bsdl file [-bsdl_package_path string]

[-bsdl_package_name files]]
-library string [-directory string] [design]

Writes out the necessary files and the template run scripts to run Create Embedded Test
using the Encounter Test software.

This command generates the following files:

■ topmodulename.ASSUMED.pinassign—–A pin-assignment file that captures the
top-level scan-related signals (shift-enable, test-mode, test-clock) and their test function
used to build the testmode before actual scan chains exist in the design

■ topmodulename.FULLSCAN.pinassign—–A pin-assignment file that captures the
top-level scan-related signals (shift-enable, test-mode, test-clock and scan data IOs) and
their test function used to build the testmode when actual scan chains exist in the design

■ topmodulename.bsdl—–A BSDL file produced when specifying the -bsv and
BSDL-related options.

■ runet.mbist—An Encounter Test run file to run Boundary Scan Verification
(BSV).when specifying the -bsv option.

■ topmodulename.et_netlist.v—–A netlist for Encounter Test

■ runet.mbist_interface—–A template script file to run Create Embedded Test in
Encounter Test

Note: Some files can be customized according to the setup requirements.

For more information on the exact Encounter Test product requirements, refer to Encounter
Test Product Requirements for Advanced Features in Design for Test in Encounter RTL
Compiler.
July 2009 682 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Options and Arguments

-bsdl file Specifies the name of the BSDL file to be used for the boundary
scan verification.

If you omit this option but you specified the -bsv option, this
command will automatically run the write_bsdl command to
generate the BSDL file.

Important

You must use this option if you inserted custom
boundary cells in the design. Additionally, the BSDL file
should be written using the write_bsdl command
with the -bsdl_package_name option to list the
custom package file to be used during boundary scan
verification.

-bsdl_package_name files

Specifies a package file or a comma-separated list of package
files that describe the custom boundary cells used in the
design.

Note: This option is only required if you used custom boundary
cells in the design. This option cannot be specified without the
-bsdl option.

-bsdl_package_path string

Specifies the UNIX directory or a comma-separated list of
directories that indicate(s) where to find the package file(s).

You can use dot (.) to refer to the current working directory.

Note: This option is only required if you used custom boundary
cells in the design. This option cannot be specified without the
-bsdl option.

-bsv Writes out the files needed for boundary scan verification.

Note: This option prints a pin assignment file if differential PAD
pairs are detected in the design.

-build_model_options {option1=value option2=value}

Specifies extra options to apply when building the Encounter
Test model.
July 2009 683 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-create_embedded_test_options {option1=value option2=value}

Specifies extra options to apply when running Create
Embedded Test in Encounter Test.

design Specifies the design for which to write out the Encounter Test
input files.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-directory string Specifies the directory to which the output files must be written.

Default: current_working_directory/et_scripts
July 2009 684 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-library string Specifies the list of Verilog structural library files.

The Verilog libraries required to run Encounter Test ATPG and
NC-Verilog simulation of the generated vectors must be
provided using the -library option of the write_et_mbist
command. These libraries must be in a structural format. The
files can be specified separately on the write_et_mbist
command line or can be referenced using an include file.
Directories of Verilog files can also be specified but they cannot
be referenced in the include file.

For example, if the Verilog files required to run ATPG and
NC-Verilog simulation are:

./padcells.v

./stdcells.v

./memories/*.v

./ip_blocks/*.v

write_et can be used in either of the following ways:

1. If specifying files separately on the command line:

write_et_mbist -library "./padcells.v ./stdcells.v \
 ./memories ./ip_blocks" ...

2. If using an include file. Create an include file named
include_libraries.v containing:

‘include "./padcells.v"
‘include "./stdcells.v"

And then specify the following:

write_et_mmbist -library "include_libraries.v \
./memories ./ip_blocks" ...

Note: If you specify a relative path, the command interprets the
path to be the location from where Encounter Test will be run.

-mbist_interface_file_dir

Specifies the MBIST interface file directories. Separate the
directory names with blank spaces.

-mbist_interface_file_list

Specifies a list of MBIST interface files. Separate the file names
with commas, for example, file1,file2.
July 2009 685 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command generates the files to run Boundary Scan Verfication and Create
Embedded Test in Encounter Test..

write_et_mbist -mbist_interface_file_dir directory \
-mbist_interface_file_list file1,file2 -bsv -library $sim/mylib.v

Examining the atpg directory that was generated shows the following files:

rc:/> shell ls mbist

test.COMPRESSION_DECOMP.pinassign

test.COMPRESSION.pinassign

test.et_netlist.v

test.FULLSCAN.pinassign

test.rc_netlist.v

runet.mbist

runet.mbist_interface
July 2009 686 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_et_rrfa

write_et_rrfa
[-atpg] [-force] [-effort string]
[-build_model_options string] [-build_testmode_options string]
[-atpg_options string] [-verify_test_structures_options string]
[-library string] [-directory string] [design]

Writes out the necessary files and the template run scripts to run either an Automatic Test
Pattern Generator (ATPG) or Random Resistance Fault Analysis (RRFA) based testability
analysis, generate test patterns using the Encounter Test software.

This command generates the following files:

■ et.exclude—A file listing objects to be excluded from the ATPG analysis in an
assumed scan mode.

■ et.modedef—–A mode definition file, a text file that describes the test mode in assumed
scan mode

■ topmodulename.ASSUMED.pinassign—–A pin-assignment file that captures the
top-level scan-related signals (shift-enable, test-mode, test-clock) and their test function
used to build the testmode before actual scan chains exist in the design

■ topmodulename.FULLSCAN.pinassign—–A pin-assignment file that captures the
top-level scan-related signals (shift-enable, test-mode, test-clock and scan data IOs) and
their test function used to build the testmode when actual scan chains exist in the design

■ run_fullscan_sim—–An NCVerilog run file used to simulate the test patterns created
by Encounter Test in full scan mode.

Note: Some files can be customized according to the setup requirements.

For more information on the exact Encounter Test product requirements, refer to Encounter
Test Product Requirements for Advanced Features in Design for Test in Encounter RTL
Compiler.
July 2009 687 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Options and Arguments

-atpg Writes out the files needed to run Automatic Test Pattern
Generation using the Encounter Test software.

-atpg_options {option1=value option2=value}

Specifies extra ATPG analysis options.

-build_model_options {option1=value option2=value}

Specifies extra options to apply when building the Encounter
Test model.

-build_testmode_options {option1=value option2=value}

Specifies extra options to apply when building the test mode for
Encounter Test.

design Specifies the design for which to write out the Encounter Test
input files.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-directory string Specifies the directory to which the output files must be written.

Default: current_working_directory/et_scripts

-effort {low | medium | high}

Specifies the ATPG effort level to expend in resolving faults.
Increasing effort will generally result in resolving more faults,
but will require more processing time, sometimes significantly
more.

Default: low

-force Specifies to continue even when the DFT logic appears to be
incomplete.
July 2009 688 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-library string Specifies the list of Verilog structural library files.

The Verilog libraries required to run Encounter Test ATPG and
NC-Verilog simulation of the generated vectors must be
provided using the -library option of the write_et_rrfa
command. These libraries must be in a structural format. The
files can be specified separately on the write_et_rrfa
command line or can be referenced using an include file.
Directories of Verilog files can also be specified but they cannot
be referenced in the include file.

For example, if the Verilog files required to run ATPG and
NC-Verilog simulation are:

./padcells.v

./stdcells.v

./memories/*.v

./ip_blocks/*.v

write_et_rrfa can be used in either of the following ways:

1. If specifying files separately on the command line:

write_et_rrfa -library "./padcells.v ./stdcells.v \
 ./memories ./ip_blocks" ...

2. If using an include file. Create an include file named
include_libraries.v containing:

‘include "./padcells.v"
‘include "./stdcells.v"

And then specify the following:

write_et_rrfa \
-library "include_libraries.v ./memories \
 ./ip_blocks" ...

Note: If you specify a relative path, the command interprets the
path to be the location from where Encounter Test will be run.

-verify_test_structures_options {option1=value option2=value}

Specifies extra options to apply when performing test structure
verification for Encounter Test.
July 2009 689 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Examples

■ The following command generates the files to run an ATPG-based testability analysis.

write_et_rrfa -atpg -directory atpg -library $sim/mylib.v

Examining the atpg directory that was generated shows the following files:

rc:/> shell ls rrfa

run_compression_decomp_sim

run_compression_sim

runet.atpg

run_fullscan_sim

test.COMPRESSION_DECOMP.pinassign

test.COMPRESSION.pinassign

test.et_netlist.v

test.FULLSCAN.pinassign

test.rc_netlist.v
July 2009 690 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_io_speclist

write_io_speclist > iospeclist_file
[-supplemental_file file]

Writes out the IOSpecList output file.

The IOSpeclist output file describes the boundary scan architecture of the design. The file
contains all ports (functional, test, and TAP) in the design, specifies the type and location of
the boundary cells to be inserted on all the functional ports, and lists the instructions (both
mandatory and user-defined) to be built in the JTAG Macro.

Options and Arguments

iospeclist_file Specifies the name of the file to be written.

-supplemental_file file

Specifies the name of the supplemental file to write out. This file
and its corresponding IOspeclist file are used to define the
boundary scan objects prior to inserting boundary scan logic.
The supplemental file lists the boundary scan segments and
the JTAG-instruction definitions for its related objects written to
the IOspeclist file. When using an IOspeclist file to define the
order of the boundary scan register, the supplemental file
should be included into the RTL Compiler session before
reading the IOspeclist input file. Both the supplemental and the
IOspeclist files need only be written if your intention is to insert
boundary-scan logic in a new RTL Compiler session.

Note: The recommended approach to completely restoring the
DFT setup (including the boundary scan objects) in a new RTL
Compiler session is to use the write_script/read_netlist
approach.
July 2009 691 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Related Information

Inserting Boundary Scan Logic in Design for Test in Encounter RTL Compiler

Affected by these commands: define_dft jtag_instruction on page 543

define_dft jtag_instruction_register on page 547

insert_dft boundary_scan on page 607

insert_dft mbist on page 618

insert_dft ptam on page 622

Related command: read_io_speclist on page 643
July 2009 692 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
write_scandef

write_scandef
[-partition partition -chains chain [chain]...]...
[-version {5.4|5.5}]
[-end_chains_before_lockups]
[-dft_configuration_mode dft_config_mode_name]
[-dont_split_by_library_domains]
[-dont_split_by_power_domains]
[-dont_use_timing_model_pins] [design] [> file]

Writes the scanDEF description of the top-level scan chains configured in the design for
reordering using a physical design tool.

Options and Arguments

-chains chain Specifies the scan chains that must be grouped in the same
partition by the physical design tool. Use the report
dft_chains command to obtain a list of valid chain names.

The tool ensures that chains or chain segments that are not
compatible are not added to the same partition, but are further
partitioned by adding the test clock name and test clock edge to
the final partition name.

Note: Requires version 5.5.

design Specifies the design for which to write out the scanDEF
description.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-dft_configuration_mode dft_configuration_mode_name

Specifies the configuration mode for which to write the scan
definition

-dont_split_by_library_domains

Indicates not to split the chains at the scan data input pin of the
last flop in the originating (or from) library domain and at the
scan data output pin of the first flop in the destination (or to)
library domain.

By default, the chains will be split based on the library domains.
If the design has no library domains, the chains will not be split.
July 2009 693 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
-dont_split_by_power_domains

Indicates not to split the chains at the scan data input pin of the
last flop in the originating (or from) power domain and at the
scan data output pin of the first flop in the destination (or to)
power domain.

By default, the chains will be split based on the power domains.
If the design has no power domains, the chains will not be split.

-dont_use_timing_model_pins

Prevents using the user-designated libcell timing model pins as
the scanDEF chain START and STOP points. Instead an
outward trace is performed to identify and use the first flip-flop
scan data output pin and last flip-flop scan data input pin and
use these pins as START and STOP pins in the scanDEF
chains.

-end_chains_before_lockups

Terminates the scan segment at the scan data input pin of the
scan flop which precedes the lockup element in the scan DEF
chain.

file Specifies the file to which the output must be written. To write
out the scanDEF file in compressed format, specify a file name
with the .gz extension.

Default: output is written to the screen

-partition partition

Specifies the name of a user-defined partition.

Note: Requires version 5.5.

-version {5.4|5.5} Specifies which DEF version to write out. Version 5.5 writes out
the MAXBITS and PARTITION keywords as regular statements
(that is, uncommented).

Default: 5.4
July 2009 694 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
Example

■ The following example writes out the scanDEF information to the screen:

rc:/> write_scandef

VERSION 5.4 ;
NAMESCASESENSITIVE ON ;
DIVIDERCHAR "/" ;
BUSBITCHARS "[]" ;
DESIGN top ;

SCANCHAINS 2 ;
- chain_1
+ START u_a/out_reg_1 Q
+ FLOATING
u_a/out_reg_2 (IN SI) (OUT Q)
u_a/out_reg_3 (IN SI) (OUT Q)
+ STOP buf_2 A
;

- chain_2
+ START buf_1 Y
+ FLOATING
u_b/out_reg_0 (IN SI) (OUT Q)
u_b/out_reg_1 (IN SI) (OUT Q)
+ STOP u_b/out_reg_3 SI
;

END SCANCHAINS
END DESIGN

Related Information

Creating a scanDEF File in Design for Test in Encounter RTL Compiler

Affected by this command: connect_scan_chains on page 523

Affected by these attributes: Actual Scan Chain attributes
July 2009 695 Product Version 9.1

Command Reference for Encounter RTL Compiler
Design for Test
July 2009 696 Product Version 9.1

Command Reference for Encounter RTL Compiler
12
Low Power Synthesis

■ build_rtl_power_models on page 699

■ clock_gating on page 701

■ clock_gating connect_test on page 703

■ clock_gating declone on page 704

■ clock_gating import on page 705

■ clock_gating insert_in_netlist on page 707

■ clock_gating insert_obs on page 708

■ clock_gating join on page 710

■ clock_gating remove on page 712

■ clock_gating share on page 714

■ clock_gating split on page 716

■ read_saif on page 718

■ read_tcf on page 722

■ read_vcd on page 727

■ report clock_gating on page 730

■ report operand_isolation on page 731

■ report power on page 732

■ state_retention on page 733

■ state_retention connect_power_gating_pins on page 734

■ state_retention swap on page 735

■ write_forward_saif on page 736
July 2009 697 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
■ write_saif on page 738

■ write_tcf on page 740
July 2009 698 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
build_rtl_power_models

build_rtl_power_models
[-clean_up_netlist]
[-clock_gating_logic]
[-relative instance_list]
[-design design]

Builds detailed power models for more accurate RTL power analysis. The models are used
in subsequent RTL power analysis reports.

The power models are MSV and PSO aware.

If you have super-threading enabled, it will be used for power model building.

Options and Arguments

Example

The following example shows an extract of the messages that are printed in the log file when
you build the RTL power models.

rc:/> build_rtl_power_models -clean_up_netlist -clock_gating_logic

Cleaning up the design /designs/mult_bit_muxed_add ...
Starting building RTL power analysis models ...
Preprocessing the netlist for building RTL power models ...
Building RTL power models for top-level design /designs/mult_bit_muxed_add ...
Building power models for clock gating logic ..
Done building models for power analysis.
RTL power modeling has finished. Use command ’report power’ to see power report.

-clean_up_netlist Requests to remove unreachable logic in the netlist as this
can affect the accuracy of the estimation.

Note: Unreachable logic is removed from the input netlist,
without changing the logic functionality.

-clock_gating_logic Requests to include power estimation for clock-gating logic.

Note: Power estimation of clock-gating components can
increase runtime considerably.

-design design Specifies the design for which to build the power models.

-relative instance_list

Builds separate power models for each of the specified
hierarchical instances. Models for the top design are built
separately at the end.
July 2009 699 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
The following example shows the messages that are printed in the log file when you build
separate RTL power models for hierarchical instances.

rc:/> build_rtl_power_models -clean_up_netlist -relative {mult_1 mult_2}

 Cleaning up the design /designs/test ...
 Starting building RTL power analysis models ...
 Preprocessing the netlist for building RTL power models ...
Building RTL power models for domain /designs/test/instances_hier/mult_1 ...

 Building RTL power models for domain /designs/test/instances_hier/mult_2 ...
 Building RTL power models for top-level design /designs/test ...
 Done building models for power analysis.
RTL power modeling has finished. Use command ’report power’ to see power report.

Related Information

RTL Power Analysis in Low Power in Encounter RTL Compiler

Related command: report power on page 732

Affected by this attribute: lp_insert_clock_gating
July 2009 700 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating

clock_gating
{ connect_test | declone| import | insert_in_netlist
| insert_obs | join | remove | share | split}

Manipulates a netlist for clock gating.

Important

The clock_gating commands only work on a mapped netlist.

Options and Arguments

connect_test Connects the test input of all clock-gating logic.

declone Merges clock-gating instances driven by the same inputs.

import Processes clock-gating instances that were either manually
inserted or inserted by third-party tools to make them
recognizable as clock-gating instances by the RC-LP engine.

insert_in_netlist Inserts clock-gating logic on a mapped netlist.

insert_obs Inserts and connects observability logic.

join Joins multiple-stage clock-gating logic into a single
clock-gating instance with a complex enable function.

remove Removes the specified clock-gating logic.

share Extracts the enable function shared by clock-gating logic and
inserts shared clock-gating logic with the common enable
sub function as the enable signal.

split Splits a single clock-gating instance with a complex enable
function into multiple stages of clock-gating logic.
July 2009 701 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Related Information

Related commands: clock_gating connect_test on page 703

clock_gating declone on page 704

clock_gating import on page 705

clock_gating insert_in_netlist on page 707

clock_gating insert_obs on page 708

clock_gating join on page 710

clock_gating remove on page 712

clock_gating share on page 714

clock_gating split on page 716
July 2009 702 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating connect_test

clock_gating connect_test

Globally connects the test input of all clock-gating logic to the test signal specified through the
lp_clock_gating_test_signal attribute and marks this network as ideal. This
command applies to the current design or the current hierarchical instance.

If the clock-gating test input is already connected, the command has no effect.

Note: This command works only on a netlist whose clock-gating logic was inserted by the
RC-LP engine.

Example

■ The following command connects the test inputs connected to Test1.

synthesize
...
set_att lp_clock_gating_test_signal Test1
...
clock_gating connect_test

Related Information

Clock Gating with DFT in Low Power in Encounter RTL Compiler

Scan Insertion after Clock-Gating Insertion in Low Power in Encounter RTL Compiler

Related command: report clock_gating on page 730

Affected by the attribute: lp_clock_gating_test_signal
July 2009 703 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating declone

clock_gating declone
[-hierarchical] [-no_clock_tree_traversal]

Merges clock-gating instances driven by the same inputs. The RC-LP engine automatically
removes any dangling ports.

Note: This command works only on a netlist whose clock-gating logic was inserted by the
RC-LP engine.

Options and Arguments

Related Information

Decloning Clock-Gating Instances in Low Power in Encounter RTL Compiler

-hierarchical Allows traversing the design hierarchy to search for clock-gating
instances that can be merged. As a result, new ports can be
added for the gated-clock signal.

By default, this command only affects instances at the current
level of the hierarchy.

-no_clock_tree_traversal

Prevents traversing through buffers and inverter pairs on the
clock signal.

If you do not set this option, RTL Compiler can remove buffers
or inverter pairs on the clock path during optimization unless
the buffers or inverter pairs are marked preserved.

Related command: report clock_gating on page 730

Affected by this attribute: lp_clock_gating_max_flops
July 2009 704 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating import

clock_gating import
[-start_from instance] [-hierarchical] [-detail]

Processes clock-gating instances that were either manually inserted or inserted by third-party
tools to make them recognizable as clock-gating instances by the RC-LP engine.

The command returns the total number of instances imported.

Currently, the RC-LP engine recognizes the following structures as clock-gating instance:

■ Two-input AND or NAND gates that have a clock signal driving one of the inputs

In this case, the other pin is assumed to be the enable pin.

Note: If the other pin is part of the test network, the RC-LP engine does not recognize
the gate as a clock-gating instance.

■ Integrated clock-gating cells

Currently, the RC-LP engine does not recognize these structures as clock-gating instances if
they were defined in a separate module that is instantiated in the netlist.

The RC-LP engine creates a new hierarchical instance (RC_CG_HIER_INST) for each
clock-gating instance it recognizes and adds it to the list of clock-gating instances that the
RC-LP engine has created.

Options and Arguments

-detail Prints a summary with the names of the imported clock-gating
modules and the number of instances found for each
clock-gating module.

-hierarchical Allows traversing the design hierarchy to process clock-gating
instances that were not inserted by RTL Compiler.

By default, this command only affects instances at the current
level of the design hierarchy.

-start_from instance

Starts processing clock-gating instances that were not inserted
by RTL Compiler from the specified hierarchical instance.

By default, the process starts from the current location in the
design hierarchy.
July 2009 705 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Examples

■ The following example shows the minimum information listed when clock-gating
instances are successfully imported. The number “2” is the total number of instances
imported.

rc:/> clock_gating import -start_from /designs/top -hier
Importing clock_gating logic from /designs/top
Imported 2 Clock Gating instances

2

■ The following example shows the additional information listed when the -detail option
is specified.

rc:/> clock_gating import -start_from /designs/top -hier -detail
Importing clock_gating logic from /designs/top

Detailed report for clock_gating import

Module name | Import count

a_1 | 1
a | 1

Imported 2 Clock Gating instances

2

Related Information

Related command: report clock_gating on page 730
July 2009 706 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating insert_in_netlist

clock_gating insert_in_netlist

Inserts clock-gating logic in a mapped netlist if the D-input of a flip-flop is driven by a two-input
MUX and there is a feedback loop from the Q-output to the D-input through one of the data
pins of the two-input MUX.

You should only use this command on a netlist that was already mapped (possibly by a
third-party tool).

If you set the lp_clock_gating_test_signal attribute before you enter this command,
the RC-LP engine can connect the test-control signal to the test pins of the clock-gating logic
during clock-gating insertion.

Note: This command allows the flip-flops and MUX logic to be in different hierarchies.

Related Information

Inserting Clock Gating in a Mapped Netlist in Low Power in Encounter RTL Compiler

Related command: report clock_gating on page 730

Affected by this attribute: lp_clock_gating_test_signal
July 2009 707 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating insert_obs

clock_gating insert_obs
[-hierarchical] [-make_obs_module]
[-max_cg integer]
[-ignore_clock_constraint]
[-exclude instance...]
[-disable_clock -libcell libcell]

Inserts and connects circuitry to improve the observability of the design after clock-gating
logic is inserted. This command applies to the current design or the current hierarchical
instance.

Note: To make sure that the enable signal of the clock-gating logic is observable, set the
lp_clock_gating_add_obs_port design attribute to true before you insert the
clock-gating logic.

Observability logic is inserted based on clock information. The clock information is required
because only clock-gating logic driven by the same clock can share an observation flip-flop.
The clock information can be derived from clock constraints or from the physical connectivity.

Note: This command works only on a netlist whose clock-gating logic was inserted by the
RC-LP engine.

Options and Arguments

-disable_clock Specifies to gate the clock of the observability flip-flops.

Note: One gating cell is inserted per flip-flop. The RC-LP engine
creates a separate subdesign for each gating cell.

-exclude instance Prevents insertion of observability logic in the specified
hierarchical instances.

-hierarchical Allows insertion and connection of observability logic in the
current level of the hierarchy and all its children.

By default, this command only affects the current level of the
hierarchy.

-ignore_clock_constraint

Inserts observability logic based on physical connectivity.

By default, observability logic is inserted based on clock
constraints defined with the define_clock command.
July 2009 708 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Related Information

Clock Gating with DFT in Low Power in Encounter RTL Compiler

Other Flows in Low Power in Encounter RTL Compiler

-libcell libcell Specifies the name of a library cell to be used for gating.

Note: You can only specify an AND cell to gate the observability
logic.

-make_obs_module Creates a separate hierarchy (module) for each observation
flip-flop and its associated XOR tree.

-max_cg integer Specifies the maximum number of clock-gating cells that can be
observed per observation flip-flop. Specify an integer between 1
and 32.

Default: 8

Related commands: define_clock on page 240

report clock_gating on page 730

Affected by this attribute: lp_clock_gating_add_obs_port
July 2009 709 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating join

clock_gating join
[-hierarchical] [-max_level integer]
[-multi_fanouts] [-start_from instance]

Combines multiple stages of clock-gating logic into a single clock gating instance with a
complex enable function.

Note: This command works only on a netlist whose clock-gating logic was inserted by the
RC-LP engine.

Options and Arguments

Examples

■ The following command allows joining clock-gating instances across the hierarchy of
hierarchical instance i1.

clock_gating join -hierarchical -start_from [find / -inst i1]

■ The following command allows joining three stages of clock-gating instances across the
hierarchy starting from the current directory.

clock_gating join -hierarchical -max_level 2

-hierarchical Allows joining of clock-gating logic down the hierarchy starting
from the current directory.

By default, this command only affects the current level of the
hierarchy.

-max_level integer Specifies the maximum levels of clock-gating instances that can
be combined. If you specify n, n+1 stages can be combined.

Default: 1 allowing 2 levels to be combined.

-multi_fanouts Allows joining even if the root stage clock-gating instance is
driving multiple clock-gating instances.

-start_from instance

Joins the clock-gating logic starting from the specified
hierarchical instance.
July 2009 710 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Related Information

Multi-Stage Clock Gating in Low Power in Encounter RTL Compiler

Related command: report clock_gating on page 730
July 2009 711 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating remove

clock_gating remove
[-hierarchical [-obs_only]
| -cg_list instance_list [-obs_only]
| -flops flops]
[-no_verbose]
[-effort {low|high}]

Removes clock-gating logic inserted by the RC-LP engine from the current design or the
current hierarchical instance.

Note: This command works only on a netlist whose clock-gating logic was inserted by the
RC-LP engine.

Options and Arguments

-cg_list instance_list

Specifies a list of clock-gating instances to be removed. Use a
full path name to identify these instances.

Note: If you specify a clock-gating instance with an incomplete
path, the tool searches for that instance from the root of the
design hierarchy and might select multiple instances with the
same name from different hierarchies.

-effort {high|low} Specifies the effort level.

Choosing low effort results in better runtime performance but at
the cost of an area increase. In this case, the RC-LP engine
reconstructs the original MUX and feedback loop from the
flip-flop to the MUX.

For large designs high effort can result in long runtimes, but the
feedback logic is optimized.

Default: low

-flops flops Removes clock gating from the specified flops (that is,
recreates the feedback loop for those flops).

If you specified all flops that are gated by the same clock-gating
instance, the clock-gating instance will also be removed.
July 2009 712 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Example

■ The following command removes all clock-gating instances in the hierarchy of subdesign
sub1.

rc:/designs/alu/subdesigns/sub1> clock_gating remove -hier

■ The following command removes the clock-gating instances RC_CG_HIER_INST_121
and RC_CG_HIER_INST_122 from the current design hierarchy.

rc:/> clock_gating remove -cg_list \
/designs/top/instances_hier/RC_CG_HIER_INST_121 \
/designs/top/instances_hier/RC_CG_HIER_INST_122

Clock-gating instance removed /designs/top/instances_hier/RC_CG_HIER_INST_121
Clock-gating instance removed /designs/top/instances_hier/RC_CG_HIER_INST_122

Related Information

Removing Clock-Gating Instances in Low Power in Encounter RTL Compiler

-hierarchical Removes all clock-gating logic in the hierarchy of the current
design or subdesign.

By default, this command only affects the current level of the
hierarchy.

-no_verbose Suppresses info and warning messages.

-obs_only Removes only the observability logic.

Related command: report clock_gating on page 730
July 2009 713 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating share

clock_gating share
[-hierarchical] [-max_level integer]
[-max_stage {integer|string}]

Extracts the enable function shared by clock-gating logic and inserts shared clock-gating
logic with the common enable sub function as the enable signal. The resulting netlist has
multiple stages of clock-gating logic.

Note: This command works only on a netlist whose clock-gating logic was inserted by the
RC-LP engine.

Options and Arguments

-hierarchical Inserts shared clock-gating logic down the hierarchy starting
from the design or current hierarchical instance.

By default, this command only affects the current level of the
hierarchy.

-max_level integer Specifies the maximum levels of logic (buffers and inverters
excluded) to traverse in the enable fanin of clock-gating
instances to extract the common enable function.

Default: 5

-max_stage {integer|string}

Specifies the maximum number of stages of shared
clock-gating logic.

To specify the same maximum number of stages for all clocks,
specify an integer.

To specify the maximum number of stages per clock, use a
string. The string must have the following format:

{ {clock integer} {clock integer} ...}

If this option is not specified, no limit is applied to the number of
stages.
July 2009 714 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Examples

■ The following command allows sharing clock-gating logic across the hierarchy starting
from the current directory and allows traversing two levels of logic to extract the common
enable function.

clock_gating share -hierarchical -max_level 2

■ The following command will insert a maximum of 2 stages of shared clock-gating logic
for clock clk1 and a maximum of 3 stages of clock-gating logic for clock clk2.

clock_gating share -max_stage { {clk1 2} {clk2 3} }

Related Information

Multi-Stage Clock Gating in Low Power in Encounter RTL Compiler

Related command: report clock_gating on page 730
July 2009 715 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
clock_gating split

clock_gating split
[-hierarchical] [-max_level integer]
[-power_driven] [-start_from instance]

Splits a single clock gating instance with a complex enable function into multiple stages of
clock-gating logic.

Note: This command works only on a netlist whose clock-gating logic was inserted by the
RC-LP engine.

Options and Arguments

Examples

■ The following command allows splitting clock-gating instances across the hierarchy of
hierarchical instance i1.

clock_gating split -hierarchical -start_from [find / -inst i1]

-hierarchical Allows splitting of clock-gating logic down the hierarchy starting
from the current directory.

By default, this command only affects the current level of the
hierarchy.

-max_level integer Specifies how many times a complex enable function can be
split.

Default: 1 allowing the complex enable function to be split into
two stages.

-power_driven Forces to use the signal with smallest toggle rate as the
root-level enable.

By default, the RC-LP engine considers timing first and uses
the late signal as the root-level enable.

-start_from instance

Splits the clock-gating logic starting from the specified
hierarchical instance.
July 2009 716 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
■ The following command allows splitting a single clock-gating instance with a complex
enable function into three stages of clock-gating instances across the hierarchy starting
from the current directory.

clock_gating split -hierarchical -max_level 2

Related Information

Multi-Stage Clock Gating in Low Power in Encounter RTL Compiler

Related command: report clock_gating on page 730
July 2009 717 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
read_saif

read_saif [-scale scale_factor]
[-update [-weight weight_factor]]
[-verbose] [-instance instance] file

Reads switching activity information in Synopsys switching activity interchange format (SAIF)
and converts it internally to the Toggle Count Format (TCF) for power estimation.

The read_saif command can read files that have been compressed with gzip (.gz
extension). The .gz file is unzipped in memory while the file is read in.

Note: If you read in subsequent SAIF files without the -update option, only the probability
values and toggle counts of the pins and nets in the current SAIF file are overwritten. The
other net values remain unchanged.

The following applies when updating the probability values and toggle counts:

■ If the probability values and toggle rates were not previously user asserted, the updated
probability and toggle rates are determined by the values specified in the SAIF file.

■ If the probability and toggle rates were previously user asserted, the new probability and
toggle rates are calculated as follows:

prob_new = (prob_old + w * prob_spec)/(1+w)

tr_new = (tr_old + w * tc_spec/duration_spec)/(1+w)

where prob_old and tr_old are the stored values, and prob_spec, tc_spec, and
duration_spec are the probably, toggle count, and duration values derived from the
new SAIF file.

Options and Arguments

file Specifies the name of the SAIF file. The file can have any
name, suffix, or length.

-instance instance Reads in the switching activities for the specified instance.

The instance name can refer to an instance in the design
loaded in RC, or can refer to an instance name in the SAIF file.
July 2009 718 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
■ If the instance name refers to an instance in RTL Compiler,
the RC-LP engine asserts switching activities on that
instance in the loaded design.

In this case, the SAIF file is incomplete and contains only
switching activities for the specified instance.

■ If the instance name refers to an instance in the SAIF file,
the RC-LP engine asserts switching activities on the design
loaded in RTL Compiler.

In this case, a partial design is loaded in RTL Compiler.
However, the SAIF file contains switching activities for the
full design. This SAIF file must be in hierarchical SAIF
format.

Note: The name of the instance in the SAIF file does not
need to match the name of the design.

-scale scale_factor

Scales the toggle counts in the SAIF file by dividing them by the
specified factor. Use a positive (non-zero) floating number.

Default: 1.0

-update Indicates that you are updating the probability values and toggle
counts.

-verbose Prints a message for each net that is asserted.

Default: Silent mode. Prints the percent completion messages.

-weight weight_factor

Specifies the relative weight of the probability values and toggle
rates in the new SAIF file with respect to the probability values
and toggle rates currently stored in the design. Use a positive
floating number. This option is only valid with the -update
option.

Default: 1.0
July 2009 719 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Examples

For the following examples, consider the following SAIF file (and2.saif):

(SAIFILE
(SAIFVERSION "2.0")
(DIRECTION "backward")
(DESIGN "a")
(DATE "date")
(VENDOR "Cadence Design Systems Inc.")
(PROGRAM_NAME "program")
(VERSION "version")
(DIVIDER /)
(TIMESCALE 1 ns)
(DURATION 1000.00)
(INSTANCE a

(NET
(in2

(T0 700) (T1 300) (TC 16)
)
("in1"

(T0 900) (T1 100) (TC 9)
)
(out

(T0 100) (T1 900) (TC 7)
)

)
)
)

■ The following command reads the SAIF file without any additional options:

rc:/> read_saif and2.saif

Check the asserted toggle rates on nets in1 and in2:

rc:/> get_attr lp_asserted_toggle_rate nets/in1
0.009000

rc:/> get_attr lp_asserted_toggle_rate nets/in2
0.016000

■ The following command scales the toggle counts in the SAIF file by a factor 2:

rc:/> read_saif and2.saif -scale 2.0

Check the asserted toggle rates on nets in1 and in2:

rc:/> get_attr lp_asserted_toggle_rate nets/in1

0.004500

rc:/> get_attr lp_asserted_toggle_rate nets/in2

0.008000
July 2009 720 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
■ In the following example, assume you have read in the and2.saif file, and you read in
the following and2_new.saif file:

(SAIFILE
...
(TIMESCALE 1 ns)
(DURATION 1000.00)
(INSTANCE a

(NET
(in1

(T0 900) (T1 100) (TC 5)
)

)
)
)

The following command updates the stored switching activites with the data in the
and2_new.saif and gives a two times higher weight on the values in the
and2_new.saif file.

read_saif -update -weight 2 and2_new.saif

Check the asserted toggle rates on nets in1:

rc:/> get_attr lp_asserted_toggle_rate nets/in1

0.006333

This can be caluclated as follows:

tr_new = (tr_old + w * tc_spec/duration_new)/(1+w)

= (0.009000 + 2 * 0.005000)/ (1+2) = 0.006333

Related Information

Providing Switching Activity Information in Low Power in Encounter RTL Compiler.

Affects this command: report power on page 732

Sets these attributes: lp_asserted_probability

lp_asserted_toggle_rate

Related attributes: lp_probability_type

lp_toggle_rate_type
July 2009 721 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
read_tcf

read_tcf [-scale scale_factor]
[-update [-weight weight_factor]]
[-verbose] [-instance instance]
[-ignorecase] file

Reads or updates probability values and toggle counts of the pins and nets in the specified
Toggle Count Format (TCF) file and stores the assertions as pin or net attributes, so they can
be used for power estimation and optimization.

The read_tcf command can read files that have been compressed with gzip (.gz
extension). The .gz file is unzipped in memory while the file is read in.

Note: If you read in subsequent TCF files without the -update option, only the probability
values and toggle counts of the pins and nets in the current TCF file are overwritten. The other
net values remain unchanged.

The following applies when updating the probability values and toggle counts:

■ If the probability values and toggle rates were not previously user asserted, the updated
probability and toggle rates are determined by the values specified in the TCF file.

■ If the probability and toggle rates were previously user asserted, the new probability and
toggle rates are calculated as follows:

prob_new = (prob_old + w * prob_spec)/(1+w)

tr_new = (tr_old + w * tc_spec/duration_spec)/(1+w)

where prob_old and tr_old are the stored values, and prob_spec, tc_spec, and
duration_spec are the probably, toggle count, and duration values specified in the
new TCF file.

Options and Arguments

file Specifies the name of the TCF file. The file can have any name,
suffix, or length.

-ignorecase Ignores the case of net and pin names in the TCF file when
searching for the matching net or pin in the design.

By default, case is taken into account.

Note: Using this option might result in increased run time.
July 2009 722 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
-instance instance

Reads in the switching activities for the specified instance.

The instance name can refer to an instance in the design
loaded in RC, or can refer to an instance name in the TCF file.

■ If the instance name refers to an instance in RTL Compiler,
the RC-LP engine asserts switching activities on that
instance in the loaded design.

In this case, the TCF file is incomplete and contains only
switching activities for the specified instance.

■ If the instance name refers to an instance in the TCF file, the
RC-LP engine asserts switching activities on the design
loaded in RTL Compiler.

In this case, a partial design is loaded in RTL Compiler.
However, the TCF file contains switching activities for the
full design. This TCF file must be in hierarchical TCF
format.

Note: The name of the instance in the TCF file does not
need to match the name of the design.

-scale scale_factor

Scales the toggle counts in the TCF file by dividing them by the
specified factor. Use a positive (non-zero) floating number.

Default: 1.0

-update Indicates that you are updating the probability values and toggle
counts.

-verbose Prints a message for each net that is asserted.

Default: Silent mode. Prints the percent completion messages.

-weight weight_factor

Specifies the relative weight of the probability values and toggle
rates in the new TCF file with respect to the probability values
and toggle rates currently stored in the design. Use a positive
floating number. This option is only valid with the -update
option.

Default: 1.0
July 2009 723 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Examples

■ Consider the following TCF file (example1.tcf):

tcffile () {
tcfversion : "1.0";
duration : "1.500000e+05";
unit : "ns";
instance () {
pin () {

"i_12/Z" : "0.566 747";
"n_n1/B" : "0.516 475";
"hier1/i_0/Z" : "0.5 500";
"hier1/n_n0/Z" : "0.5 500";
"hier1/n_n0/A" : "0.5 500";
"hier1/i_0/A" : "0.5 500";
"hier1/i_0/B" : "0.5 500";
"n_n1/A" : "0.61 516";

}
}

}

To read this TCF file (example1.tcf), use the following command:

rc:/> read_tcf example1.tcf

■ In the following TCF file (example2.tcf), the only difference with the previous TCF file
is that the duration in example2.tcf is half of the duration in example1.tcf.

tcffile () {
tcfversion : "1.0";
duration : "0.75000e+05";
unit : "ns";
instance () {
pin () {

"i_12/Z" : "0.566 747";
"n_n1/B" : "0.516 475";
"hier1/i_0/Z" : "0.5 500";
"hier1/n_n0/Z" : "0.5 500";
"hier1/n_n0/A" : "0.5 500";
"hier1/i_0/A" : "0.5 500";
"hier1/i_0/B" : "0.5 500";
"n_n1/A" : "0.61 516";

}
}

}

To make the toggle rates on all pins the same as in the previous example, use the
following command:

rc:/> read_tcf -scale 2.0 example2.tcf
July 2009 724 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
■ Consider the following TCF file (example1.tcf):

tcffile () {
tcfversion : "1.0";
duration : "1.000000e+05";
unit : "ns";
instance () {
pin () {

"i_0/A" : "0.5 500";
"i_0/B" : "0.6 600";
"i_0/Z" : "0.7 700";

}
}

}

Assume you read this TCF file with the following command:

rc:> read_tcf example1.tcf

Now consider the following TCF file (example2.tcf):

tcffile () {
tcfversion : "1.0";
duration : "1.500000e+05";
unit : "ns";
instance () {
pin () {

"i_0/A" : "0.5 600";
"i_0/B" : "0.6 750";
"i_0/Z" : "0.7 900";

}
}

}

Assume you read this TCF file with the following command:

rc:> read_tcf -update -weight 0.5 example2.tcf

You would get the same result by:

a. Creating the following TCF file (example3.tcf)

tcffile () {
tcfversion : "1.0";
duration : "1.500000e+05";
unit : "ns";
instance () {
pin () {

"i_0/A" : "0.5 700";
"i_0/B" : "0.6 850";
"i_0/Z" : "0.7 1000";

}
}

}

b. Reading the example3.tcf file using the following command:

read_tcf example3.tcf
July 2009 725 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Related Information

Reading Switching Activity Information from a TCF File in Low Power in Encounter RTL
Compiler

Checking System Messages when Reading Switching Activities in Low Power in Encounter
RTL Compiler

TCF Syntax in Toggle Count Format Reference.

Affects this command: report power on page 732

Sets these attributes: lp_asserted_probability

lp_asserted_toggle_rate

Related attributes: lp_probability_type

lp_toggle_rate_type
July 2009 726 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
read_vcd

read_vcd
[-static
| -activity_profile [-time_window time]
[-simvision] [-write_sst2 file]]

[-start_time start_monitoring_time]
[-end_time end_monitoring_time]
[-module {design|subdesign}] [-vcd_module module]
 vcd_file

Reads a Value Change Dump (VCD) file for power analysis. You can

■ Perform static power analysis

■ Build an activity profile

Note: If no options are specified, static power anlaysis is performed by default.

The read_vcd command can read files that have been compressed with gzip (.gz
extension). The .gz file is unzipped while the file is read in.

Options and Arguments

-activity_profile Builds a profile of the activities for the set scope.

By default, profiling is done for the whole design. You can limit
the scope to a portion of the design by setting the
lp_dynamic_analysis_scope attribute to true on those
instances for which you want to build the profile.

The RC-LP engine captures the toggle count of objects within a
given time window. The object can be a net, pin or a
hierarchical instance. For a hierarchical instance, the activity
will be the sum of the activities of the objects in that instance.

Note: By default, the read_vcd command performs static
power analysis if neither the -static or
-activity_profile option was specified.

-end_time end_monitoring_time

Specifies the time you want to end monitoring the switching
activities or events. Specify a value larger than zero in
picoseconds.

By default, the activities or events are monitored till the end (last
timestamp of the VCD file).
July 2009 727 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
-module {design | subdesign}

Specifies the name of the design or subdesign in the RTL
Compiler hierarchy to which the parsed VCD hierarchy
(specified through the -vcd_module option) corresponds.

For example, if a partial design is loaded in RTL Compiler but
you have a VCD file that contains switching activities for the full
design, the top design in RTL Compiler will correspond to an
instance in the VCD hierarchy.

You can also have a full design loaded in RTL Compiler, but
only have a partial VCD. In that case you need to specify the
name of the subdesign in the RTL Compiler hierarchy to which
the VCD file applies.

By default, the VCD file applies to the top design in the RTL
Compiler hierarchy. If multiple top designs exists, you must
specify the name of the top design.

-simvision Invokes SimVision to display the activity profile.

Note: To use this option you need to have SimVision installed
and your operating system PATH environment variable must
include the path to SimVision.

-start_time start_monitoring_time

Specifies the time you want to start monitoring the switching
activities or events. Specify a value larger than zero in
picoseconds.

By default, the first timestamp in the VCD file is considered as
the start time to monitor.

-static Calculates the switching activities of each of the nets and pins
from the time you want to start monitoring the switching
activities to the time you want to stop monitoring, and then
stores the information as assertions on the nets and pins.

By default, the read_vcd command performs static power
analysis if neither the -static or -activity_profile or
option was specified.
July 2009 728 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Examples

■ The following command reads my_vcd.vcd, generates an activity profile from 10 to
100 ps based on a time window of 10ps, and invokes SimVision to display the activity
profile.

read_vcd -vcd_module mid2 -activity_profile -start_time 10 -end_time 100 \
-time_window 10 -simvision my_vcd.vcd

Related Information

Reading Switching Activity Information from a VCD File in Low Power in Encounter RTL
Compiler

-time_window window

Specifies the time increment, in picoseconds, in which you want
the RC-LP engine to divide the period during which the events
are monitored. The specified time window must be larger than
zero.

By default, the time window is calculated based on the setting of
the lp_power_analysis_effort root attribute and the
values of the -start_time and -end_time options.

vcd_file Specifies the name of the value change dump (VCD) file.

-vcd_module module

Starts parsing the VCD hierarchy from the specified module.
You can specify to start parsing from the top or from a particular
module in the VCD hierarchy.

Default: first scope encountered is used as the top scope

-write_sst2 file Specifies the prefix of the SST2 database files to generate to
view the data in other waveform viewers.

Affects this command: report power on page 732

Related attributes: lp_dynamic_analysis_scope

lp_power_analysis_effort
July 2009 729 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
report clock_gating

Refer to report clock_gating in Chapter 8, “Analysis and Report.”
July 2009 730 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
report operand_isolation

Refer to report operand_isolation in Chapter 8, “Analysis and Report.”
July 2009 731 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
report power

Refer to report power in Chapter 8, “Analysis and Report.”
July 2009 732 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
state_retention

state_retention
{connect_power_gating_pins | swap}

Defines the aspects of mapping to state retention cells.

Options and Arguments

Related Information

connect_power_gating_pins

Connects the power gating pins in a mapped netlist.

swap Replaces sequential cells with their equivalent state retention
power gating cells in a mapped netlist.

Related commands: state_retention connect_power_gating_pins on
page 734

state_retention swap on page 735
July 2009 733 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
state_retention connect_power_gating_pins

state_retention connect_power_gating_pins

Connects the power gating pins according to the driver specifications.

Use this command if you

■ Replaced the sequential cells with state-retention cells after mapping and did not specify
to hook up the power gating pins at that time (used state_retention swap command
without the -connect_power_gating_pins option).

■ Specified the driver specifications (state_retention define_driver commands)
after mapping (although the mapping instructions were given before mapping)

Related Information

State-Retention Cell Replacement when Starting with Mapped Netlist in Low Power in
Encounter RTL Compiler

Related attributes: power_gating_pin_class

power_gating_pin_phase
July 2009 734 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
state_retention swap

state_retention swap
[-hierarchical]
[-start_from instance]
[-connect_power_gating_pins]

Replaces sequential cells with their equivalent state retention power gating cells in a mapped
netlist.

Options and Arguments

Related Information

State-Retention Cell Replacement when Starting with Mapped Netlist in Low Power in
Encounter RTL Compiler

-connect_power_gating_pins

Hooks up the power gating pins with their drivers.

The drivers are specified through the lp_srpg_pg_driver
instance attribute.

-hierarchical Allows traversing the design hierarchy to map.

By default, this command only affects instances at the current
level of the design hierarchy.

-start_from instance

Starts replacing sequential cells from the specified hierarchical
instance.

By default, the process starts from the current location in the
design hierarchy.

Affected by these attributes: hdl_enable_proc_name

hdl_proc_name

lp_map_to_srpg_type
July 2009 735 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
write_forward_saif

write_forward_saif
[-library library_path...
|-library_domain library_domain]
[> file]

Prints the library forward SAIF file. This file contains the state-dependent and path-dependent
(SDPD) directives needed to generate backward SAIF files during simulation.

Note: You do not need to have any designs loaded to write out a forward SAIF file. You only
need to have the libraries loaded.

Options and Arguments

Examples

■ The following example redirects the forward SAIF information for the cg library to the
my.saif file:

write_forward_saif -library /libraries/cg > my.saif

file Specifies the file to which to write the library forward SAIF
information.

If not specified, the information is written to the screen.

-library library_path...

Specifies the paths to the libraries for which to generate the
forward SAIF information.

If not specified, the information is generated for all libraries that
are loaded.

-library_domain library_domain

Specifies the path to the library domain containing the libraries
for which to generate the forward SAIF information.

If not specified, the information is generated for all libraries in all
library domains.

Note: This option only applies if you created library domains
using the create_library_domain command.
July 2009 736 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
■ The following example redirects the forward SAIF information for the libraries in library
domain d1 to the screen:

write_forward_saif -library_domain /libraries/library_domains/d1

Related Information

Related commands: create_library_domain on page 753

read_saif on page 718
July 2009 737 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
write_saif

write_saif [-duration simulation_period] [-computed]
[-boundary_only] [-include_hier_ports] [> file]

Writes a hierarchical SAIF file containing the user-asserted or computed (if requested)
probability and toggle count of the pins in the design.

By default, the RC-LP engine writes out the user-asserted switching activities of all leaf
instance output pins and primary inputs ports.

The write_saif command writes out a compressed SAIF file if you add the .gz extension
to the file name, but is not removed from the directory.

Options and Arguments

-boundary_only Writes out the switching activities of the primary inputs ports
and the leaf sequential instance output pins.

-computed Adds the computed probability and toggle count of the pins and
nets to the SAIF file. By default only the asserted values are
written out.

-duration simulation_period

Modifies the duration for which the toggle count is written in the
SAIF file. By default, toggle counts are given for a duration of
one second. By modifying the duration, smaller toggle counts
(numbers) can be written. For example, if the toggle rate is
3e-3/ns, the default printed toggle count is 300000. If the
simulation period is set to1e+5 ns, the printed toggle count will
be 300.

Note: Do not choose the duration too small, otherwise the
toggle count will be rounded to 0, because only integer numbers
are written out.

Default: 1e+9 ns

file Specifies the name of the file to which to write the probability
values and toggle count values.

-include_hier_ports

Includes the (computed) switching activities for the hierarchical
output ports.
July 2009 738 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Examples

■ The following example writes out a SAIF file with the user-asserted switching activities.

write_saif > my.saif

Note: If you did not read in a TCF or SAIF file, and you did not set toggle rate or
probability values on any nets, this SAIF file will not contain any switching activities
because you did not request to write out the computed values.

Related Information

By default, the command writes out the toggle count for a duration of 1s. For example, if the
toggle rate is 3e-3/ns and the simulation period is 1e5 ns, the printed toggle count will be 300

Affected by these attributes: lp_asserted_probability

lp_asserted_toggle_rate
July 2009 739 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
write_tcf

write_tcf [-duration simulation_period] [-computed]
[-hierarchical] [-include_hier_ports] [> file]

Writes a TCF file containing the user-asserted or computed (if requested) probability and
toggle count of the pins in the design.

By default, the RC-LP engine writes out the user-asserted switching activities of all leaf
instance output pins and primary inputs ports.

The write_tcf command writes out a compressed TCF file if you add the .gz extension to
the file name.

Options and Arguments

-boundary_only Writes out the switching activities of the primary inputs ports
and the leaf sequential instance output pins.

-computed Adds the computed probability and toggle count of the pins and
nets to the TCF file. By default only the asserted values are
written out.

-duration simulation_period

Modifies the duration for which the toggle count is written in the
TCF file. By default, toggle counts are given for a duration of 1s

By modifying the duration, smaller toggle counts can be written.
For example, if the toggle rate is 3e-3/ns, the default printed
toggle count is 300000. If the simulation period is 1e5 ns, the
printed toggle count will be 300.

Note: Do not choose the period too small, otherwise the toggle
count will be rounded to 0, because only integer numbers are
written out.

Default: 1e+9 ns

file Specifies the name of the file to which to write the probability
values and toggle count values.

-hierarchy Writes out a TCF file in hierarchical format.

By default, the RC-LP engine writes out a flat TCF file.
July 2009 740 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
Examples

■ The following example writes out a flat TCF file with the user-asserted switching
activities.

write_tcf > my.tcf

Note: If you did not read in a TCF or SAIF file, and you did not set toggle rate or
probability values on any nets, this TCF file will not contain any switching activities
because you did not request to write out the computed values.

Related Information

TCF Syntax in Toggle Count Format Reference

-include_hier_ports

Includes the (computed) switching activities for the hierarchical
output ports.

Related command: read_tcf on page 722

Affected by these attributes: lp_asserted_probability

lp_asserted_toggle_rate
July 2009 741 Product Version 9.1

Command Reference for Encounter RTL Compiler
Low Power Synthesis
July 2009 742 Product Version 9.1

Command Reference for Encounter RTL Compiler

July 2009 743 Product Version 9.1

13
Advanced Low Power Synthesis

■ check_cpf on page 744

■ check_library on page 746

■ commit_cpf on page 752

■ create_library_domain on page 753

■ isolation_cell remove on page 754

■ level_shifter remove on page 757

■ read_cpf on page 760

■ reload_cpf on page 762

■ report isolation on page 764

■ report level_shifter on page 765

■ verify_power_structure on page 767

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 744 Product Version 9.1

check_cpf

check_cpf
[-isolation | -level_shifter | -retention | -all]
[-detail] [-continue_on_error] [> file]

Checks the validity of the CPF rules against the RTL of the design. This enables designers to
capture any violations of the low power intent of the design early in the design cycle.

■ If no low power rule check errors are detected, the command returns 1.

■ If rule check errors are detected, the command returns 0. In this case, you need to make
the necessary changes to your CPF file before proceeding further with synthesis.

To run this command you need to have access to the Encounter ® Conformal ® Low Power
software.

Options and Arguments

-all Reports all problems with the CPF file.

By default, all problems will be reported.

-continue_on_error Allows the tool to continue when low power rule check errors
are encountered.

-detail Provides a detailed report.

file Redirects the report to the specified file.

-isolation Reports only problems with the isolation rules.

-level_shifter Reports only problems with the level-shifter rules.

-retention Reports only problems with the state retention rules.

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 745 Product Version 9.1

Examples

The following command reports problems with the level shifter rules.

rc:/designs/top> check_cpf -level_shifter

Using Conformal version xxx.

===
 CPF LEVEL SHIFTER VIOLATIONS
===
CPF_LS1: No level shifter rule specified for power domain crossing.
 Severity: Error Occurrence: 8

Error : Low Power rule check did not finish successfully. [RCLP-203] [check_cpf]
 : Fix the errors before proceeding further or set the attribute
’clp_treat_errors_as_warnings’ appropriately.
0

Related Information

Using CPF for Multiple Supply Voltage Designs in Low Power in Encounter RTL Compiler

Using CPF for Designs Using Power Shutoff Methodology in Low Power in Encounter RTL
Compiler

Interfacing with Conformal Low Power in Interfacing between Encounter RTL Compiler
and Encounter Conformal

Common Power Format Rule Checks in Encounter ® Conformal ® Low Power Reference
Manual

Related commands: read_cpf on page 760

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 746 Product Version 9.1

check_library

check_library
[-isolation_cell] [-level_shifter_cell]
[-retention_cell]
[-library_domain library_domain_list]
[-libcell libcell_list]
[> file]

Allows you to check specific information in the loaded libraries with regards to level shifters,
isolation cells, and state retention cells. The report also lists the unusable cells. The
information returned can be fine tuned by combining several options.

Without any options specified, this command list the number of level shifters, isolation cells,
and state retention cells available in each of the library domains. If no library domains exist,
the report lists the library names instead.

Options and Arguments

file Specifies the name of the file to which to write out the library
information.

-isolation_cell Returns two lists of library cells:

■ A list of pure isolation cells with their isolation type

■ A list of combo cells with for each cell

❑ The isolation type

❑ The voltage ranges that they support

❑ Whether the combo cell can be used between a lower
and higher voltage, or vice versa

❑ The valid location for the cell

-level_shifter_cell

Returns a list of level shifter cells found in each of the library
domains and specifies for each cell

■ The supported input and output range

■ Whether the level shifter can be used between a lower and
higher voltage, or vice versa

■ The valid location for the cell

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 747 Product Version 9.1

Examples

■ The following command requests a general check of the libraries that were loaded. When
requesting a general check, the report lists the number of usable and unusable level
shifters, isolation cells, combo cells, and state retention cells in each library or library
domain.

rc:/designs/Design2> check_library

==
 ...
 Module: Design2
 Library domain: lib_074v
 Domain index: 0
 Technology libraries:
 Operating conditions: _nominal_ (balanced_tree)
 Library domain: lib_090v
 Domain index: 1
 Technology libraries:
 Operating conditions: _nominal_ (balanced_tree)
 Library domain: lib_110v
 Domain index: 2
 Technology libraries:
 Operating conditions: _nominal_ (balanced_tree)
 Library domain: lib_120v
 Domain index: 3
 Technology libraries: ...
 Operating conditions: _nominal_ (balanced_tree)
 Wireload mode: enclosed
 Area mode: timing library
==

-library_domain library_domain_list

List the number of level shifters, isolation cells, and state
retention cells available in each of the specified library domains.

-libcell libcell_list

If not combined with any other option, indicates for each of the
specified library cells to which library domain it belongs,
whether it is a level shifter, isolation cell, retention cell, always
on cell, and the function of the cell.

-state_retention_cell

Returns for each library domain the following information:

■ A list of sequential elements that have no state-retention
equivalent

■ A list of state-retention cells available in that domain

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 748 Product Version 9.1

===
Library Domain Total cells LS cell ISO cell Combo (LS+ISO) SR Flops

lib_074v(0.74) 345 2 25 2 5
lib_120v(1.2) 341 0 13 0 5
lib_090v(0.9) 345 2 25 2 5
lib_110v(1.1) 343 2 17 2 5

Unusable libcells
=================

===
Library Domain Total cells LS cell ISO cell Combo (LS+ISO) SR Flops

lib_074v(0.74) 249 34 45 16 49
lib_120v(1.2) 232 15 47 8 49
lib_090v(0.9) 249 34 45 16 49
lib_110v(1.1) 239 22 47 10 49

■ The following command checks the libraries in library domain lib_120v.

rc:/> check_library -level_shifter_cell -library_domain lib_120v
==
......
Library domain: lib_074v
Domain index: 0
Technology libraries: ...
Operating conditions: BALANC_TREE (balanced_tree)

Library domain: lib_120v
Domain index: 1
Technology libraries: ...
Operating conditions: BALANC_TREE (balanced_tree)

Wireload mode: enclosed
==

===
Library Domain Total cells LS cell ISO cell Combo (LS+ISO) SR Flops

lib_120v(1.2) 11 3 10 2 0

Unusable libcells
=================

===
Library Domain Total cells LS cell ISO cell Combo (LS+ISO) SR Flops

lib_120v(1.2) 0 0 0 0 0

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 749 Product Version 9.1

■ The following command checks the libraries for isolation cells only. In the example below,
the cell names in the Combo cell column were abbreviated for documentation purposes
to fit the report. The cell names are not abbreviated by the tool.

rc:/> check_library -isolation_cell

==
......

Library domain: lib_074v
Domain index: 0
Technology libraries: ...
Operating conditions: BALANC_TREE (balanced_tree)

Library domain: lib_120v
Domain index: 1
Technology libraries: ...
Operating conditions: BALANC_TREE (balanced_tree)

Wireload mode: enclosed
==

Pure isolation cells
====================
==
Library Domain Isolation Type Isolation cells
--
lib_074v enable_high_out_high OR2XCP

OR2XHP
....
AND2XCP
AND2XH
....

lib_120v enable_high_out_high OR2XCPPP
OR2XHPPP
....
AND2XCPPP
AND2XHPPP
....

--

Combo cells
===========

===
Library Isolation Combo Input Output Direction Location
Domain type cell Range(V) Range(V)
--
lib_074v enable_high_out_highBH1XH 0.74-0.74 1.2-1.2 up to

......BH1XL 0.74-0.74 1.2-1.2 up to
enable_low_out_low1CLXH 1.2-1.2 0.74-0.74 down to

......1CLXL 1.2-1.2 0.74-0.7 down to

......PPPAD 0.74-0.74 1.2-1.2 up to

......PPPAD 0.74-0.74 1.2-1.2 up to
lib_120v enable_high_out_highBH1XH 0.9-0.9 1.2-1.2 up to

enable_low_out_low1CLXH 0.9-0.9 1.2-1.2 up to
--

Note: If the libraries would have unusable isolation cells, the report would list the names
of the isolation cells per library or library domain.

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 750 Product Version 9.1

■ The following command checks the function of library cell LSHLL1CLXL.

rc:/> check_library -libcell LSHLL1CLXL

===
Library Libcell Level Isolation Retention Always Function
domain shifter cell flop ON

lib_074v LSHLL1CLXL true true false false Y = A * B

■ The following command checks the level shifter characteristics of the specified cell.

rc:/> check_library -libcell LSHLL1CLXL -level_shifter_cell

==
......
Library domain: lib_074v
Domain index: 0
Technology libraries: ...
Operating conditions: BALANC_TREE (balanced_tree)

Library domain: lib_120v
Domain index: 1
Technology libraries: ...
Operating conditions: BALANC_TREE (balanced_tree)

Wireload mode: enclosed
==

Level shifter report
====================

===
Library Level shifter Input Output Direction Location
Domain cell Range(V) Range(V)

lib_074v LSHLL1CLXL 1.2-1.2 0.74-0.74 down to

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 751 Product Version 9.1

■ The following command checks the libraries for state retention cells. The report
distinguishes between flip-flops and latches. In the example below the library has no
latches.

rc:/> check_library -retention_cell

==
......
==

Flops without corresponding state-retention flops
--

===
Library Domain Flops

110_lib HD65_LS_DFPHQNX5 HD65_LS_DFPRQNX10 HD65_LS_SDFNRX5

HD65_LS_SDFPHQNX10 HD65_LS_SDFPSQNX20

Usable state-retention flops
--

==
Library Domain Flops

090_lib HD65_LS_SDFNRX10_SRPG HD65_LS_SDFNRX5_SRPG
110_lib HD65_LS_SDFPHQNX10_SRPG HD65_LS_SDFPHQX10_SRPG HD65_LS_SDFPQNX10_SRPG

HD65_LS_SDFPQX10_SRPG HD65_LS_SDFPRQNX10_SRPG HD65_LS_SDFPRQX10_SRPG
HD65_LS_SDFPRSQX10_SRPG HD65_LS_SDFPSQNX10_SRPG HD65_LS_SDFPSQX10_SRPG

--

Latches without corresponding state-retention latches

==
Library Domain Latches
--
--

Usable state-retention latches

==
Library Domain Latches
--
--

Related Information

Related commands: read_cpf on page 760

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 752 Product Version 9.1

commit_cpf

commit_cpf
[-level_shifter_only]
[-isolation_only]

Inserts level-shifter logic and isolation logic as requested based on the rules specified in
previously read in CPF file(s). If specified without any options, both level-shifter logic and
isolation logic are inserted.

Options and Arguments

Related Information

Using CPF for Multiple Supply Voltage Designs in Low Power in Encounter RTL Compiler

Using CPF for Designs Using Power Shutoff Methodology in Low Power in Encounter RTL
Compiler

-level_shifter_only Inserts only level-shifter logic according the rules specified in
CPF file(s).

-isolation_only Inserts only isolation logic.

Related commands: read_cpf on page 760

reload_cpf on page 762

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 753 Product Version 9.1

create_library_domain

create_library_domain domain_list

Creates the specified library domains. To use dedicated libraries with portions of the design,
you must use this command before you read in any libraries for the specified library domains.
The command returns the directory path to the library domains that it creates.

You can find the objects created by the create_library_domain command in:

/libraries/library_domains

Note: There is no limitation on the number of library domains you can create.

Options and Arguments

Examples

■ The following example creates three library domains:

rc:/> create_library_domain {dom_1 dom_2 dom_3}

/libraries/library_domains/dom_1 /libraries/library_domains/dom_2 /libraries/
library_domains/dom_3

Related Information

Create Library Domains in Encounter RTL Compiler Synthesis Flows.

domain_list Specifies the names of the library domains to be created.
Specify the library domains as a Tcl list.

Related attribute: library

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 754 Product Version 9.1

isolation_cell remove

isolation_cell remove
[iso_hier_instance_list | -hierarchical]
[-from_power_domain power_domain_list]
[-to_power_domain power_domain_list]

Removes hierarchical isolation cell instances from the design or the current hierarchical
instance. When you combine options only those hierarchical isolation cell instances that meet
all criteria are removed. The command returns the number of (hierarchical and leaf) isolation
cell instances that were removed.

RTL Compiler can remove any isolation logic that was inserted by RTL Compiler.

If the isolation logic was imported, RTL Compiler can only remove the hierarchical instance
if the following conditions are met:

1. The individual cells in the hierarchy are all

a. Mapped

b. Of the same type

❍ Pure isolation cells

❍ Pure isolation cells with at most one inverter at their enable

❍ Combo cells that combine level shifting and isolation

❍ Discrete cells—AND or OR cells with or without an inverter at one of the inputs.

2. The enable, data and out pins of each leaf isolation cell contained in isolation hierarchy
can be clearly distinguished.

Important

This command does not remove any ports that were created during isolation logic
insertion.

Options and Arguments

-from_power_domain power_domain_list

Removes all isolation cell instances whose drivers are output
pins of instances in the specified power domains.

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 755 Product Version 9.1

Examples

■ The following command removes all isolation cell instances that connect to the top-level
of the design.

rc:/> isolation_cell remove -hier
Removing isolation cells from ’/designs/top’ ...
Status
======
Number of isolation cell hierachical instances removed: 8
Isolation cells removed: 8
8

■ The following command removes all isolation cell instances driving instances in power
domain p4.

rc:/> isolation_cell remove -to_power_domain p4
Removing isolation cells from ’/designs/top’ ...
Status
======
Number of isolation cell hierachical instances removed: 3
Isolation cells removed: 3
3

■ The following command removes two specific isolation cell instances.

rc:/> isolation_cell remove {mux_10_14/RC_ISO_HIER_INST_23 \
mux_10_14/RC_ISO_HIER_INST_24}

Removing isolation cells from ’/designs/top’ ...
Status
======
Number of isolation cell hierachical instances removed: 2
Isolation cells removed: 2
2

-hierarchical Removes all isolation cell instances (that meet the from and to
criteria) down the hierarchy starting from the current directory.

iso_hier_instance_list

Specifies the names of the hierarchical isolation cell instances
to be removed.

-to_power_domain power_domain_list

Removes all isolation cell instances whose output pins are
driving instances in the specified power domains.

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 756 Product Version 9.1

■ The following command removes isolation cell instances that are driven by instances in
power domain p1 and that are driving instances in both power domains p2 and p4.

rc:/> isolation_cell remove -from_power_domain p1 -to_power_domain {p2 p4}
Removing isolation cells from ’/designs/top’ ...
Status
======
Number of isolation cell hierachical instances removed: 1
Isolation cells removed: 1
1

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 757 Product Version 9.1

level_shifter remove

level_shifter remove
{ [instance]...
| [-from_library_domain library_domain...]
[-to_library_domain library_domain...]
[-instance_from instance_list]
[-instance_to instance_list]
[-hierarchical] }
[-invalid_only]

Removes leaf or hierarchical level-shifter instances. Without any options specified, the
command can remove level shifters from the design or the current hierarchical instance. The
command returns the number of leaf level-shifter instances that were removed.

The RC-LP engine can remove invalid imported level shifters only if you specify the
-invalid_only option and the output of the imported level shifter is unconnected.

Important

If the preserve attribute on a leaf level shifter or its module is set to true, or
size_ok, or map_size_ok, it will not be removed. It can only be removed if the
preserve attribute was set to delete_ok, size_delete_ok, or false.

Options and Arguments

-from_library_domain library_domain

Removes all level shifters whose drivers are output pins of
instances in the specified library domain.

-hierarchical Removes all level shifters down the hierarchy starting from the
current directory.

instance Specifies the name of a leaf or hierarchical level-shifter instance
to be removed.

-instance_from instance_list

Removes all level shifters whose input pin is connected to

■ a specified leaf instance

■ an instance that is an immediate child of a specified
hierarchical instance.

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 758 Product Version 9.1

Examples

■ The following example removes all individual level shifters that connect to the top-level
of the design.

rc:/> level_shifter remove

Info : Total level shifter hierarchical instances removed. [LS-102]
: 1

Info : Total level shifter cells removed. [LS-103]
: 12

12

■ The following example removes all individual level shifters in the design across the
hierarchy.

rc:/designs/top> level_shifter remove -hier

level_shifter remove: remove level shifters
Info : Total level shifter hierarchical instances removed. [LS-102]

: 2
Info : Total level shifter cells removed. [LS-103]

: 13
13

■ The following example removes the level-shifter instance RC_LS_HIER_INST_56.

rc:/> level_shifter remove [find / -inst RC_LS_HIER_INST_56]

Info : Total level shifter hierarchical instances removed. [LS-102]
: 1

Info : Total level shifter cells removed. [LS-103]
: 12

12

Note: You can find the list of hierarchical level-shifter instance names in a detailed
hierarchical level-shifter report.

-instance_to instance_list

Removes all level shifters whose output pin is connected to

■ a specified leaf instance

■ an instance that is an immediate child of a specified
hierarchical instance.

-invalid_only Removes only level shifters that have become invalid.

-to_library_domain library_domain

Removes all level shifters whose output pins are driving
instances in the specified library domain.

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 759 Product Version 9.1

■ The following example removes all level shifters that have drivers in library domain 07v.

rc:/> level_shifter remove -from [find / -library_domain 07v]

Info : Total level shifter hierarchical instances removed. [LS-102]
: 1

Info : Total level shifter cells removed. [LS-103]
: 12

12

■ The following example removes all individual level shifters that connect to instance
outa_reg[6].

rc:/> level_shifter remove -instance_to [find / -inst outa_reg[6]]

Info : Total level shifter hierarchical instances removed. [LS-102]
: 0

Info : Total level shifter cells removed. [LS-103]
: 1

1

Related Information

Related commands: report level_shifter on page 765

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 760 Product Version 9.1

read_cpf

read_cpf [-library]
[-name_mapping_files file]
file [file]...

Reads the power intent for the design from the specified Common Power Format (CPF)
file(s).

Note: In general the read_cpf command does not change the netlist. However, the netlist
is changed if the CPF file contains

■ A set_instance command specified with the -port_mapping option

The -port_mapping option specifies the mapping of the virtual ports.

■ A set_design command specified with the -ports option

The -ports option specifies a list of virtual ports. These ports do not exist in the
definition of the module but will be needed for the control signals of the low power logic
such as isolation logic, state-retention logic, and so on.

Options and Arguments

file Specifies the name of the CPF file. The file can have any name,
suffix, or length.

-library Instructs to process the following statements in the CPF file:

define_isolation_cell
define_level_shifter_cell
define_library_set
define_state_retention_cell

-name_mapping_files file

Specifies the name of the file in which the changes to instance
and pin names have been recorded.

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 761 Product Version 9.1

Example

The following example script shows where to use the read_cpf command in the flow:

...
read_cpf -library my_design.cpf
read_hdl design2.v
elaborate
set_attr output_name_mapping_file name_mapper2.nmf design2
change_names -restricted "\[\]" -replace_str "_"
read_cpf -name_mapping_files name_mapper2.nmf my_design.cpf
...
commit_cpf
...

Related Information

Using CPF for Multiple Supply Voltage Designs in Low Power in Encounter RTL Compiler

Using CPF for Designs Using Power Shutoff Methodology in Low Power in Encounter RTL
Compiler

Using CPF for Designs Using Dynamic Voltage Frequency Scaling in Low Power in
Encounter RTL Compiler

Related commands: commit_cpf on page 752

reload_cpf on page 762

Related attribute: output_name_mapping_file

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 762 Product Version 9.1

reload_cpf

reload_cpf
[-name_mapping_files file]
[-design design]

Applies previously loaded constraints as needed to new design objects (ports/pins/nets/
instances) that are created during synthesis.

Options and Arguments

Example

The following example script shows where to use the reload_cpf command in the flow:

...

read_cpf -library my_design.cpf

read_hdl design2.v

elaborate

...

set_attr output_name_mapping_file name_mapper2.nmf design2

change_names -restricted "\[\]" -replace_str "_"

read_cpf -name_mapping_files name_mapper2.nmf my_design.cpf
...

synth -to_map -eff medium -no_incr

reload_cpf -name_mapping_files name_mapper2.nmf

commit_cpf

...

-design design Specifies the design for which you want to reapply the
previously loaded constraints.

If you omit this option, the constraints will be reapplied to the
current design.

-name_mapping_files file

Specifies the name of the file in which the changes to instance
and pin names have been recorded.

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 763 Product Version 9.1

Related Information

Using CPF for Multiple Supply Voltage Designs in Low Power in Encounter RTL Compiler

Using CPF for Designs Using Power Shutoff Methodology in Low Power in Encounter RTL
Compiler

Related commands: commit_cpf on page 752

read_cpf on page 760

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 764 Product Version 9.1

report isolation

For more information, refer to report isolation in Chapter 8, “Analysis and Report.”

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 765 Product Version 9.1

report level_shifter

For more information, refer to report level_shifter in Chapter 8, “Analysis and Report.”

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 766 Product Version 9.1

report state_retention

For more information, refer to report state_retention in Chapter 8, “Analysis and Report.”

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 767 Product Version 9.1

verify_power_structure

verify_power_structure
[-isolation] [-level_shifter] [-retention]
[-pre_synthesis | -post_synthesis]
[-all] [-detail] [continue_on_error] [> file]

Verifies whether the low power cells in the design conform to the rules and specifications in
the loaded CPF file. Specifically, RTL Compiler will flag if there are any missing isolation, level
shifter, or state retention cells or if the low power cells are not connected appropriately.

To run this command you need to have access to the Encounter ® Conformal ® Low Power
software.

Options and Arguments

Related Information

Using CPF for Multiple Supply Voltage Designs in Low Power in Encounter RTL Compiler

Using CPF for Designs Using Power Shutoff Methodology in Low Power in Encounter RTL
Compiler

-all Reports all violations.

-continue_on_error Allows the tool to continue when low power rule check errors
are encountered.

-detail Provides a detailed report.

file Redirects the report to the specified file.

-isolation Reports only isolation related violations.

-level_shifter Reports only level-shifter related violations.

-post_synthesis Runs Conformal Low Power, after synthesis, on low power cells.

-pre_synthesis Runs Conformal Low Power, before synthesis, to check the
existing low power cells.

-retention Reports only state retention related violations.

Command Reference for Encounter RTL Compiler
Advanced Low Power Synthesis

July 2009 768 Product Version 9.1

Interfacing with Conformal Low Power in Interfacing between Encounter RTL Compiler
and Encounter Conformal

Related commands: commit_cpf on page 752

reload_cpf on page 762

Command Reference for Encounter RTL Compiler

July 2009 769 Product Version 9.1

14
Design Exploration

■ dex_create_exploration_scenarios on page 770

■ dex_define_exploration_power_domain on page 771

■ dex_execute_exploration_scenarios on page 773

■ dex_report qor_summary on page 775

■ dex_report thread_info on page 776

■ dex_write_scenario on page 778

Command Reference for Encounter RTL Compiler
Design Exploration

July 2009 770 Product Version 9.1

dex_create_exploration_scenarios

dex_create_exploration_scenarios
-design design

Creates the exploration scenarios for the specified design. An exploration scenario
represents a specific set of operating voltages for the exploration power domains of an MSV
design.

You can find the objects created by the create_exploration_scenarios command in:

/designs/design/dex2/scenarios

The scenarios are named scenario_n.

Options and Arguments

Example

Assume you defined 3 exploration power domains. For two of the power domains, you defined
a voltage range that contains 4 voltages, while you keep one power domain at the same
voltage. In this case 16 scenarios will be created.

Related Information

Design Exploration in Low Power in Encounter RTL Compiler

-design design Specifies the design for which to create the exploration
scenarios.

Related command: dex_define_exploration_power_domain on page 771

Command Reference for Encounter RTL Compiler
Design Exploration

July 2009 771 Product Version 9.1

dex_define_exploration_power_domain

dex_define_exploration_power_domain
-name name [-default]
[-voltage_range string]
[instance_list] [-design design]

Defines an exploration power domain.

An exploration power domain is a power domain for which you try to find the best voltage.

Options and Arguments

Examples
dex_define_exploration_power_domain -name default_dom -default \

-voltage_range {ld0 ld0}
dex_define_exploration_power_domain -name cpu -voltage_range {ld0 ld3} \

[find / -inst cpu*]
dex_define_exploration_power_domain -name cntrl -voltage_range {ld0 ld3} \

[find / -inst cntrl*]

-default Indicates whether this is the default power domain.

-design design Specifies the design to which the power domain belongs.

instance_list Specifies the hierarchical instances that belong to this power
domain.

-name name Specifies the name of the power domain.

-voltage_range string

Specifies the voltage range to be explored for this power
domain.

Use the following format:

{library_domain1 library_domain2}

In CPF, a library set corresponds to an operating voltage of
the design. In RTL Compiler, a library domain corresponds to
a library set. To specify the voltage range, you reference the
corresponding library domains for the lower and upper
voltages.

To keep a power domain at a specific voltage, specify the
corresponding library domain twice.

Command Reference for Encounter RTL Compiler
Design Exploration

July 2009 772 Product Version 9.1

Related Information

Design Exploration in Low Power in Encounter RTL Compiler

Related command: dex_create_exploration_scenarios on page 770

Command Reference for Encounter RTL Compiler
Design Exploration

July 2009 773 Product Version 9.1

dex_execute_exploration_scenarios

dex_execute_exploration_scenarios -design design
[-sdc string]
[-pre_load file] [-post_load file]

Executes the different scenarios.

Note: This requires that you can perform super-threading.

Options and Arguments

Example
dex_execute_exploration_scenarios -design $DESIGN \

-sdc cpu.sdc \
-pre_load dex.preload.tcl \
-post_load dex.postload.tcl

The following is an example of a pre_load script:

set_attr super_thread_batch_command {bsub -q normal} /
set_attr super_thread_kill_command {bkill} /
set_attr super_thread_servers {batch batch} /
set_attribute lp_insert_clock_gating true /
set_attr tns_opto true /
set_attr lp_multi_vt_optimization_effort medium /

The following is an example of a post_load script:

edit_netlist uniquify /designs/*
set_attribute lp_clock_gating_max_flops 64 [find / -design *]
set_attribute lp_clock_gating_min_flops 2 [find / -design *]
set_attr max_leakage_power 0.900 /designs/*
set_attr max_dynamic_power 1.25 /designs/*

-design design Specifies the design for which to execute the exploration
scenarios.

-post_load file Specifies the name of the script that contains any attribute
settings or commands you want to use after elaborating the
design.

-pre_load file Specifies the name of the script that contains any attribute
settings or commands you want to use before elaborating the
design.

-sdc file Specifies the name of the SDC file to be used for the
exploration scenarios.

Command Reference for Encounter RTL Compiler
Design Exploration

July 2009 774 Product Version 9.1

Related Information

Design Exploration in Low Power in Encounter RTL Compiler

Related command: dex_write_scenario on page 778

Command Reference for Encounter RTL Compiler
Design Exploration

July 2009 775 Product Version 9.1

dex_report qor_summary

dex_report qor_summary
-design design [> file]

Reports the summary for all scenarios that were run. The report shows for each scenario or
thread the design area, the number of instances, the slack, the total negative slack, the total
leakage power, the net power, the internal power, and the total power.

Options and Arguments

Example

The following command shows the summary report for 16 threads or scenarios that were run
for design cpu_top.

rc:/> dex_report qor_summary -design cpu_top
Thread Leakage Net Internal Dynamic Total
Num. Area Instances Slack TNS Power (nW) Power (nW) Power (nW) Power (nW) Power (nW)

1 6234.16 632 -1443.60 37425 3405.34 57115.81 346969.48 404085.28 407490.62
2 6234.16 632 -1443.60 37425 3503.82 57255.88 347965.60 405221.48 408725.30
3 6234.16 632 -1443.60 37425 3609.77 57426.12 349111.69 406537.80 410147.57
4 6234.16 632 -1443.60 37425 3820.82 57750.55 351550.87 409301.42 413122.24
5 6569.52 677 -446.20 10353 4176.43 65126.80 473143.87 538270.66 542447.09
6 6569.52 677 -446.20 10353 4274.91 65275.51 474143.06 539418.58 543693.48
7 6569.52 677 -446.20 10353 4380.86 65455.54 475290.63 540746.17 545127.03
8 6569.52 677 -446.20 10353 4591.91 65800.52 477732.04 543532.57 548124.48
9 6187.09 582 6.70 0 4678.78 69764.79 608270.96 678035.75 682714.53

10 6187.09 582 6.70 0 4777.26 69916.19 609271.30 679187.50 683964.76
11 6187.09 582 6.70 0 4883.21 70099.26 610420.10 680519.37 685402.58
12 6187.09 582 6.70 0 5094.26 70450.61 612862.58 683313.19 688407.45
13 5316.33 417 20.10 0 5076.22 62415.03 840851.26 903266.29 908342.51
14 5316.33 417 20.10 0 5174.71 62556.72 841846.63 904403.35 909578.06
15 5316.33 417 20.10 0 5280.66 62728.78 842994.57 905723.35 911004.01
16 5316.33 417 20.10 0 5491.71 63057.05 845436.11 908493.16 913984.87

Related Information

Design Exploration in Low Power in Encounter RTL Compiler

-design design Specifies the design for which to write the report.

file Specifies the name of the file to which the report must be
written.

Related command: dex_write_scenario on page 778

Command Reference for Encounter RTL Compiler
Design Exploration

July 2009 776 Product Version 9.1

dex_report thread_info

dex_report thread_info
-design design
-thread thread_number
[-depth integer] [> file]

Reports the detailed information for the specified thread.

Options and Arguments

Example

The following command shows the detailed report for thread thread_16 for design cpu_top.
The report is shown for all levels of the hierarchy.
rc:/> dex_report thread_info -design /des*/* -thread thread_16

"thread_16" Summary

Library_domain(Voltage) Instances

 Design Voltage(LD) Area Instances Slack TNS Net Leakage Internal Dynamic Total
 (volts) (ps) (ps) Power(nW) Power(nW) Power(nW) Power(nW) Power(nW)

cpu_top 0.7(ld0) 5316.33 417 20.1 0 63057.05 5491.71 845436.11 908493.16 913984.87
 cntrl_1 1.08(ld3) 368.31 27 - - 356.04 449.34 2986.74 3342.78 3792.12
 cntrl_2 1.08(ld3) 368.31 27 - - 574.89 459.52 4569.86 5144.75 5604.27
 cpu_1 1.08(ld3) 840.16 64 - - 2093.25 922.35 166717.86 168811.12 169733.47
 mul_83_20 1.08(ld3) 429.50 48 - - 1432.19 457.85 3139.77 4571.96 5029.81
 cpu_2 1.08(ld3) 840.16 64 - - 277.60 789.41 168920.56 169198.16 169987.57
 mul_83_20 1.08(ld3) 429.50 48 - - 0.00 383.65 0.00 0.00 383.65
 cpu_3 1.08(ld3) 840.16 64 - - 723.17 941.78 162172.90 162896.07 163837.85
 mul_83_20 1.08(ld3) 429.50 48 - - 296.56 466.25 389.98 686.53 1152.78
 cpu_4 1.08(ld3) 840.16 64 - - 660.33 820.10 168977.64 169637.96 170458.06
 mul_83_20 1.08(ld3) 429.50 48 - - 0.00 396.92 0.00 0.00 396.92
 cpu_5 1.08(ld3) 840.16 64 - - 2684.62 915.73 169153.63 171838.24 172753.97
 mul_83_20 1.08(ld3) 429.50 48 - - 1753.39 448.18 3910.71 5664.10 6112.28
 dma 0.7(ld0) 378.90 43 - - 918.38 193.48 1936.92 2855.30 3048.78

-depth number Specifies the number of hierarchy levels to descend in the
report.

Default: infinite (all levels of the hierarchy)

-design design Specifies the design for which to write the report.

file Specifies the name of the file to which the report must be
written.

-thread thread_number

Specifies the specific thread name for which the detailed
report must be generated.

Command Reference for Encounter RTL Compiler
Design Exploration

July 2009 777 Product Version 9.1

Related Information

Design Exploration in Low Power in Encounter RTL Compiler

Related command: dex_write_scenario on page 778

Command Reference for Encounter RTL Compiler
Design Exploration

July 2009 778 Product Version 9.1

dex_write_scenario

dex_write_scenario -scenario scenario
[-prefix string]

Generates a basic run script and CPF file for the specified scenario:

■ You can use the run script for a complete synthesis run

■ The CPF file contains the library set definitions, power domain definitions, nominal
condition information and a power mode definition.

Options and Arguments

Example

The following command specifies to use chip_top_ as the prefix for the files to generate for
scenario scenario_3.

dex_write_scenario -prefix chip_top_ -scenario scenario_3

Related Information

Design Exploration in Low Power in Encounter RTL Compiler

-prefix string Specifies the prefix for the script and CPF file that will be
generated.

-scenario scenario Specifies the name of the exploration scenario for which to
generate the script and CPF file.

Related command: dex_execute_exploration_scenarios on page 773

Command Reference for Encounter RTL Compiler

July 2009 779 Product Version 9.1

15
Design Manipulation

■ change_link on page 781

■ change_names on page 783

■ clock_gating on page 790

■ delete_unloaded_undriven on page 791

■ edit_netlist on page 792

■ edit_netlist bitblast_all_ports on page 794

■ edit_netlist connect on page 795

■ edit_netlist dedicate_subdesign on page 797

■ edit_netlist disconnect on page 798

■ edit_netlist group on page 800

■ edit_netlist new_design on page 802

■ edit_netlist new_instance on page 803

■ edit_netlist new_port_bus on page 805

■ edit_netlist new_primitive on page 806

■ edit_netlist new_subport_bus

■ edit_netlist ungroup on page 809

■ edit_netlist uniquify on page 810

■ group

■ insert_tiehilo_cells on page 812

■ mv on page 815

■ remove_cdn_loop_breaker on page 817

■ reset_design on page 819

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 780 Product Version 9.1

■ rm on page 820

■ ungroup on page 822

■ uniquify

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 781 Product Version 9.1

change_link

change_link -instances instance_list
{ -design_name {instance | subdesign | design}
| -libcell libcell }
[-pin_map string] [-lenient]
[-change_in_non_uniq_subd] [-retain_exceptions]

Changes the reference of a hierarchical instance to the specified subdesign or design. The
command also supports libcell to libcell reference changes as well as a hierarchical instance
to libcell changes.

Options and Arguments

Examples

■ The following command changes the reference of the hierarchical instances top/A,
top/B, and top/C to patch.

change_link -instances {/designs/top/instances_hier/A \
/designs/top/instances_hier/B /designs/top/instances_hier/C} \
-design_name /designs/patch

-change_in_non_uniq_subd

Changes the link of the instance(s) in all instantiations of a
non-uniquified subdesign.

-design_name {instance | subdesign | design}

Specifies the design, subdesign, or hierarchical instance to
which the link has to be changed.

-instances instance_list

Specifies the instance(s) whose reference has to be changed.

-lenient Leaves the pins floating if a pin map is not found.

-libcell libcell Specifies the library cell to which the instance link has to be
changed.

-pin_map string Specifies, as a Tcl list of lists, the required pin mapping for
swapping.

-retain_exceptions Keeps the original exceptions of the instance after replacing it
with another link.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 782 Product Version 9.1

■ The following example changes the reference of the hierarchical instance add_0 to the
design add:

rc:/> change_link -design_name add \
-instance /designs/test/instances_hier/add_0

CHLNK INFO : Changing link of instance /designs/test/instances_hier/add_0 to
design /designs/add
Warning : Uniquifying instance /designs/test/instances_hier/add_0. New
subdesign is add_1

■ In the following example, A1, A2, and A3 are instances of subdesign A which is not
uniquified. The following command changes a leaf instance in all instances of subdesign
A.

change_link -instances {/designs/top/instances_hier/A1/instances_comb/g1}
-libcell buf1 -change_in_non_uniq_subd

This command changes not only leaf instance A1/g1 but also A2/g1 and A3/g1 with
buf1.

Note: If you omit the -change_in_non_uniq_subd option, the tool will issue an error.

■ The following command replaces hierarchical instance A1 with patch and tries to retain
all exceptions of A1.

change_link -instances {/designs/top/instances_hier/A1} \
-design_name /designs/patch -retain_exceptions

Exceptions defined for instance A1 are copied to patch if the object for which the
exception was originally defined is also found in patch. For example, an exception
defined on A1/d_reg will be retained if d_reg also exists in patch.

■ The following command specifies how to map the pins of the hierarchical instance A to
the pins of design new. Instance A has pins a, b, c, and d. Design new has pins e, f, g,
and h.

change_link -instances /designs/top/instances_hier/A \
-design_name /designs/new -pin_map {{a e} {b f} {c g} {d h}}

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 783 Product Version 9.1

change_names

change_names [-net | -instance | -design | -subdesign
| -port_bus | -subport_bus]...
[-local] [-force] [-vhdl] [-verilog]
[-prefix string [-name_collision]]
[-suffix string [-name_collision]]
[-first_restricted string] [-restricted string]
[-last_restricted string] [-replace_str string]
[-reserved_words string] [-max_length number]
|-map string] [-allowed string... [-regexp]]
[-check_internal_net_name] [-collapse_name_space]
[-dummy_net_prefix string]
[-case_insensitive] [-lowertoupper] [-uppertolower]
[-log_changes file [-append_log]] [hier_instance]

Changes names of nets, busses, instances, designs, subdesigns, ports, port buses, and
subport buses. You can specify one of more objects. If no object is specified, the requested
change applies to all objects unless otherwise specified. By default, all changes are global:
changes are made to all objects. There is no restriction on the length of the name.

Options and Arguments

-allowed string Specifies the characters that are allowed in names. Any
characters that are not in the allowed list will be ignored in the
resulting names. The minimum specification is 10 characters.
To allow all the letters from a to z in capital and lower case
letters, you must specify all of them. That is, you cannot use a
dash (“-”) to indicate inclusion.

-append_log Appends the information of the last change_names command
to the logfile specified with the -log_changes option

If you omit this option, the information of the last
change_names command overwrites the current information in
the logfile.

Note: You can only specify this option if you specified the
log_changes option.

-case_insensitive Does not take case sensitivity into account.

-check_internal_net_name

Adds the suffix _int to any net whose name matches that of a
port or subport but is not connected to that port or subport.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 784 Product Version 9.1

-collapse_name_space

Adds the suffix _design to either the port, subport, net, or
subdesign in a hierarchy only if they have similar Verilog names.

-design Changes the names of design objects.

-dummy_net_prefix string

Specifies the prefix to use for the names of dummy nets when
writing out the netlist or HDL.

Note: This option does not change the names in the design
hierarchy.

-first_restricted string

Specifies the characters that cannot be used as first character
in a name.

-force Forces the name change even if the object name is preserved.

hier_instance Specifies the name of the hierarchical instance to which the
changes must be applied.

-instance Changes the names of instance objects.

-last_restricted string

Specifies the characters that cannot be used as last character
in a name.

-local Restricts the changes to the current directory.

Default: global changes

-log_changes file

Specifies the name of the logfile that shows which names were
changed using the change_names command and the result of
the changes.

-lowertoupper Changes the names of all objects from lowercase to uppercase.

-map {{"from" "to"}...}

Maps the specified from character to the specified to
character.

Enclose each character in double quotes and separate the
characters with a space. Enclose each set in braces. If you
specify several sets, separate them with spaces and enclose
the list of all sets with braces.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 785 Product Version 9.1

-max_length integer Limits the length of the changed name to the specified number.
If the resulting names are longer than the specified integer, the
last letters will be truncated.

-name_collision Indicates to only use the specified prefix or suffix values to
change object names if a name clash would occur while
executing the change_names command using other options.

-net Changes the names of net objects.

-port_bus Changes the names of the top-level port bus objects.

Note: You cannot change the left bracket, "[", and the right
bracket, "]", because they are a part of the bus name when
referencing individual bits of the bus.

-prefix string Adds a prefix to the names of the objects to be changed.

-regexp Allows you to specify character ranges with the -allowed
option.

-replace_str string

Specifies the replacement string.

Default:_

-reserved_words string

Specifies words to be avoided, such as "begin end".

-restricted string

Specifies the list of strings that cannot be used in a name.
Separate independent patterns to be replaced with a “space.”
These strings are replaced with the -replace_str string.

-subdesign Changes the names of subdesign (object).

-subport_bus Changes the names of subport bus objects.

Note: You cannot change the left bracket, “[“, and the right
bracket, “]”, because they are a part of the bus name when
referencing individual bits of the bus.

-suffix Adds a suffix to the names of the objects to be changed.

-uppertolower Changes the names of all objects from uppercase to lowercase.

-verilog Replaces Verilog reserved words.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 786 Product Version 9.1

Examples

■ The following example adds a suffix _t to the design object names:

rc:/>change_names -design -suffix _t

All design objects will now have the _t suffix:

module top_newName (
mid m1_t (....)
mid1 m2_t (....)
mid3 m3_t (....)
INVXL g5_t

endmodule

module mid (...)
out_reg_7__t (....)

endmodule

■ The following example replaces all lowercase “n” with uppercase “N”, and all
underscores “_” with hyphens “-” in all instance names.

rc:/> change_names -instance -map {{"n" "N"} {"_" "-"}}

■ The following example replaces all lowercase “a” with uppercase “A” on all subdesigns
and subports.

rc:/> change_names -map {{"a" "A"}} -subdesign -subport_bus

■ The following example replaces any instances of ab, bc, or ca with “@” in all object
names.

rc:/> change_names -restricted "ab bc ca" -replace_str "@"

■ The following example specifies the maximum length of all subdesign names to be 12
characters. Issue this command after elaboration or before writing out the netlist.

rc:/> change_names -max_length 12 -subdesign

■ The following example ignores case sensitivity. Because the design contains nets n_73
and N_73, RTL Compiler renames one of the nets to avoid a naming conflict.

rc:/> mv n_73 N_73
/designs/alu/nets/N_73

rc:/> mv n_72 n_73
/designs/alu/nets/n_73

rc:/> change_names -case_insensitive -net
Info : Change names is successful [CHNM-102]
 : /designs/alu/nets/n_73 moved to /designs/alu/nets/n_73_1

-vhdl Replaces VHDL reserved words as well as strings that start
with a digit, an underscore, continuous (two or more)
underscores, and end with an underscore. You do not need to
specify the -case_insensitive, -instance, or
-subdesign option if you specify the -vhdl option.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 787 Product Version 9.1

■ The following example illustrates that you cannot change the brackets (“[“ and “]”) when
they are a part of the bus name referencing individual bits of the bus:

rc:/designs/test/ports_in> ls
./ SI2 clk1 in1[0] in2[0] in2[3] in3[2] in3[5]

rc:/designs/test/ports_in> change_names -port_bus -map {{"[" "("} {"]" \
")"}}

rc:/designs/test/ports_in> ls
./ SI2 clk1 in1[0] in2[0] in2[3] in3[2] in3[5]

■ The following two commands both change the brackets (“[” and “]”) in the instance name
to “x”s:

change_names -instance -restricted {[]} -replace_str "x"

change_names -instance -restricted "\[\]" -replace_str "x"

Note: There is no need to escape special characters when enclosing them in braces ({}).
If you added the escape character inside the braces, the tool would try to replace this
character as well with "x".

■ The following example allows all capital and lower case letters, numbers, underscores,
backslashes, and brackets:

rc:/> change_names -allowed \
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_\[\]

Note: You cannot use the dash “-” to indicate inclusion. That is, the following example is
not allowed:

rc:/> change_names -allowed a-zA-Z0-9_[]

■ The following example creates a separate change_names log file, danni.log, that
reflects the subdesign name change:

rc:/> change_names -map {{“SUB” “HERO_SUB”}} -subdesign -log_changes danni.log

■ The following example shows a part of a netlist that includes VHDL reserved words:

generate u1(.A (eg1[0]), .B (B[0]), .Y (Y[0]));

open u2(.A (eg1[1]), .B (B[1]), .Y (Y[1]));

endmodule u3(.A (eg1[2]), .B (B[2]), .Y (Y[2]));

To change, or eliminate, the names of the VHDL reserved words, use the -vhdl option.

rc:/> change_names -vhdl

Now the netlist does not contain any VHDL keywords:

generate_cn u1(.A (eg1[0]), .B (B[0]), .Y (Y[0]));
open_cn u2(.A (eg1[1]), .B (B[1]), .Y (Y[1]));
endmodule u3(.A (eg1[2]), .B (B[2]), .Y (Y[2]));

■ The following example changes all the object names from lowercase to uppercase:

rc:/> ls /designs/areid/ports_in

./ in1[0] in1[1] in1[2] in1[3] in2[0] in2[1] in2[2]

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 788 Product Version 9.1

rc:/> change_names -lowertoupper

Setting in1[3] --> IN1[3
Setting in1[2] --> IN1[2]
Setting in1[1] --> IN1[1]
...

rc:/> ls /designs/AREID/ports_in
./ IN1[0] IN1[1] IN1[2] IN1[3] IN2[0] IN2[1]

Notice how the lowercase design name change to uppercase as well. The
-uppertolower option works similarly, except that it changes all uppercase letters to
lowercase.

■ The following example indicates that the d cannot be used as the first character in a net
name and that when a name collision would occur, the prefix xx can be used.

change_names -name_collision -first_res d -prefix xx

■ The following example specifies the character ranges that are allowed when renaming
instances.

change_names -regexp -allowed "a-zA-Z0-9" -instance

■ The following example uses the MY_UNCONN_ prefix for dummy nets when writing out the
netlist.

write_hdl
change_names -dummy_net_prefix MY_UNCONN_
write_hdl

Netlist before net name changes:

wire [1:0] in1, in2, in3;
wire [5:0] out1, out2;
wire UNCONNECTED, n_0, t;
assign out2[3] = 1’b0;
assign out2[4] = 1’b0;
assign out2[5] = 1’b0;
assign out1[1] = 1’b0;
a a_1(.in1 ({in1[1], 1’b0}), .in2 ({in2[1], 1’b0}), .out1
({out1[5:2], UNCONNECTED, out1[0]}));

Netlist after the net name changes:

wire \MY_UNCONN_, n_0, t;
assign out2[3] = 1’b0;
assign out2[4] = 1’b0;
assign out2[5] = 1’b0;
assign out1[1] = 1’b0;
a a_1(.in1 ({in1[1], 1’b0}), .in2 ({in2[1], 1’b0}), .out1
 ({out1[5:2], \MY_UNCONN_, out1[0]}));

■ The following example specifies that inside hierarchical instance m2,any changed
names cannot end with the character 2.

change_names -last_restricted 2 /designs/m1/instances_hier/m2

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 789 Product Version 9.1

Related Information

Related commands: write_hdl on page 212

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 790 Product Version 9.1

clock_gating

Refer to clock_gating in Chapter 12, “Low Power Synthesis.”

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 791 Product Version 9.1

delete_unloaded_undriven

delete_unloaded_undriven
[-disconnect] [-force_bit_blast] [-all]
[design] [> file]

Disconnects subports and hierarchical pins connected to constants and that do not fanout to
anything, and deletes unloaded and undriven subports from the design. Use this command
as a post-processing step to remove any unused subports from the netlist.

By default the command skips individual bits of a bus that are connected to constants or that
are unused.

Options and Arguments

-all Disconnects subports and hierarchical pins connected to
constants and that do not fanout to anything, and deletes
unloaded and undriven subports and top-level ports from the
design.

design Specifies the design from which to remove the unused ports or
subports.

-disconnect Only disconnects the subports and hierarchical pins that are
connected to constants and that do not fanout to anything.

file Specifies the name of the file to which the output of the
command should be redirected.

-force_bit_blast Bitblasts modules that have individual bus bits that are unused
or connected to constants and deletes the unused bus bits.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 792 Product Version 9.1

edit_netlist

edit_netlist { bitblast_all_ports | connect
| dedicate_subdesign | disconnect
| group | new_design | new_instance
| new_port_bus | new_primitive | new_subport_bus
| ungroup | uniquify}

Edits a gate-level design.

Options and Arguments

Related Information

bitblast_all_ports Bitblasts all ports of a design or subdesign

connect Connects a pin, port or subport to another pin, port or subport.

dedicate_subdesign Replaces a subdesign of instances with a dedicated copy.

disconnect Disconnects a pin, port or subport.

group Builds a level of hierarchy around instances.

new_design Creates a new design.

new_instance Creates a new instance.

new_port_bus Creates a new port_bus on a design.

new_primitive Creates a new unmapped primitive instance.

new_subport_bus Creates a new subport_bus on a hierarchical instance.

ungroup Flattens a level of hierarchy

uniquify Eliminates sharing of subdesigns between instances

Related commands: edit_netlist bitblast_all_ports on page 794

edit_netlist connect on page 795

edit_netlist dedicate_subdesign on page 797

edit_netlist disconnect on page 798

edit_netlist new_design on page 802

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 793 Product Version 9.1

edit_netlist new_instance on page 803

edit_netlist new_port_bus on page 805

edit_netlist new_primitive on page 806

edit_netlist new_subport_bus on page 808

edit_netlist uniquify on page 810

edit_netlist group on page 800

edit_netlist ungroup on page 809

Affected by this attribute: ui_respects_preserve

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 794 Product Version 9.1

edit_netlist bitblast_all_ports

edit_netlist bitblast_all_ports {design|subdesign}...

Bitblasts all ports of the specified design or subdesign. This command is available after
elaboration. The name of the bitblasted ports will follow the nomenclature specified by the
bit_blasted_port_style attribute. The default style is:

%s_%d

Options and Arguments

Example

In the following example, the Verilog design top has a four-bit input port named AI:

AI[0:3]

The edit_netlist bitblast_all_ports command is issued on the design top,
bitblasting the AI port:

...

rc:/> synthesize

...

rc:/> edit_netlist bitblast_all_ports top

rc:/> ls /designs/top/ports_in

AI_0 AI_1 AI_2 AI_3

Related Information

{design|subdesign} Specifies the design or subdesign in which the ports should be
bitblasted.

Affected by this attribute: bit_blasted_port_style

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 795 Product Version 9.1

edit_netlist connect

edit_netlist connect
{pin|port|subport}
{pin|port|subport}
[-net_name string]

Connects the two specified objects, and anything to which they might already be connected.

You can create nets that have multiple drivers, and you can create combinational loops.

The logic0 and logic1 pins are visible in the directory so that you can connect to them
and disconnect from them. They are in a directory called constants and are called 1 and
0. The following example shows how the top-level logic1 pin appears in a design called
add:

/designs/add/constants/1

The following example shows how a logic0 pin appears deeper in the hierarchy:

/designs/add/instances_hier/bad/constants/0

Each level of hierarchy has its own dedicated logic constants that can only be connected to
other objects within that level of hierarchy.

The command has a number of limitations. Violation of the following limitations will generate
error messages and cause the command to fail. You cannot connect

■ Pins, ports, or subports that are in different levels of hierarchy.

■ Pins, ports, or subports that are already connected

■ An object to itself.

■ An object that is driven by a logic constant to an object that already has a driver. This
prevents you from shorting the logic constant nets together.

■ Objects if it would require a change to a preserved module.

Options and Arguments

-net_name string Specifies the user-defined name of the net.

pin Specifies the name of an instance pin to connect.

port Specifies the name of a design port to connect.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 796 Product Version 9.1

Examples

■ In the following example, A and B are already connected and C and D are already
connected. When you connect A and C, the result is a net connecting A, B, C, and D.

rc:/designs/alu/ports_in> edit_netlist connect A C
/designs/alu/nets/A_

Related Information

subport Specifies the name of a subport (port on a hiearchical instance)
to connect.

Related commands: edit_netlist disconnect on page 798

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 797 Product Version 9.1

edit_netlist dedicate_subdesign

edit_netlist dedicate_subdesign instance [instance]...

Creates a new subdesign by copying the subdesign that is common to the listed hierarchical
instances. The command returns the path to the newly created subdesign.

The creation of a new subdesign allows you to make changes that affect a limited set of
instances instead of all instances of the original subdesign.

Options and Arguments

Examples

■ In the following example the design top contains a module sub that has been instantiated
five times in the design. The instance names are sub1,sub2, sub3, sub4, and sub5.
To create a separate subdesign for instances sub1 and sub2, enter the following
command:

rc:/> edit_netlist dedicate_subdesign {/designs/top/instances_hier/sub1 \

/designs/top/instances_hier/sub2}

Note: If you would execute the edit_netlist dedicate_subdesign command on
the remaining three instances, no new subdesign would be created because they
already share a subdesign that is not used by any other instances.

instance Specifies the name of a hierarchical instance for which you
want a dedicated subdesign.

You must specify a list of instances that share the same
subdesign.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 798 Product Version 9.1

edit_netlist disconnect

edit_netlist disconnect {pin|port|subport}

Disconnects a single pin, port, or subport from each object it is connected to. For example, if
A, B, and C are connected together and you disconnect A, then B and C remain connected to
each other, but A is now left unconnected.

You cannot disconnect an object that would require changes to a preserved module.

You cannot disconnect a generic constant (1 or 0) pin of the module but you can disconnect
the loads from that pin.

You can disconnect an object that is not currently connected to anything else. In that case
nothing happens.

 Options and Arguments

Examples

■ The following example disconnects input port data[4].

rc:/designs/alu/ports_in> edit_netlist disconnect data[4]

■ The following example shows how you can disconnect a constant pin 1 from all its loads.

set cnet [get_attr net /designs/test/constants/1]
set all_loads [get_attr loads $cnet]
foreach load $all_loads {

edit_netlist disconnect $load
}

Note: If the constant pin has a large number of loads, disconnecting each of these loads
may impact runtime.

pin Specifies the name of an instance pin to disconnect.

port Specifies the name of a design port to disconnect.

subport Specifies the name of a subport (port on a hiearchical instance)
to disconnect.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 799 Product Version 9.1

Related Information

Related commands: edit_netlist connect on page 795

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 800 Product Version 9.1

edit_netlist group

edit_netlist group -group_name group_name
instance [instance]...

Creates a level of the design hierarchy by grouping the specified instances. You can only
group instances that belong to the same hierarchy.

Options and Arguments

Examples

■ The following example groups instances accum_1 and averg_1 into one module
my_module.

rc:/> edit_netlist group -group_name my_module accum_1 averg_1

/designs/alu/instances_hier/my_modulei

■ The following command returns an error because the specified instances do not belong
to the same hierarchy.

rc:/> edit_netlist group [find / -instance m5] [find / -instance m3_0]

Error : Not all instances belong to the same hierarchy. [TUI-234] [edit_netlist
group]

: Instance ’/designs/m1/instances_hier/m2/instances_hier/m3/
instances_hier/m4/instances_hier/m5’ is part of (sub)design ’m4’. Instance ’/
designs/m1/instances_hier/m2/instances_hier/m3/instances_hier/m3_0’ is not part of
(sub)design ’m4’.

: The ’edit_netlist group’ command can only group instances contained
within the same hierarchy.

-group_name group_name

Specifies the name of the module that groups the specified
instances.

The resulting module will have an instance name consisting of
the specified group name with the suffix i, and is placed in the
instances_hier directory. The suffix is used to indicate that
this hierarchy is the result of a group command.

instance Specifies the name of an instance to add to the specified group.
You need to specify at least one instance.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 801 Product Version 9.1

Related Information

Grouping and Ungrouping Objects in Using Encounter RTL Compiler

Related commands: edit_netlist ungroup on page 809

Related attribute: group_generate_portname_from_netname

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 802 Product Version 9.1

edit_netlist new_design

edit_netlist new_design -name string [-quiet]

Creates a new design at the same level as the existing top-level design.

The new design is created in the /designs directory. Once the design is created, you can
specify instances, port_bus, and so on.

Options and Arguments

Examples

■ The following example creates a new design called DESIGNA.

rc:/> edit_netlist new_design -name DESIGNA

The new design DESIGNA, will be created in the /designs directory. Once the design
is created, the instances, port_bus, and so on can be specified.

■ The following example tries to create a new design called TEST. However, a design by
that name already exists. In such cases, a number will be appended to the end of the
specified name and an error message indicating the naming conflict will be printed. The
following example specifies the -quiet option to suppress this warning.

rc:/> edit_netlist new_design -name TEST -quiet

/designs/TEST1

The name given to the new design in this case is TEST1.

Related Information

-name string Specifies the name of the new design.

-quiet Suppresses the warning messages regarding naming conflicts.

Related commands: edit_netlist new_port_bus on page 805

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 803 Product Version 9.1

edit_netlist new_instance

edit_netlist new_instance [-name string]
{design|subdesign|libcell}
{subdesign|design} [-quiet]

Creates a specified instance type in a specified level of design hierarchy. You can instantiate
inside a top-level design or a subdesign.

■ You cannot instantiate objects that require a change to a preserved module.

■ You cannot create a hierarchical loop.

If subdesign A contains subdesign B, you cannot instantiate A underneath B.

Options and Arguments

Examples

■ The following example creates a new instance called TEST_SUB under the TEST design:
rc:/> edit_netlist new_instance -name TEST_SUB /designs/TEST \

/designs/TEST

rc:/> ls /designs/TEST/instances_hier/

/designs/TEST/instances_hier/TEST_SUB

■ The following example tries to create a new subdesign called TEST_SUB under the TEST
design. However, a subdesign by that name already exists. In such cases, a number will
be appended to the end of the specified name and an error message indicating the
naming conflict will be printed. The following example specifies the -quiet option to
suppress this warning.
rc:/> edit_netlist new_instance -name TEST_SUB /designs/TEST -quiet \

/designs/TEST

/designs/TEST/instances_hier/TEST_SUB3

The name given to the new subdesign in this case is TEST_SUB3.

-name string Specifies the name of the new instance.

{design|subdesign|libcell}

Specifies the object to instantiate.

-quiet Suppresses the warning messages regarding naming conflicts.

{subdesign|design}

Specifies the name of the design or subdesign in which you
want to instantiate the object.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 804 Product Version 9.1

Related Information

Related commands: edit_netlist new_subport_bus on page 808

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 805 Product Version 9.1

edit_netlist new_port_bus

edit_netlist new_port_bus -name string
[-left_bit integer] [-right_bit integer]
{-input|-output|-input -output}
[design]

Creates a port_bus object in a design. The command can also create a single port by
omitting both the -left_bit and -right_bit options.

Options and Arguments

Example

■ The following example creates a single input port named a_in:

rc:/> edit_netlist new_port_bus -name a_in -input

Related Information

design Specifies the name of the design for which to create the
port_bus.

The design name can be omitted if there is only one top-level
design.

-input Creates an input port_bus.

-input -output Creates a bidirectional port_bus.

-left_bit integer Specifies the leftmost bit index of the bus.

-name string Specifies the name of the new port_bus.

-output Creates an output port_bus.

-right_bit integer

Specifies the rightmost bit index of the bus.

Related commands: edit_netlist new_design on page 802

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 806 Product Version 9.1

edit_netlist new_primitive

edit_netlist new_primitive [-name string] [-inputs integer]
[-quiet] logic_function {design|subdesign}

Creates an unmapped primitive cell in a design or a subdesign.

Options and Arguments

Examples

■ The following example creates a new buffer instance called I101 in design DESIGNA:

rc:/> edit_netlist new_primitive -name I101 buf DESIGNA

The new instance,I101, is created in the/designs/DESIGNA/instances_comb
directory.

A sequential primitive (d_flop or latch) will be created in the instances_seq
directory.

■ The following example tries to create a new buffer instance called I101. However, a
buffer by that name already exists. In such cases, a similar name will be chosen and an

{design|subdesign}

Specifies the name of the design or subdesign in which you
want to instantiate the primitive cell.

-inputs integer Specifies the number of input pins to create for the primitive
cell.

logic_function Specifies the logic function of the primitive cell. You can
specify any of the following:

and latch notif1

buf nand or

bufif0 nor xnor

bufif1 not xor

d_flop notif0

-name string Specifies the name of the new primitive cell.

-quiet Suppresses the warning messages regarding naming
conflicts.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 807 Product Version 9.1

error message indicating the naming conflict will be printed. The following example
specifies the -quiet option to suppress this warning:

rc:/> edit_netlist new_primitive -name I101 buff TEST -quiet

/designs/TEST/instances_comb/I1

The name given to the new buffer in this case is I1.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 808 Product Version 9.1

edit_netlist new_subport_bus

edit_netlist new_subport_bus -name string
[-left_bit integer] [-right_bit integer]
{-input|-output|-input -output}
instance

Creates a subport_bus in a design. The command can also create a single subport by
omitting both the -left_bit and -right_bit options.

Options and Arguments

Examples

■ The following example creates a single input subport named a_in:

rc:/> edit_netlist new_subport_bus -name a_in -input

Related Information

design Specifies the name of the instance for which to create the
subport_bus.

-input Creates an input subport_bus.

-input -output Creates a bidirectional subport_bus.

-left_bit integer Specifies the leftmost bit index of the subport_bus.

-name string Specifies the name of the new subport_bus.

-output Creates an output subport_bus.

-right_bit integer

Specifies the rightmost bit index of the subport_bus.

Related commands: edit_netlist new_instance on page 803

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 809 Product Version 9.1

edit_netlist ungroup

edit_netlist ungroup [-prefix string] instance...

Removes a level of the design hierarchy.

Large numbers of small hierarchical blocks in a design can sometimes limit optimization since
the hierarchical boundaries must be preserved. Many hierarchical blocks may also increase
the memory usage since information about each block and port names must be stored. The
ungroup command provides a mechanism to remove these unwanted levels of hierarchy.

Options and Arguments

Examples

■ The following example ungroups all hierarchical instances whose names end in
_little:

rc:/> edit_netlist ungroup [find / -instance *_little]

■ The following example ungroups the instance inst1 and specifies that the resulting
ungrouped instances of inst1 have a prefix of inst1_test. Using the prefix allows
you to identify from which instance the ungrouped instances originated:

rc:/designs/test/instances_hier> edit_netlist ungroup -prefix inst1_test \
inst1

rc:/designs/test/instances_comb> ls

inst1_test_g1/ inst1_test_g2/ inst1_test_g3/

Related Informations

Grouping and Ungrouping Objects in Using Encounter RTL Compiler

instance Specifies the hierarchical instance for which to remove one
level of the hierarchy.

The components of the specified instance then become
instances in the parent block.

-prefix Specifies a prefix for the ungrouped instances.

Related commands: edit_netlist group on page 800

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 810 Product Version 9.1

edit_netlist uniquify

edit_netlist uniquify {subdesign|design}

Uniquifies the instances under the specified design or subdesign. Uniquification is the
process of creating a new subdesign for an instance or a group of instances. The newly
created subdesign is merely a copy of the subdesign to which the original instance or group
of instances were associated. That is, an instance or a group of instances will now be a part
of their own, unique subdesign. The newly created subdesign will usually maintain the
original design or subdesign name followed by a number suffix.

Note: Preserved modules cannot be uniquified.

Options and Arguments

Example

■ The following example has a top level design called top with two subdesigns named A
and B:

rc:/designs/top/subdesigns> ls

./ A/ B/

In order to uniquify the subdesigns, issue the edit_netlist uniquify command on
top:

rc:/designs/top/subdesigns> edit_netlist uniquify /designs/top

rc:/designs/top/subdesigns> ls

./ A/ A_1/ B/ B_1/

■ The following example shows how to uniquify all subdesigns except for subdesign
mysubdesign.

set_attribute preserve true [find / -subdesign mysubdesign]

foreach el [find / -subdesign *] {
 edit_netlist uniquify $el
}

{design|subdesign}

The instances under the specified design or subdesigns will be
uniquified.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 811 Product Version 9.1

group

edit_netlist group -group_name group_name
instance [instance]...

Creates a level of the design hierarchy by grouping the specified instances. You can only
group instances that belong to the same hierarchy.

Alias for edit_netlist group.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 812 Product Version 9.1

insert_tiehilo_cells

insert_tiehilo_cells [-hilo libcell] [-hi libcell]
[-lo libcell] [-all] [-maxfanout integer]
[-verbose] [-skip_unused_hier_pins]
[subdesign | design]

Ties the constants 1’b0 and 1’b1 in the netlist to tie high and tie low cells, respectively. In
multiple supply voltage (MSV) designs, this command inserts cells by domain. It skips scan
pins, preserved pins, preserved nets, and modules by default. Scan pins can be connected
by using the -all option.

Use the root level ui_respects_preserve attribute to override preserve settings.

Options and Arguments

-all Inserts tie hi/lo cells without skipping scan pins.

-hi libcell Specifies a cell for constant 1s. By default, the first appropriate
cell will be used.

-hilo libcell Specifies a high-low cell to connect constants. By default, the
first appropriate cell will be used.

-lo libcell Specifies a cell for constant 0s. By default, the first appropriate
cell will be used.

-maxfanout integer Specify the maximum fanout allowed per tie cell.

If this option is not specified, there is no contraint on the fanout.

-skip_unused_hier_pins

Skips hierarchical constant connected pins which are not used
inside the module.

{subdesign | design}

Specifies the design or subdesign in which to insert constants.

If you omit the design name, the top-level design of the current
directory of the design hierarchy is used.

-verbose Provides detailed information of the preserved and scan pins
that were skipped in the tie hi/lo cell insertion process.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 813 Product Version 9.1

Examples

■ The following example ties the constant 1s and 0s to the cells named TIEHI and
TIELOW, respectively. The maximum fanout per tie cell is 10. Using the -verbose option
shows that two scan pins were skipped:

rc:/> insert_tiehilo_cells -hi TIEHI -lo TIELO -maxfanout 10 -verbose

pin: /libraries/slow/libcells/TIELO/Y function: 0
pin: /libraries/slow/libcells/TIEHI/Y function: 1
Connecting all 1’b0 and 1’b1 to TIELO/TIEHI cells.
tielo_cell is /libraries/slow/libcells/TIELO , tiehi_cell is /libraries/slow/
libcells/TIEHI

Info : 2 scan pins which are loads of ’0’ in /designs/m1 are skipped.
Use the ’-all’ option to avoid skipping of scan pins.
/designs/m1/instances_seq/foo⁄bx_reg/pins_in/SE
/designs/m1/instances_seq/tm_reg/pins_in/SE

Done connecting 1’b0 and 1’b1 to TIELO/TIEHI cells

■ The following example shows two modules, UI and top. When the
insert_tiehilo_cells -skip_unused_hier_pins command is used, the pin B
of the instantiation of U1 in module top will be skipped.

module U1(A, B, C, Sel, Z);
input A, B, C;
input [1:0] Sel;
output Z;
wire A, B, C;
wire [1:0] Sel;
wire Z;
wire n_0, n_1, n_2, n_3, n_4, n_5;
NAND2X1 g27(.A (n_5), .B (n_4), .Y (Z));
NAND2X1 g28(.A (n_3), .B (n_2), .Y (n_5));
NAND2X1 g29(.A (n_1), .B (A), .Y (n_4));
NOR2X1 g30(.A (n_0), .B (Sel[0]), .Y (n_3));
INVX1 g31(.A (n_1), .Y (n_2));
NOR2X1 g32(.A (Sel[1]), .B (Sel[0]), .Y (n_1));
INVX1 g33(.A (C), .Y (n_0));

endmodule

module top(a, b, c, sel, z);
input a, b, c;
input [1:0] sel;
output z;
wire a, b, c;
wire [1:0] sel;
wire z;
U1 inst_U1(.A (a), .B (1’b0), .C (c), .Sel (sel), .Z (z));

endmodule

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 814 Product Version 9.1

Related Information

Removing Assign Statements in Using Encounter RTL Compiler

Related attributes: ui_respects_preserve

use_tiehilo_for_const

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 815 Product Version 9.1

mv

mv object new_name [-flexible] [-slash_ok]

Renames an object in the design hierarchy. This command is similar to its UNIX counterpart.

You can rename the following objects:

■ design

■ instance

■ isolation_rule

■ level_shifter_group

■ level_shifter_rule

■ library_domain

■ net

■ port_bus

■ power_domain

■ scan_chain

■ scan_segment

■ subdesign

■ subport_bus

■ test_clock

■ test_clock_domain

■ test_signal

Options and Arguments

-flexible Indicates to be flexible for renaming when there is a collision.

new_name Specifies the new name for the specified object.

object Specifies the object to rename.

-slash_ok Indicates that the destination name can have embedded
slashes.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 816 Product Version 9.1

Examples

■ The following example changes the name of design comp to comp_test.

rc:/designs> ls
comp

rc:/designs> mv comp comp_test

rc:/designs> ls
comp_test

■ The following example changes the subdesign mux to muxYYY. You do not have to
specify the pathname of the target object, just the basename:

rc:/> mv /designs/dpldalgn/subdesigns/mux muxYYY

rc:/> ls /designs/dpldalgn/subdesigns/

muxYYY

■ The following example attempts to rename instance aluout_reg_0 to an already
existing instance aluout_reg_1. Using the -flexible option, the instance gets
renamed to aluout_reg585, which does not cause a conflict:

rc:/designs/alu/instances_seq> mv aluout_reg_0 aluout_reg_1 -flexible
/designs/alu/instances_seq/aluout_reg585

rc:/designs/alu/instances_seq> ls
./ aluout_reg_1/ aluout_reg_3/ aluout_reg_5/ aluout_reg_7/
aluout_reg585/ aluout_reg_2/ aluout_reg_4/ aluout_reg_6/ zero_reg/

Related Information

Related commands: change_names on page 783

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 817 Product Version 9.1

remove_cdn_loop_breaker

remove_cdn_loop_breaker
-instances instance_list design

Removes the specified loop breaker buffers added by the timing engine and restores the loop.

Options and Arguments

Example

The following example first shows the loop breakers inserted, then removes the loop breakers
and lists the report again.

rc:/> report cdn_loop_breaker
==
 Generated by: version
 Generated on: date
 Module: loop
 Technology library: tutorial 1.1
 Operating conditions: typical_case (balanced_tree)
 Wireload mode: enclosed
 Area mode: timing library
==

 CDN Loop breaker Driver Load

inst1/cdn_loop_breaker inst1/i1/Y i0/B

rc:/> remove_cdn_loop_breaker -instance [find / -inst inst1/cdn_loop_breaker]
rc:/> report cdn_loop_breaker
==
 Generated by: Encounter(R) RTL Compiler 8.1.200
 Generated on: Oct 20 2008 03:53:12 PM
 Module: loop
 Technology library: tutorial 1.1
 Operating conditions: typical_case (balanced_tree)
 Wireload mode: enclosed
 Area mode: timing library
==

 No loop breakers to report

design Specifies the design for which the loop breakers must be
removed.

-instances instance_list

Specifies the loop breakers instances that you want to remove.

If this option is not specified, all instance loop breakers will be
removed.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 818 Product Version 9.1

Related Information

Related command: report cdn_loop_breaker on page 336

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 819 Product Version 9.1

reset_design

reset_design [-verbose] [design]

Removes all the user specified timing and DFT objects and returns all attributes to their
default values for the specified design. Alternatively, this command removes every clock
domain, cost group, exception, external delay, scan chain, scan segment, test clock domain,
and test signal while returning all attributes on the design to their default values.

Options and Arguments

Example

■ The following examples illustrates that the reset_design command has eliminated all
external delays in the design:

rc:/designs/phoenix/timing/external_delays> ls

in_1 out_2

rc:/designs/phoenix/timing/external_delays> reset_design phoenix

rc:/designs/phoenix/timing/external_delays> ls

./

design Specifies the particular design to reset when there are multiple
designs.

-verbose Prints messages indicating that the command was successful.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 820 Product Version 9.1

rm

rm object... [-quiet]

Removes an object from the design hierarchy. This command is similar to its UNIX
counterpart.

You can remove timing objects and any of the following objects:

■ actual_scan_chain

■ designs

■ instances_comb

■ instances_hier

■ instances_seq

■ isolation_rule

■ level_shifter_group

■ library_domain

■ pin_busses_in

■ pin_busses_out

■ port_busses_out

■ port_busses_out

■ power_domain

■ scan_chain

■ scan_segment

■ subport_busses_in

■ subport_busses_out

■ test_clock

■ test_clock_domain

■ test_signal

If the hierarchical pin or port bus object has a net connection, the net is disconnected first and
then the object is removed.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 821 Product Version 9.1

Note: The rm command does not work on the pin or port object.

Options and Arguments

Examples

■ The following example finds the clock objects in the design:

rc:/> find . -clock *
/designs/comp/timing/clock_domains/domain_1/clock1

■ The following example uses the result of the find command to remove the clock. This
command also removes all dependent objects. A subsequent find cannot find any clock
objects.

rc:/> rm [find . -clock *]
Info : Removing a clock object [TIM-102]

: The clock name is ’clock’
Removing external delay ’in_del_1’.
Removing external delay ’ou_del_1’.

rc:/> find . -clock *
I cannot find any clock named * here
Failed on find . -clock *

object Specifies the object that you want to remove.

-quiet Suppresses those messages that indicate which objects are
being removed. Alternatively, when removing an object, an
information message will not be printed.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 822 Product Version 9.1

ungroup

ungroup
[-all | -flatten instance...
| -threshold integer | instance...]
[-simple] [-only_user_hierarchy] [-exclude instance...]

Ungroups the specified instances. Ungrouping dissolves the hierarchy and moves the
contents of a subdesign into its parent directory. By default, an instance is named by
concatenating its name to its parent’s name.

Options and Arguments

Example

■ The following example ungroups the instance named CRITICAL_GROUP:

 rc:/> ungroup [find / -instance CRITICAL_GROUP]

■ In the following example, every instance under the inst hierarchical instance will be
ungrouped except the inst_sub2 instance:

rc:/designs/ksable_hier/instances_hier/inst/instances_hier> ls

./ inst_sub1/ inst_sub2/ inst_sub3

rc:/designs/ksable_hier/instances_hier/> ungroup inst -flatten -exclude \

[find . -instance inst/inst_sub2]

-all Ungroups all instances at the current level.

-exclude Specifies a list of instances that should not be ungrouped.

-flatten Recursively ungroups all the specified instances.

instance Specifies the instance or instances to be ungrouped.

-only_user_hierarchy Ungroups only those hierarchies created by the user. The
hierarchies created by the tool are preserved.

-simple Prevents the use of a complex new instance name during
ungrouping. This option has the same effect as the
edit_netlist ungroup command.

-threshold Ungroups only those hierarchical instances that have a cell
count equal to or less than the specified integer.

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 823 Product Version 9.1

Related Information

Related commands: edit_netlist ungroup on page 809

Command Reference for Encounter RTL Compiler
Design Manipulation

July 2009 824 Product Version 9.1

uniquify

edit_netlist uniquify {subdesign|design}

Uniquifies the instances under the specified design or subdesign. Uniquification is the
process of creating a new subdesign for an instance or a group of instances. The newly
created subdesign is merely a copy of the subdesign to which the original instance or group
of instances were associated. That is, an instance or a group of instances will now be a part
of their own, unique subdesign. The newly created subdesign will usually maintain the
original design or subdesign name followed by a number suffix.

Note: Preserved modules cannot be uniquified.

Alias for edit_netlist uniquify.

Command Reference for Encounter RTL Compiler
16
Customization

■ add_command_help on page 826

■ define_attribute on page 827

■ mesg_make on page 831

■ mesg_send on page 833

■ parse_options on page 834
July 2009 825 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
add_command_help

add_command_help command_name help category

Adds a short help message for a new command to RTL Compiler’s online help system.
Examples of add_command_help can be found in the installation lib/cdn/rc directory.

Options and Arguments

Examples

■ The following example adds help for the hello_world command:

rc:/> proc hello_world {hello_world} { echo "Hello world" }

rc:/> add_command_help "hello_world" "Says hello to the whole world"
my_category

rc:/> help hello_world
That command is:

 my_category
===
hello_world Says hello to the whole world

Command details:

Hello world

category Specifies the category to which this command should be
added. You can specify an existing category or a new one.

To see a list of all existing categories, type help.

command_name Specifies the name of the command. It must be a Tcl procedure
that you defined previously.

help Lists the help text to be displayed when the help command is
used. Use a string.
July 2009 826 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
define_attribute

define_attribute
-category string -data_type string -obj_type string
[-hidden] [-help_string string]
[-check_function string] [-compute_function string]
[-default_value string]
[-set_function string] string

Creates a new, user-defined attribute with the specified characteristics. These attributes will
also be written out if you use the write_script command.

Options and Arguments

-category string Defines the category of the attribute. Categories group
attributes that perform similar functions whereas object types
describe where in the design an attribute is valid. You can
specify any category name: both new and existing category
names are valid.

-check_function string

Specifies a previously defined Tcl procedure’s name in order to
ensure that the newly defined attribute is valid. The Tcl
procedure should be of the form:

proc {object value}

The Tcl procedure returns 1 for a valid value, and 0 for an
invalid value.

-compute_function string

Specifies a previously defined Tcl procedure’s name in order to
get the newly defined attribute’s value later (with the
get_attribute) command. The Tcl procedure should be of
the form:

proc {object}

When you use this option, the attribute becomes a read-only
attribute because its value is always computed.
July 2009 827 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
-data_type string Defines the data type of the attribute. Possible data types are:

■ boolean

■ "fixed point"

■ "floating point number"

■ integer

■ string

-default_value string

Specifies a default value for the attribute.

-help_string string

Specifies the help text for the attribute.

-hidden Specifies whether the defined attribute is a hidden attribute.

-more_help_string string

Specifies an extended help string.

-obj_type string Specifies the object type of the attribute. All valid object types
can be found by typing find -help at the RTL Compiler
prompt.

-obsolete Specifies whether the defined attribute is obsolete.

-set_function Specifies a previously defined Tcl procedure’s name. This
option allows you to override user-defined values provided it
conforms to the parameters in the Tcl procedure you created.
The Tcl procedure should be of the form:

proc {object new_value current_value}

string Specifies the name of the attribute.
July 2009 828 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
Examples

■ The following example defines a boolean attribute named new_libpin for a new
category named my_libpin:

rc:/> define_attribute -data_type boolean -obj_type libpin -category my_libpin
new_libpin

rc:/> get_attribute new_libpin * -help
...

attribute category: my_libpin

attribute name: new_libpin
category: my_libpin ()

object type: libpin
access type: read-write
data type: boolean

default value:
help:

■ The following example creates a Tcl procedure, check_fxn, and then creates an
attribute named test_check. The -check_function option is specified so that the
test_check attribute can be tested for validity when it is specified later.

rc:/> proc check_fxn {obj val} {
==> if {$val < 0} {
==> return 0
==> }
==> return 1
==> }

rc:/> define_attribute test_check -obj_type root -data_type integer \
-category test -help_string "test check function" \
-check_function check_fxn

/object_types/root/attributes/test_check

The following command is a valid use of the newly created test_check attribute:

rc:/> set_attribute test_check 1 /
Setting attribute of root ’/’: ’test_check’ = 1

The following command would be an invalid use:

rc:/> set_attribute test_check -1 /
Error : The data value for this attribute is invalid. [TUI-24] [set_attribute]

: The value ’-1’ cannot be set for attribute ’test_check’.
: To see the usage/description for this attribute, type ’set_attribute

-h <attr_name> *’.

■ The following example creates a Tcl procedure, set_fxn, and then creates an attribute
named test_set. The -set_function option is specified so that you can change the
value of the test_set attribute (provided it is valid):

rc:/> proc set_fxn {obj new_val cur_val} {
==> if {$new_val > $cur_val} {
==> return $new_val
==> }
==> return $cur_val
==> }
July 2009 829 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
rc:/> define_attribute test_set -obj_type root -data_type integer \
-category test -help_string "test set function" -set_function set_fxn

/object_types/root/attributes/test_set

The test_set attribute will be changed to 1. It is valid, since there was no previous
value:

rc:/> set_attribute test_set 1
Setting attribute of root ’/’: ’test_set’ = 1

The following command chnages the attribute value to 2. Again, this is valid because it
falls within the definition of the previously defined Tcl procedure, set_fxn:

rc:/> set_attribute test_set 2 /
Setting attribute of root ’/’: ’test_set’ = 2

The attribute’s value will not be changed in the following example. The value will remain
at 2:

rc:/> set_attribute test_set 0 /
Setting attribute of root ’/’: ’test_set’ = 2

■ The following example creates a Tcl procedure, compute_fxn, which always returns
the value of 42. The define_attribute command then creates an attribute named
test_compute. The -compute_function option is specified so that you can obtain
the test_compute attribute’s value later:

rc:/> proc compute_fxn {obj} {
==> return 42
==> }
rc:/> define_attribute test_compute -obj_type root -data_type integer \

-category test -help_string "test compute function" \
-compute_function compute_fxn

/object_types/root/attributes/test_compute

The test_compute value will always be 42, as defined in the Tcl procedure:

rc:/> get_attribute test_compute /
42

rc:/> set_attribute test_compute 23 /
Error : The attribute is read-only. [TUI-26] [set_attribute]

: attribute: ’test_compute’, object type: ’root’
: Cannot set or reset read-only attributes.

Failed on set_attribute test_compute 23
July 2009 830 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
mesg_make

mesg_make -group string [-internal_group] -id number
-short_desc string -long_desc string
{-error|-warning|-info_priority number}

Creates a custom message that can subsequently be accessed with the mesg_send
command.

Options and Arguments

-error Creates an error message.

-group string Specifies the group of messages that the new message
belongs to. A group groups messages that apply to a certain
engine of the tool. For example, the MAP group groups
messages issues by the mapper.

Note: If you want to create a message for an internal group, you
must specify an existing group name.

-id integer Specifies an identification number for the message. The
number must be unique for the specified group. If the specified
number already exists, you will overwrite the existing message.

Default: 1

-info_priority integer

Creates an info message with the specified priority. You can
specify a number between 2 and 8.

-internal_group Specifies whether the message belongs to an internal group.

-long_desc string Defines the help of the message.

-short_desc string Specifies the title or the description of the message.

-warning Creates a warning message.
July 2009 831 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
Example

■ The following example creates a message in the test group and assigns it a unique
identification number (501) within that group:

rc:/> mesg_make -group test -id 501 -short_desc note_bene \
==> -long_desc "search for lost time" -warning
/messages/test/test-501
rc:/> man test-501
Entry : test-501
Severity : Warning
Verbosity : Message is visible at any ’information_level’ above ’1’.
Description : note_bene
Help : search for lost time

Related Information

Affects this command: mesg_send on page 833
July 2009 832 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
mesg_send

mesg_send message string

Accesses the various native messages of RTL Compiler and the messages that were created
with the mesg_make command.

Options and Arguments

Examples

■ The following example accesses the message created in Example on page 832 for
mesg_make:

rc:/messages/test> mesg_send test-501 "reminders" -newline

Warning : note_bene [test-501]
: reminders
: search for lost time

■ The following example sends a message after elaboration:

rc:/> mesg_send /messages/VHDLPT/VHDLPT-500 "file not found" -caller read_hdl
Error : Cannot open file. [VHDLPT-500] [read_hdl]

: file not found

Related Information

-caller string Specifies the name of the calling procedure.

-file_info string Specifies to which file the messsage applies.

message Identifies the message to be sent.

The identification is in the form of group-id. Refer to
mesg_make for an explanation of group and id.

-newline Prints a new (empty) line before the message

-object_info string

Prints the object type and

string Describes the context-spsecific help.

Affected by this command: mesg_make on page 831
July 2009 833 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
parse_options

parse_options cmd file_var [args] [code var]...

Interfaces to the RTL Compiler internal command option parser. The RTL Compiler argument
parser provides the following features:

■ Checking the correctness for arguments and types. Appropriate messages are issued
when the input is incorrect.

■ No specific order of arguments is required. For example, ls -long -attribute
behaves just like ls -attribute -long.

■ Unique abbreviations of arguments is supported. For example, ls -l behaves just like
ls -long.

■ Online help is provided if -help is specified.

■ Optional file redirection is supported. For example, report gates >> design.rpt
causes output to be appended to the file design.rpt.

■ RTL Compiler objects can be implicitly searched for based on their type. For example,
fanout SUB/A[0] performs an implicit find on the string SUB/A[0] and locates the
object /designs/TOP/instances_hier/SUB/pins_in/A[0].

You can use the command option parser to make a Tcl procedure behave just like a built-in
RTL Compiler command by providing on-line help, finding objects automatically, checking for
required options, handling unique argument abbreviations, and handling file redirection.

This command can return one of the following values:

■ -2: You asked for help and help was provided. The command returns normally.

■ 0: Your options were invalid and the command aborts.

■ 1: Your options were valid and the command continues normally.

Options and Arguments

args Specifies a list containing the options that the user sends to your
command. Usually your procedure will be defined like this:

proc your_procedure {args} {
... (code that implements the procedure)
}

You would then pass $args as the args parameter to
parse_options within your procedure.
July 2009 834 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
cmd Specifies the name of the command whose options to parse.

This name appears in the help listing if a user calls your
procedure with -h or if a user does not provide valid arguments.

code Specifies a string that describes the command argument: flag
name, whether it is required or optional, what type of data it
accepts, and a short help message about it. The string must be
in the form:

"(-<name>)?<x><y><z>(<dirtypes>)? <help>"

The question marks in the above string mean that these fields
of the string are optional.

You cannot specify multiple string values if you are specifying a
flag name. That is, if you are specifying a flag, you cannot also
specify the som (string, optional, multiple values) or srm (string,
required, multiple values) combinations.

<name> is the name of the flag. For example, -number.

<x> is a single character indicating the type of the option:

b Boolean

d directory object

f float

n integer number

s string

<y> is a single character indicating whether the option is
optional or required

o optional

r required

x obsolete

<z> is a single character indicating whether lists are accepted

m Accepts multiple values: lists OK

s Accepts single value only: no lists
July 2009 835 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
Examples

■ The following example shows how file indirection works:

rc:/> parse_options hello_world file_var {> ./tmp}
1

rc:/> puts $file_var "Hello world!"

rc:/> close $file_var

■ The following example shows a required argument with the -design flag that must be
the name of a subdesign (block).

rc:/> parse_options hello_world file_var {-design addinc65} \
==> "-design drs(subdesign) A module" my_design
1

rc:/> puts $my_design
/designs/alu/subdesigns/addinc65

■ The following example shows a Boolean argument, a numeric argument, and an
un-flagged object argument that can be either a subdesign (block) or an instance. It also
shows how the parser accepts abbreviations since the argument passed in is only -t, it
still gets recognized as -top.

rc:/> set level 300
300

rc:/> parse_options hello_world file_var {-t addinc65} \
==> "-top bos Do the top level thing" top \

<dirtypes> is a string indicating the types of directory
objects the option accepts. This string is required for all
arguments that have the <x> field set to d and cannot be
specified otherwise.

The list of specified directory types can only be separated by
vertical bars (|), that is, no spaces allowed, and must be
enclosed in parentheses.

<help> is a string that indicates to the user of your command
what the purpose of the option is.

file_var Specifies the name of a variable that holds the file handle if the
user calls your procedure with > file or >> file. Your
procedure should always check to see if this variable has been
set to something other than ‘stdout’. If it has, then your command
should send its output to that file handle instead of ‘stdout’ and
you should close the file handle once your command is
complete.

var Specifies the name of the variable that will be set with the
parsed result for that argument.
July 2009 836 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
==> "-level nos The level to work on" level \
==> "dos(subdesign|instance) An object to work on" object
1

rc:/> puts $object
/designs/alu/subdesigns/addinc65

rc:/> puts $top
1

rc:/> puts $level
300

■ The following example shows how online help works:

rc:/> parse_options hello_world file_var {-h} \
==> "-top bos Do the top level thing" top \
==> "-level nos The level to work on" level \
==> "dos(subdesign|instance) An object to work on" object
 Usage: hello_world [-h]
 -h: this message
 hello_world [-top] [-level number] [instance|subdesign] [> file]
 -top: (Boolean) Do the top level thing
 -level: (integer) The level to work on
 (instance|subdesign) An object to work on
-2
July 2009 837 Product Version 9.1

Command Reference for Encounter RTL Compiler
Customization
July 2009 838 Product Version 9.1

Command Reference for Encounter RTL Compiler
Index
Note: See Alphabetical List of Commands for an index of the command names.
A
abstract model

logic, writing 212
scan, reading 641
scan, writing 666

adding
design 802
directory to stack 51
help for user command 826
user-defined command 834
user-defined message 831

area, reporting 332
assigning, paths to cost group 269
ATPG file, writing out 495, 600, 656
Attribute

defining new
defining custom 827

attributes
retrieving value 68
setting value 98

B
bitblasting, all ports 794
body segment, defining 560
boundary scan logic

previewing changes 609
busses

renaming 783

C
cells

reporting cell count 332
reporting technology library cells

used 374
changing

attribute value
July 2009 83
defined by RC 98
directory in design hierarchy 33
names

of instances of an object type 783
path constraints 259
UNIX working directory 75

clock gating
insertion in mapped netlist 707

clock gating (CG)
inserting in mapped netlist 707

clock inputs, reporting 321
clock waveform, defining 240
clock-gating logic

editing 701
inserting and connecting observability

logic 708
merging instances 704
removing 712
reporting 342
test input, connecting 703

color
highlighting 114
label 122

commands, alphabetical list of 17
compatible test clocks, declaring 653
compression logic

previewing changes 343
concatenating

scan chains 520
configuring, pads for DFT 522
congestion map

create snapshot for documentation 123
connecting

pins, ports 795
scan chains 523
test input of clock-gating logic 703

cost group
assigning paths to 269
defining 245

creating
binding for Chipware component 138
9 Product Version 9.1

Command Reference for Encounter RTL Compiler
Chipware component 140
delay constraint for specific path 263
design 802
design representation in design

hierarchy 284
HDL library 144
hierarchy in design 800, 811
implementation for Chipware

component 142
instance of 803
library domains (MSV) 753
parameter for Chipware

component 148
pin 150
port bus 805
subdesign 797
subport bus 808
synthetic operator 145
timing constraints for instance 246
user-defined message 831

critical path, reporting timing slack for 437
current directory

in design hierarchy 52
in UNIX 83

D
defining

boundary scan segment 535
clock 240
configuration mode 538
cost group 245
DFT test clock 554, 577
input and output delays 248
multi-cycle path 254
paths for timing constraints 274
scan clock for LSSD 566, 569
shift-enable signal for DFT 572
test-mode signal for DFT 581
user_defined scan chain 560
user-defined abstract segment 530

design
area 332
creating

generic netlist 296
new design 802

incremental optimization 297
instantiating 803
mapping 295
removing 815, 820
July 2009 84
renaming 783
synthesizing 294
uniquifying 810, 824

design hierarchy
adding hierarchy level 800, 811
changing directories in 33
finding object type 39
listing information 46
removing hierarchy level 809
removing objects 820
renaming objects 815
returning current position 52

design rule constraints
reporting violations on 355

DFT clock domain
associating with scan chain 561
specifying compatible test clocks 653

DFT MBIST clocks
defining 554

DFT rule violations
checking flip-flops for 501
fixing 586

DFT rules, list of rules checked 501
DFT test clocks

declaring as compatible 653
defining 577

directories
changing in

design hierarchy 33
UNIX 75

listing contents in
design hierarchy 46
UNIX directory 80
virtual directory 45

returning current position in
design hierarchy 52
UNIX 83

directory stack
adding new directory 51
displaying directory list 36
tracing previous directory 50

disconnecting pins, ports 798
displaying

current position in design hierarchy 52
directory stack 36
UNIX directory, contents 80
virtual directory, contents 45
0 Product Version 9.1

Command Reference for Encounter RTL Compiler
E
executing

script 74
UNIX shell command 101

exiting, from RTL Compiler 67

F
fanin, reporting 323
fanout, reporting 326
filtering, objects 37
find, object type 39
finding

corresponding input or output 44
object base name 32
object directory name 35
object type 39
type of object 54

fixing, DFT rule violations 586
flattening, instances 822
flip-flops

checking for DFT rule violations 501
reporting scannability 361

Floorplan (DEF)
Reading 453
Writing 462

G
generic netlist

creating 296
GUI

update 108

H
HDL files, reading 168
HDL Viewer

remove data 110
head segment, defining 562
help

adding for new command 826
providing for commands 57, 73

highlight
clear 113, 119
color 114, 120
July 2009 84
I
incremental optimization 297
input delay, defining 248
inserting

clock-gating logic in mapped netlist 707
shadow logic 627
test point 631
user-defined test point 636
wrapper cell 638

instances
grouping 800, 811
removing from design 815, 820
renaming 783
ungrouping 809

isolation logic
removing 754

isolation rule
removing 815, 820

L
leakage power, reporting 404
length

abstract segment 531
maximum chain length 563

level-shifter groups
removing 815, 820

library cell, instantiating 803
library domains

creating 753
removing 820

licenses
checked out, listing 79
checking out 78

listing
object information 46

lockup element type, chain-specific 564
log file 89
log file, specifying 89
logic abstract, writing 212
loop breakers

removing 817
reporting 336

M
mapped netlist
1 Product Version 9.1

Command Reference for Encounter RTL Compiler
creating 297
writing out 212

mapping
design 294
non-scan flops with scan-

equivalent 644
memory resources, reporting 388
messages

creating customized 831
reporting 391
sending 833
suppressing 102

mode, specifying for power, timing analysis,
and optimization 237

MSV design
library domains, creating 753

multi-cycle path, defining 254

N
names

adding prefix 785
limiting length 785
mapping characters 784

net power, reporting 404
nets

renaming 783

O
object

finding base name 32
finding directory name 35

object path
return a selection list for instance, net,

pin, and port objects 108
object type, finding 39
object types

listing all attributes for a type 68
objects

connecting 795
disconnecting 798
filtering on attribute value 37
instantiating 803
listing information for an object 46
removing from design hierarchy 820
renaming 815
returning type of an object 54
selecting in design hierarchy 37
July 2009 84
observability logic for clock-gating logic
inserting 708

operand-isolation logic
reporting 400

optimizing
for area or timing 289
incrementally 294
RTL 295

output delay, defining 248
output, redirecting 92

P
parameterized module, elaborating 284
path

return path for a selected object 108
path constraints, modifying 259
paths

assigning to cost group 269
creating for timing exception 274
unconstraining 266

pin buses
removing from design 820

pins
connecting manually 795
disconnecting 798

port buses
creating new object 805
removing from design 815, 820
renaming 783

ports
bitblasting 794
connecting manually 795
disconnecting 798
renaming 783

power
reporting 404
sorting report 406

power domain
removing 815, 820

primitive cell, creating 806
probability values of nets

reading or updating 722
writing to SAIF file 738
writing to TCF file 740

Q
QoS Prediction 451
2 Product Version 9.1

Command Reference for Encounter RTL Compiler
R
reading

HDL files 168
SAIF file 718
SDC constraints 176
TCF file 722

remove
data 110

removing
clock-gating logic 712
directory from stack 50
hierarchy from design 809
object from design hierarchy 820

renaming
instances of object type 783
object 815

reporting
area of design 332
cell types, used 374
clock information of design 347
clock-gating information 342
design rule violations 355
DFT registers 361
DFT setup information 365
DFT violations 370
inferred datapath operators 350
instance information 379
memory resources 388
messages in current session 391
net information 396
operand-isolation information 400
port information 403
scan chains 356
timing information 437

retrieving
attribute value

defined by RC 68
clock ports 321
fanin information 323
fanout information 326
input ports 59
object information 46
output ports 60
UNIX working directory 83

RTL Compiler
exiting 67
quit 87
resuming process 103
starting from UNIX 88
July 2009 84
suspending process 103
RTL optimization 295
RTL power analysis, enabling 406

S
SAIF file

reading 718
writing 736

scan abstract model, creating 666
scan abstract model, reading 641
scan chain

tool-created
test clock domain associated with

name 540, 542, 557, 575, 593
scan-chain configuration

previewing 526
reporting 356

scan chains
connecting 523
defining 560
mixing edges of same clock on 653
removing 815, 820
reporting 356

scan data input
creating 561
specifying for chain 563
specifying for scan segment 532, 558

scan data output
creating 561
specifying for chain 563
specifying for scan segment 532, 558
using existing port 516, 564, 583

scan segment
defining 530, 540, 542, 557, 575, 593
removing 815, 820
shift enable

confirming if connected 531, 558
using in scan chain

as body segment 560
as head segment 562
as tail segment 564

scanDEF file, writing out 693
scripts

executing 74
writing out 218

SDC constraints
reading in 176
unsupported constructs 176
writing out 221
3 Product Version 9.1

Command Reference for Encounter RTL Compiler
shadow logic
inserting 627
previewing changes 628

shift-enable port
for scan segment 532

confirming if connected 531, 558
for shift-enable signal 573

shift-enable signal
defining 572, 581
specifying default 572
specifying for chain 564

slack, reporting at timing endpoints 438
SPEF

Reading 456
Writing 463

subdesigns
creating by copying existing

subdesign 797
instantiating 803
renaming 783
uniquifying 810, 824

subport buses
creating new object 808
removing from design 815, 820
renaming 783

subports
connecting manually 796
disconnecting 798

switching power, reporting 404
synthesis

creating generic netlist 296
incremental optimization 297
mapping 297

T
tail segment, defining 564
TCF file

reading 722
writing 740

test mode signal, defining 581
test point

inserting 631
possible types 633

timing constraints
deriving for instance 246
reporting violations on 437
writing out 218

timing exception, created by
modifying path constraints 259
July 2009 84
overriding default clock edge
relationship 254

specifying timing constraints 263
unconstraining paths 266

toggle counts of nets
reading or updating 722
writing to SAIF file 738
writing to TCF file 740

U
uniquifying, design or subdesign 810, 824
UNIX shell command

executing in RTL Compiler 101
user-defined test point, inserting 636
utilization map

create snapshot for documentation 123

W
wireload model, reporting 332
worst paths, reporting timing for 440
wrapper cell, inserting 638
writing

compression model 662
DFT abstract 666
logic abstract 212
netlist file 212
SAIF file 736, 738
scanDEF file 693
SDC constraints 221
TCF file 740
timing and design rule constraints 218
4 Product Version 9.1

	Contents
	Alphabetical�List�of�Commands
	Preface
	About This Manual
	Additional References
	How to Use the Documentation Set
	Reporting Problems or Errors in Manuals
	Customer Support
	Cadence Online Support
	Other Support Offerings

	Messages
	Man Pages
	Command-Line Help
	Getting the Syntax for a Command
	Getting the Syntax for an Attribute
	Searching for Attributes
	Searching For Commands When You Are Unsure of the Name

	Documentation Conventions
	Text Command Syntax

	Navigation
	basename
	cd
	dirname
	dirs
	filter
	find
	inout_mate
	ll
	ls
	popd
	pushd
	pwd
	vdir_lsearch
	what_is

	General
	?
	alias
	all_inputs
	all_outputs
	apropos
	clear
	date
	enable_transparent_latches
	exec_embedded_script
	exit
	get_attribute
	get_liberty_attribute
	get_read_files
	help
	include
	lcd
	license
	license checkin
	license checkout
	license list
	lls
	lpopd
	lpushd
	lpwd
	man
	more
	quit
	rc
	redirect
	reset_attribute
	resume
	sdc_shell
	set_attribute
	shell
	suppress_messages
	suspend
	unsuppress_messages

	GUI Text
	General GUI Text Commands
	gui_hide
	gui_info
	gui_raise
	gui_reset
	.gui_selection
	gui_show
	gui_status
	gui_update

	HDL Viewer GUI Text Commands
	gui_hv_clear
	gui_hv_get_file
	gui_hv_load_file
	gui_hv_set_indicators

	Schematic Viewer GUI Text Commands
	gui_sv_clear
	gui_sv_get_instance
	gui_sv_grey
	gui_sv_highlight
	gui_sv_load

	Physical Viewer GUI Text Commands
	gui_pv_airline_add
	gui_pv_airline_delete
	gui_pv_airline_display
	gui_pv_airline_raw_add
	gui_pv_clear
	gui_pv_highlight
	gui_pv_highlight_update
	gui_pv_label
	gui_pv_redraw
	gui_pv_selection
	gui_pv_snapshot
	gui_pv_zoom_fit
	gui_pv_zoom_in
	gui_pv_zoom_out
	gui_pv_zoom_to

	Chipware Developer
	cwd
	cwd check
	cwd create_check
	cwd report_check
	hdl_create
	hdl_create binding
	hdl_create component
	hdl_create implementation
	hdl_create library
	hdl_create operator
	hdl_create package
	hdl_create parameter
	hdl_create pin

	Input and Output
	decrypt
	encrypt
	export_critical_endpoints
	read_config_file
	read_cpf
	read_def
	read_dfm
	read_dft_abstract_model
	read_encounter
	read_hdl
	read_io_speclist
	read_netlist
	read_saif
	read_sdc
	read_spef
	read_tcf
	read_vcd
	restore_design
	write_atpg
	write_bsdl
	write_compression_macro
	write_config_template
	write_def
	write_design
	write_dft_abstract_model
	write_do_ccd
	write_do_ccd compare_sdc
	write_do_ccd generate
	write_do_ccd propagate
	write_do_ccd validate
	write_do_clp
	write_do_lec
	write_do_verify cdc
	write_encounter
	write_et_atpg
	write_et_bsv
	write_et_mbist
	write_et_rrfa
	write_ets
	write_ett
	write_forward_saif
	write_hdl
	write_io_speclist
	write_saif
	write_scandef
	write_script
	write_sdc
	write_sdf
	write_set_load
	write_spef
	write_tcf
	write_template

	Constraints
	clock_uncertainty
	create_mode
	define_clock
	define_cost_group
	derive_environment
	external_delay
	generate_constraints
	multi_cycle
	path_adjust
	path_delay
	path_disable
	path_group
	propagate_constraints
	specify_paths
	validate_constraints

	Elaboration and Synthesis
	elaborate
	remove_assigns_without_optimization
	remove_inserted_sync_enable_logic
	retime
	set_remove_assign_options
	synthesize

	Analysis and Report
	all_connected
	all des
	all des inps
	all des insts
	all des outs
	all des seqs
	all lib
	all lib bufs
	all lib ties
	analyze_library_corners
	check_design
	clock_ports
	compare_sdc
	fanin
	fanout
	report
	report area
	report boundary_opto
	report buskeepers
	report cdn_loop_breaker
	report cell_delay_calculation
	report checks
	report clock_gating
	report clocks
	report congestion
	report datapath
	report design_rules
	report dft_chains
	report dft_registers
	report dft_setup
	report dft_violations
	report disabled_transparent_latches
	report gates
	report hierarchy
	report instance
	report isolation
	report level_shifter
	report memory
	report memory_cells
	report messages
	report net_cap_calculation
	report net_delay_calculation
	report net_res_calculation
	report nets
	report operand_isolation
	report ple
	report port
	report power
	report power_domain
	report qor
	report scan_power
	report sequential
	report slew_calculation
	report spare_instances
	report state_retention
	report summary
	report timing
	report yield
	timestat
	validate_timing

	Physical
	def_move
	predict_qos
	read_def
	read_encounter
	read_spef
	report congestion
	reset_def
	specify_floorplan
	update_congestion_map
	write_def
	write_spef

	Quality Analyzer
	add_rule_group
	launch
	read_config_file
	report buskeepers
	report checks
	report spare_instances
	reset_session
	restore_session
	save_session
	signoff_checks
	signoff_checks all
	signoff_checks clock_domain_crossing
	signoff_checks constraints
	signoff_checks dft
	signoff_checks hdl_lint
	signoff_checks library
	signoff_checks physical
	signoff_checks power
	write_config_template

	Design for Test
	analyze_scan_compressibility
	analyze_testability
	check_atpg_rules
	check_dft_pad_configuration
	check_dft_rules
	compress_scan_chains
	concat_scan_chains
	configure_pad_dft
	connect_scan_chains
	define_dft
	define_dft abstract_segment
	define_dft boundary_scan_segment
	define_dft dft_configuration_mode
	define_dft fixed_segment
	define_dft floating_segment
	define_dft jtag_instruction
	define_dft jtag_instruction_register
	define_dft jtag_macro
	define_dft mbist_clock
	define_dft preserved_segment
	define_dft scan_chain
	define_dft scan_clock_a
	define_dft scan_clock_b
	define_dft shift_enable
	define_dft shift_register_segment
	define_dft test_clock
	define_dft test_mode
	dft_trace_back
	fix_dft_violations
	fix_scan_path_inversions
	identify_multibit_cell_abstract_scan_segments
	identify_shift_register_scan_segments
	identify_test_mode_registers
	insert_dft
	insert_dft analyzed_test_points
	insert_dft boundary_scan
	insert_dft dfa_test_points
	insert_dft jtag_macro
	insert_dft lockup_element
	insert_dft mbist
	insert_dft ptam
	insert_dft scan_power_gating
	insert_dft shadow_logic
	insert_dft test_point
	insert_dft user_test_point
	insert_dft wrapper_cell
	read_dft_abstract_model
	read_io_speclist
	replace_scan
	report_scan_compressibility
	report dft_chains
	report dft_registers
	report dft_setup
	report dft_violations
	report scan_power
	reset_scan_equivalent
	set_compatible_test_clocks
	set_scan_equivalent
	write_atpg
	write_bsdl
	write_compression_macro
	write_dft_abstract_model
	write_et_atpg
	write_et_bsv
	write_et_dfa
	write_et_mbist
	write_et_rrfa
	write_io_speclist
	write_scandef

	Low Power Synthesis
	build_rtl_power_models
	clock_gating
	clock_gating connect_test
	clock_gating declone
	clock_gating import
	clock_gating insert_in_netlist
	clock_gating insert_obs
	clock_gating join
	clock_gating remove
	clock_gating share
	clock_gating split
	read_saif
	read_tcf
	read_vcd
	report clock_gating
	report operand_isolation
	report power
	state_retention
	state_retention connect_power_gating_pins
	state_retention swap
	write_forward_saif
	write_saif
	write_tcf

	Advanced Low Power Synthesis
	check_cpf
	check_library
	commit_cpf
	create_library_domain
	isolation_cell remove
	level_shifter remove
	read_cpf
	reload_cpf
	report isolation
	report level_shifter
	report state_retention
	verify_power_structure

	Design Exploration
	dex_create_exploration_scenarios
	dex_define_exploration_power_domain
	dex_execute_exploration_scenarios
	dex_report qor_summary
	dex_report thread_info
	dex_write_scenario

	Design Manipulation
	change_link
	change_names
	clock_gating
	delete_unloaded_undriven
	edit_netlist
	edit_netlist bitblast_all_ports
	edit_netlist connect
	edit_netlist dedicate_subdesign
	edit_netlist disconnect
	edit_netlist group
	edit_netlist new_design
	edit_netlist new_instance
	edit_netlist new_port_bus
	edit_netlist new_primitive
	edit_netlist new_subport_bus
	edit_netlist ungroup
	edit_netlist uniquify
	group
	insert_tiehilo_cells
	mv
	remove_cdn_loop_breaker
	reset_design
	rm
	ungroup
	uniquify

	Customization
	add_command_help
	define_attribute
	mesg_make
	mesg_send
	parse_options

	Index

