
Encounter® RTL Compiler Synthesis Flows

Product Version 9.1
July 2009

 2006-2009 Cadence Design Systems, Inc. All rights reserved.
Printed in the United States of America.

Cadence Design Systems, Inc. (Cadence), 2655 Seely Ave., San Jose, CA 95134, USA.

Product Encounter™ RTL Compiler contains technology licensed from, and copyrighted by: Concept
Engineering GmbH, and is 1998-2006, Concept Engineering GmbH. All rights reserved.

Open SystemC, Open SystemC Initiative, OSCI, SystemC, and SystemC Initiative are trademarks or registered
trademarks of Open SystemC Initiative, Inc. in the United States and other countries and are used with
permission.

Trademarks: Trademarks and service marks of Cadence Design Systems, Inc. contained in this document are
attributed to Cadence with the appropriate symbol. For queries regarding Cadence’s trademarks, contact the
corporate legal department at the address shown above or call 800.862.4522. All other trademarks are the
property of their respective holders.

Restricted Permission: This publication is protected by copyright law and international treaties and contains
trade secrets and proprietary information owned by Cadence. Unauthorized reproduction or distribution of this
publication, or any portion of it, may result in civil and criminal penalties. Except as specified in this permission
statement, this publication may not be copied, reproduced, modified, published, uploaded, posted, transmitted,
or distributed in any way, without prior written permission from Cadence. Unless otherwise agreed to by
Cadence in writing, this statement grants Cadence customers permission to print one (1) hard copy of this
publication subject to the following conditions:

1. The publication may be used only in accordance with a written agreement between Cadence and its
customer.

2. The publication may not be modified in any way.
3. Any authorized copy of the publication or portion thereof must include all original copyright, trademark,

and other proprietary notices and this permission statement.
4. The information contained in this document cannot be used in the development of like products or

software, whether for internal or external use, and shall not be used for the benefit of any other party,
whether or not for consideration.

Patents: Cadence Product Encounter™ RTL Compiler described in this document, is protected by U.S. Patents
[5,892,687]; [6,470,486]; 6,772,398]; [6,772,399]; [6,807,651]; [6,832,357]; and [7,007,247]

Disclaimer: Information in this publication is subject to change without notice and does not represent a
commitment on the part of Cadence. Except as may be explicitly set forth in such agreement, Cadence does
not make, and expressly disclaims, any representations or warranties as to the completeness, accuracy or
usefulness of the information contained in this document. Cadence does not warrant that use of such
information will not infringe any third party rights, nor does Cadence assume any liability for damages or costs
of any kind that may result from use of such information.

Restricted Rights: Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
FAR52.227-14 and DFAR252.227-7013 et seq. or its successor

Encounter RTL Compiler Synthesis Flows

Contents
Preface . 7

About This Manual . 8
Additional References . 8
How to Use the Documentation Set . 9
Reporting Problems or Errors in Manuals . 10
Customer Support . 10

Cadence Online Support . 10
Other Support Offerings . 10

Messages . 11
Man Pages . 12
Command-Line Help . 12

Getting the Syntax for a Command . 12
Getting the Syntax for an Attribute . 13
Searching for Attributes . 13
Searching For Commands When You Are Unsure of the Name 13

Documentation Conventions . 14
Text Command Syntax . 14

1
Getting Started with the Generic Flow . 17

Overview . 18
Tasks . 19

Starting RTL Compiler . 20
Generating Log Files . 22
Generating the Command File . 22
Setting Information Level and Messages . 23
Specifying Explicit Search Paths . 23
Setting the Target Technology Library . 23
Setting the Appropriate Synthesis Mode . 24
Loading the HDL Files . 24
Performing Elaboration . 25
July 2009 3 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Applying Constraints . 26
Applying Optimization Constraints . 27
Performing Synthesis . 27
Analyzing the Synthesis Results . 28
Writing Out Files for Place and Route . 28
Exiting RTL Compiler . 29
Summarizing the Generic Flow . 29

2
Path Adjust Flows. 31

Overview . 32
Tasks . 34

RTL Compiler Path Adjust Flow . 34
Encounter Path Adjust Flow . 36

3
Design For Manufacturing Flow. 39

Overview . 40
Tasks . 41

Specifying the Yield Coefficients Information . 41
Setting the DFM Flow . 41
Analyzing the Yield Information . 41

. 43

4
Associating Dedicated Libraries with Different Blocks in the
Design. 45

Overview . 46
Flow Steps . 50

Begin Setup . 50
Create Library Domains . 50
Read Target Libraries for Library Domains . 51
Read HDL Files . 52
Elaborate Design . 52
July 2009 4 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Set Timing and Design Constraints . 52
Apply Optimization Directives . 52
Associate Library Domains with Different Blocks of Design . 53
Synthesize Design . 55
Analyze Design . 55

Library Domain Information in the Design Information Hierarchy 56
Additional Tasks . 57

Removing a Library Domain . 57
Saving Information . 58
What If Analysis . 58

5
Quality Analyzer Flow . 61

Overview . 62
RCQA Flow Stage Methodology . 63

HDL . 64
CDC . 64
Netlist . 64
Library . 65
Constraint . 65
DFT . 65
Low Power . 66
Physical . 66

RCQA GUI-Based Methodology . 67

A
Summary of the Flows . 69

Generic Flow . 70
Physical Flow with predict_qos, LEF, and Capacitance Table 71
Physical Flow with predict_qos and Encounter Configuration File 71
Physical Flow without predict_qos . 71
DFM Flow . 72
Top-Down Synthesis Flow Using Multiple Library Domains . 73
RCQA Flow . 74
July 2009 5 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
July 2009 6 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Preface

This preface contains the following sections:

■ About This Manual on page 8

■ Additional References on page 8

■ How to Use the Documentation Set on page 9

■ Customer Support on page 10

■ Messages on page 11

■ Man Pages on page 12

■ Command-Line Help on page 12

■ Documentation Conventions on page 14
July 2009 7 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Preface
About This Manual

Provide a brief description of your manual.

Additional References

The following sources are helpful references, but are not included with the product
documentation:

■ TclTutor, a computer aided instruction package for learning the Tcl language:
http://www.msen.com/~clif/TclTutor.html.

■ TCL Reference, Tcl and the Tk Toolkit, John K. Ousterhout, Addison-Wesley
Publishing Company

■ IEEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language (IEEE Std.1364-1995)

■ IEEE Standard Hardware Description Language Based on the Verilog Hardware
Description Language (IEEE Std. 1364-2001)

■ IEEE Standard VHDL Language Reference Manual (IEEE Std. 1076-1987)

■ IEEE Standard VHDL Language Reference Manual (IEEE Std. 1076-1993)

Note: For information on purchasing IEEE specifications go to http://shop.ieee.org/store/ and
click on Standards.
July 2009 8 Product Version 9.1

http://www.msen.com/~clif/TclTutor.html

Encounter RTL Compiler Synthesis Flows
Preface
How to Use the Documentation Set

INSTALLATION AND CONFIGURATION

NEW FEATURES AND
SOLUTIONS TO PROBLEMS

Cadence Installation Guide

Cadence License Manager

README File

What’s New in Encounter RTL
Compiler

README File

Known Problems and Solutions in
Encounter RTL Compiler

Using Encounter RTL Compiler

HDL Modeling in Encounter RTL
Compiler

Library Guide for Encounter RTL
Compiler

Datapath Synthesis in
Encounter RTL

Compiler

Setting Constraints
andPerformingTiming
Analysis in Encounter

RTL Compiler

Low Power in
Encounter RTL

Compiler

Design for Test in
Encounter RTL

Compiler

TASKS AND CONCEPTS

REFERENCES

Attribute Reference
for Encounter RTL

Compiler

GUI Guide for
Encounter RTL

Compiler

ChipWare in
Encounter RTL

Compiler

Command Reference
for Encounter RTL

Compiler

Quick Reference for
Encounter RTL

Compiler

Command Reference
for Encounter RTL

Compiler
July 2009 9 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Preface
Reporting Problems or Errors in Manuals

The Cadence Online Documentation System, CDSDoc, lets you view, search, and print
Cadence product documentation. You can access CDSDoc by typing cdsdoc from your
Cadence tools hierarchy.

Clicking the Feedback button lets you send e-mail directly to Cadence Technical
Publications. Use it if you find:

■ An error in the manual

■ An omission of information in a manual

■ A problem displaying documents

Customer Support

Cadence offers live and online support, as well as customer education and training programs.

Cadence Online Support

The Cadence® online support website offers answers to your most common technical
questions. It lets you search more than 40,000 FAQs, notifications, software updates, and
technical solutions documents that give you step-by-step instructions on how to solve known
problems. It also gives you product-specific e-mail notifications, software updates, service
request tracking, up-to-date release information, full site search capabilities, software update
ordering, and much more.

For more information on Cadence online support go to:

http://support.cadence.com

Other Support Offerings

■ Support centers—Provide live customer support from Cadence experts who can
answer many questions related to products and platforms.

■ Software downloads—Provide you with the latest versions of Cadence products.

■ Education services—Offers instructor-led classes, self-paced Internet, and virtual
classroom.
July 2009 10 Product Version 9.1

http://support.cadence.com

Encounter RTL Compiler Synthesis Flows
Preface
■ University software program support—Provides you with the latest information to
answer your technical questions.

For more information on these support offerings go to:

http://www.cadence.com/support

Messages

From within RTL Compiler there are two ways to get information about messages.

■ Use the report messages command.

For example:

rc:/> report messages

This returns the detailed information for each message output in your current RTL
Compiler run. It also includes a summary of how many times each message was issued.

■ Use the man command.

Note: You can only use the man command for messages within RTL Compiler.

For example, to get more information about the "TIM-11" message, type the following
command:

rc:/> man TIM-11

If you do not get the details that you need or do not understand a message, either contact
Cadence Customer Support to file a PCR or email the message ID you would like improved
to:

rc_msg_improvement@cadence.com
July 2009 11 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Preface
Man Pages

In addition to the Command and Attribute References, you can also access information about
the commands and attributes using the man pages in RTL Compiler. Man pages contain the
same content as the Command and Attribute References. To use the man pages from the
UNIX shell:

1. Set your environment to view the correct directory:

setenv MANPATH $CDN_SYNTH_ROOT/share/synth/man

2. Enter the name of the command or attribute that you want either in RTL Compiler or
within the UNIX shell. For example:

❑ man check_dft_rules

❑ man cell_leakage_power

You can also use the more command, which behaves like its UNIX counterpart. If the output
of a manpage is too small to be displayed completely on the screen, use the more command
to break up the output. Use the spacebar to page forward, like the UNIX more command.

rc:/> more man synthesize

Command-Line Help

You can get quick syntax help for commands and attributes at the RTL Compiler command-
line prompt. There are also enhanced search capabilities so you can more easily search for
the command or attribute that you need.

Note: The command syntax representation in this document does not necessarily match the
information that you get when you type help command_name. In many cases, the order of
the arguments is different. Furthermore, the syntax in this document includes all of the
dependencies, where the help information does this only to a certain degree.

If you have any suggestions for improving the command-line help, please e-mail them to:

synthesis_help@cadence.com

Getting the Syntax for a Command

Type the help command followed by the command name.

For example:
July 2009 12 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Preface
rc:/> help path_delay

This returns the syntax for the path_delay command.

Getting the Syntax for an Attribute

Type the following:

rc:/> get_attribute attribute_name * -help

For example:

rc:/> get_attribute max_transition * -help

This returns the syntax for the max_transition attribute.

Searching for Attributes

You can get a list of all the available attributes by typing the following command:

rc:/> get_attribute * * -help

You can type a sequence of letters after the set_attribute command and press Tab to
get a list of all attributes that contain those letters.

rc:/> set_attr li

ambiguous "li": lib_lef_consistency_check_enable lib_search_path libcell
liberty_attributes libpin library library_domain line_number

Searching For Commands When You Are Unsure of the Name

You can use help to find a command if you only know part of its name, even as little as one
letter.

■ If you only know the first few letters of a command you can get a list of commands that
begin with that letter.

For example, to get a list of commands that begin with “ed”, you would type the following
command:

rc:/> ed* -h

■ You can type a single letter and press Tab to get a list of all commands that contains that
letter.

For example:

rc:/> c <Tab>
July 2009 13 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Preface
This returns the following commands:

ambiguous "c": cache_vname calling_proc case catch cd cdsdoc change_names
check_dft_rules chipware clear clock clock_gating clock_ports close cmdExpand
command_is_complete concat configure_pad_dft connect_scan_chains continue
cwd_install ...

■ You can also type a sequence of letters and press Tab to get a list of all commands that
contain those letters.

For example:

rc:/> path_ <Tab>

This returns the following commands:

ambiguous "path_": path_adjust path_delay path_disable path_group

Documentation Conventions

Text Command Syntax

The list below defines the syntax conventions used for the RTL Compiler text interface
commands.

literal Nonitalic words indicate keywords you enter literally. These
keywords represent command or option names.

arguments and options Words in italics indicate user-defined arguments or information
for which you must substitute a name or a value.

| Vertical bars (OR-bars) separate possible choices for a single
argument.

[] Brackets indicate optional arguments. When used with OR-bars,
they enclose a list of choices from which you can choose one.

{ } Braces indicate that a choice is required from the list of
arguments separated by OR-bars. Choose one from the list.

{ argument1 | argument2 | argument3 }

{ } Braces, used in Tcl commands, indicate that the braces must be
typed in.
July 2009 14 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Preface
... Three dots (...) indicate that you can repeat the previous
argument. If the three dots are used with brackets (that is,
[argument]...), you can specify zero or more arguments. If
the three dots are used without brackets (argument...), you
must specify at least one argument.

The pound sign precedes comments in command files.
July 2009 15 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Preface
July 2009 16 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
1
Getting Started with the Generic Flow

■ Overview on page 18

■ Tasks on page 19

❑ Starting RTL Compiler on page 20

❑ Generating Log Files on page 22

❑ Generating the Command File on page 22

❑ Setting Information Level and Messages on page 23

❑ Specifying Explicit Search Paths on page 23

❑ Setting the Target Technology Library on page 23

❑ Setting the Appropriate Synthesis Mode on page 24

❑ Loading the HDL Files on page 24

❑ Performing Elaboration on page 25

❑ Applying Constraints on page 26

❑ Applying Optimization Constraints on page 27

❑ Performing Synthesis on page 27

❑ Analyzing the Synthesis Results on page 28

❑ Writing Out Files for Place and Route on page 28

❑ Exiting RTL Compiler on page 29

❑ Summarizing the Generic Flow on page 29
July 2009 17 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Overview

Figure 1-1 on page 18 shows the generic RTL Compiler work flow. The term “generic” merely
illustrates that whatever flow you use, you will most likely use most or all of the steps in the
generic flow. This section briefly and sequentially describes all the tasks within the work flow.

Figure 1-1 Generic RTL Compiler Work Flow

HDL files

Load HDL files

Apply optimization settings

Netlist, SDC

Meet
constraints?

Yes

No

Modify constraints

Change constraints

Perform elaboration

Apply Constraints

Modify source

Synthesize

Analyze

Export Design

Set search paths and
timing library
July 2009 18 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Tasks

■ Starting RTL Compiler on page 20

■ Generating Log Files on page 22

■ Generating the Command File on page 22

■ Setting Information Level and Messages on page 23

■ Specifying Explicit Search Paths on page 23

■ Setting the Target Technology Library on page 23

■ Setting the Appropriate Synthesis Mode on page 24

■ Loading the HDL Files on page 24

■ Performing Elaboration on page 25

■ Applying Constraints on page 26

■ Applying Optimization Constraints on page 27

■ Performing Synthesis on page 27

■ Analyzing the Synthesis Results on page 28

■ Writing Out Files for Place and Route on page 28

■ Exiting RTL Compiler on page 29

■ Summarizing the Generic Flow on page 29
July 2009 19 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Starting RTL Compiler

The rc command starts RTL Compiler from the UNIX environment. The syntax of the rc
command is:

rc [-32] [-64] [-cmdfile string] [-execute command] [-files script_file]
[-logfile log_file_name][-lsf_cpu integer] [lsf_queue queue_name] [-no_custom]
[-unique} [-nologfile] [queue] [-use_license RTL_Compiler_L | RTL_Compiler_Ultra
|RTL_Compiler_Verification | First_Encounter_GXL | SOC_Encounter_GXL | FE_GPS |
SOC_Encounter_GPS | Virtuoso_Digital_Implem | Virtuoso_Digital_Implement] [-vdi]
[-version]

To invoke RTL Compiler:

➤ Type the following command at the UNIX prompt to launch RTL Compiler in 32-bit mode
with the RTL_Compiler_Ultra license:

unix> rc -32

Alternatively, you can just type the rc command because the 32-bit mode is the default
mode (regardless of the platform):

unix> rc

➤ You can specify the logfile name with the -logfile option. The default name is rc.log
if there is no other logfile in the directory from which RTL Compiler is launched.

unix> rc -logfile pov.log

Do not use the UNIX tee command and pipe (|) to specify your logname: doing so would
not allow you to use the control-c key sequence to gracefully exit a process like
incremental optimization.

➤ Type the following command if you want the launching of RTL Compiler to fail if no
RTL_Compiler_Ultra license is available:

unix> rc -use_license RTL_Compiler_Ultra

If you specify multiple licenses, only the last one will be used.

➤ The following commands have the same effect. Therefore, you should use one or the
other and not both in conjunction:

unix> rc -use_license Virtuoso_Digital_Implem

is the same as:

unix> rc -vdi

If you specify the -vdi option, RTL Compiler will first try to use the
Virtuoso_Digital_Implem license. If that license is unavailable, it will then use the
Virtuoso_Digital_Implement license.

➤ Type the following command at the UNIX prompt to launch RTL Compiler in 64-bit mode:

unix> rc -64
July 2009 20 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
The initial splash screen will tell you whether you are in 64 or 32 bit mode.

Note: You can set the CDS_AUTO_64BIT environment variable to ALL
(setenv CDS_AUTO_64BIT ALL) to launch not only RTL Compiler, but all Cadence
tools in 64 bit. You will not need to specify the -64 option if you use this variable.

➤ Type the following command to simultaneously invoke RTL Compiler as a background
process and execute a script:

unix> rc < script_file_name &

➤ Type the following command to simultaneously invoke RTL Compiler, execute script, and
exit if any problems are encountered with the script:

unix> rc -files script_file_name < /dev/null

➤ Type the following command to simultaneously set the script search path and invoke RTL
Compiler:

unix> rc -execute “set_attribute script_search_path pathname”

➤ Type the following command to simultaneously set the a Tcl variable, invoke RTL
Compiler, and launch a script:

unix> rc -files script_file_name -execute “set variable_name value”

➤ RTL Compiler supports super-threading on LSF. Use the -lsf_cpus option to specify
the number of processes to send to LSF and the -lsf_queue option to specify a
particular LSF queue:

unix> rc -lsf_cpus 4 -lsf_queue teagan_queue

If the super_thread_servers and bsub_options attributes are specified within a
RTL Compiler session, they will override the -lsf_cpus and -lsf_queue options. In
the following example, two processes will be sent to LSF and the stormy queue used:

unix> rc -lsf_cpus 4 -lsf_queue teagan_queue

...

rc:/> set_attribute super_thread_servers {lsf lsf}

rc:/> set_attribute bsub_options stormy_queue

Tip

You can abbreviate the options for the rc command as long as there are no
ambiguities with other options. In the following example, -ver would imply the
-version option:

unix> rc -ver

Just using rc -v would not work because there is more than one option that starts with
the letter “v.”
July 2009 21 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Generating Log Files

By default, RTL Compiler generates a log file named rc.log. The log file contains the entire
output of the current RTL Compiler session. You can set the level of verbosity in the log file
with the information_level attribute, as described in Setting Information Level and
Messages on page 23.

You can customize the log file name while invoking RTL Compiler or during the synthesis
session. The following examples simultaneously customize the log file name and execute a
script file. RTL Compiler will overwrite any log file with the same name.

➤ Start RTL Compiler with the -logfile option:

unix> rc -f script_file_name -logfile log_file_name

➤ Start RTL Compiler as a background process and write out the log file:

unix> rc < script_file_name > log_file_name &

➤ Suppress the generation of any log file by using the -nologfile option when invoking
RTL Compiler.

unix> rc -f script_file_name -nologfile

➤ Customizes the log file within an RTL Compiler session through the stdout_log
attribute:

rc:/> set_attribute stdout_log log_file_name

➤ If a log file already exists, the new log file will have the number “1” appended to it.

Generating the Command File

By default, RTL Compiler generates a command history file named rc.cmd, which contains
a record of all the commands that were issued in a particular session. This file is created in
addition to the log file.

To customize the command file name, use the command_log attribute within a RTL Compiler
session. The following example changes the default name of rc.cmd to
rc_command_list.txt:

rc:/> set_attribute command_log rc_command_list.txt

If a command file already exists, the new command file will have the number “1” appended to
it.
July 2009 22 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Setting Information Level and Messages

You can control the amount of information RTL Compiler writes out in the output logfiles.

➤ To specify the verbosity level, type the following command:

rc:/> set_attribute information_level value /

where value is an integer value between 0 (minimum) and 9 (maximum). The
recommended level is 6. The information_level attribute is a root-level attribute.
Therefore, like all root level attributes, it needs to be set on the root level (“/”) like the
above example.

Tip

For analysis and debugging, set the information level to 9.

Specifying Explicit Search Paths

You can specify the search paths for libraries, scripts, and HDL files. The default search path
is the directory in which RTL Compiler is invoked.

To set the search paths, type the following set_attribute commands:

rc:/> set_attribute lib_search_path path /

rc:/> set_attribute script_search_path path /

rc:/> set_attribute hdl_search_path path /

where path is the full path of your target library, script, or HDL file locations.

The slash (“/”) in these commands refers to the root-level RTL Compiler object that contains
all global RTL Compiler settings.

Setting the Target Technology Library

After you set the library search path, you need to specify the target technology library for
synthesis using the library attribute.

➤ To specify a single library:

rc:/> set_attribute library lib_name.lbr /

RTL Compiler will use the library named lib_name.lbr for synthesis. RTL Compiler
can also accommodate the .lib (Liberty) library format. In either case, ensure that you
specify the library at the root-level (“/”).
July 2009 23 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Note: If the library is not in a previously specified search path, specify the full path, as
follows:

rc:/> set_attribute library /usr/local/files/lib_name.lbr

➤ To specify a single library compressed with gzip:

rc:/> set_attribute library lib_name.lbr.gz /

➤ To append libraries:

rc:/> set_attribute library {{lib1.lib lib2.lib}}

After lib1.lib is loaded, lib2.lib is appended to lib1.lib. This appended library
retains the lib1.lib name.

Setting the Appropriate Synthesis Mode

RTL Compiler has two modes to synthesize the design. The synthesis mode is determined
by the setting of the interconnect_mode attribute:

■ wireload (default) indicates to use wire-load models to drive synthesis

■ ple indicates to use Physical Layout Estimators (PLEs) to drive synthesis

PLE uses physical information, such as LEF libraries, to provide better closure with back-
end tools.

Note: When you read in LEF files, the interconnect_mode attribute is automatically
set to ple.

Loading the HDL Files

Use the read_hdl command to read HDL files into RTL Compiler. When you issue a
read_hdl command, RTL Compiler reads the files and performs syntax checks.

➤ To load one or more Verilog files:

❑ You can read the files sequentially:

read_hdl file1.v

read_hdl file2.v

read_hdl file3.v

❑ Or you can load the files simultaneously:

read_hdl { file1.v file2.v file3.v }
July 2009 24 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Caution

Your files may have extra, hidden characters (for example, line
terminators) if they are transferred from Windows/Dos to the UNIX
environment using the dos2unix command. Be sure to eliminate them
because RTL Compiler will issue an error when it encounters these
characters.

For more information on loading HDL files, see Loading Files.

Performing Elaboration

Elaboration is only required for the top-level design. The elaborate command
automatically elaborates the top-level design and all of its references. During elaboration,
RTL Compiler performs the following tasks:

■ Builds data structures

■ Infers registers in the design

■ Performs high-level HDL optimization, such as dead code removal

■ Checks semantics

Note: If there are any gate-level netlists read in with the RTL files, RTL Compiler
automatically links the cells to their references in the technology library during elaboration.
You do not have to issue an additional command for linking.

At the end of elaboration, RTL Compiler displays any unresolved references (immediately
after the key words Done elaborating):

Done elaborating '<top_level_module_name>'.

Cannot resolve reference to <ref01>

Cannot resolve reference to <ref02>

Cannot resolve reference to <ref03>

...

After elaboration, RTL Compiler has an internally created data structure for the whole design
so you can apply constraints and perform other operations.

For more information on elaborating a design, see Elaborating the Design.
July 2009 25 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Applying Constraints

After loading and elaborating your design, you must specify constraints. The constraints
include:

■ Operating conditions

■ Clock waveforms

■ I/O timing

You can apply constraints in several ways:

■ Type them manually in the RTL Compiler shell.

■ Include a constraints file.

■ Read in SDC constraints.

Setting Constraints and Performing Timing Analysis in Encounter RTL Compiler
gives a broader overview on constraints.
July 2009 26 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Applying Optimization Constraints

In addition to applying design constraints, you may need to use additional optimization
strategies to get the desired performance goals from synthesis.

With RTL Compiler, you can perform any of the following optimizations:

■ Remove designer-created hierarchies (ungrouping)

■ Create additional hierarchies (grouping)

■ Synthesize a sub-design

■ Create custom cost groups for paths in the design to change the synthesis cost function

For example, the timing paths in the design can be classified into the following four distinct
cost groups:

■ Input-to-Output paths (I2O)

■ Input-to-Register paths (I2C)

■ Register-to-Register (C2C)

■ Register-to-Output paths (C2O)

For each path group, the worst timing path drives the synthesis cost function. For more
information on optimization strategies and related commands, see Defining Optimization
settings.

Performing Synthesis

After the constraints and optimizations are set for your design, you can proceed with
synthesis by issuing the synthesize command.

➤ To synthesize your design using the synthesize command, type the following
command:

rc:\> synthesize -to_mapped

For details on the synthesize command, see Performing Synthesis.

After synthesis, you will have a technology-mapped gate-level netlist.
July 2009 27 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
Analyzing the Synthesis Results

After synthesizing the design, you can generate detailed timing and area reports using the
various report commands:

■ To generated a detailed area report, use report area.

■ To generate a detailed gate selection and area report, use report gates.

■ To generate a detailed timing report, including the worst critical path of the current
design, use report timing.

For more information on generating reports for analysis, see Generating Reports and
“Analysis Commands” in the Command Reference for Encounter RTL Compiler.

Writing Out Files for Place and Route

The last step in the flow involves writing out the gate-level netlist, SDC, or Encounter
configuration file for processing in your place and route tool. For more information on this
topic, see Interfacing to Place and Route.

Note: By default, the write commands write output to stdout. If you want to save your
information to a file, use the redirection symbol (>) and a filename.

➤ To write the gate-level netlist, use the write_hdl command.

Because write_hdl directs the output to stdout, use file redirection to create a
design file on disk, as shown in the following example:

rc:/> write_hdl > design.v

This command writes out the gate-level netlist to a file called design.v.

➤ To write out the design constraints, use the write_script command, as shown in the
following example:

rc:/> write_script > constraints.g

This command writes out the constraints to the file constraints.g.

➤ To write the design constraints in SDC format, use the write_sdc command, as shown
in the following example:

rc:/> write_sdc > constraints.sdc

This command writes the design constraints to a file called constraints.sdc.

Note: Because some place and route tools require different structures in the netlist, you
may need to make some adjustments either before synthesis or before writing out the
netlist. For more information about these issues, see Interfacing to Place and Route.
July 2009 28 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
➤ To write the Encounter configuration file, use the write_encounter command:

rc:/> write_encounter design design_name

Exiting RTL Compiler

There are three ways to exit RTL Compiler when you finish your session:

■ Use the quit command.

■ Use the exit command.

■ Use the Control-c key combination twice in succession to exit the tool immediately.

Summarizing the Generic Flow
set_attribute library library_name

read_hdl filename

elaborate

read constraints

synthesize -to_mapped

write_hdl

read_def def_file

synthesize -to_mapped

predict_qos

write_encounter design
July 2009 29 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Getting Started with the Generic Flow
July 2009 30 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
2
Path Adjust Flows

■ Overview on page 32

■ Tasks on page 34

❑ RTL Compiler Path Adjust Flow on page 34

❑ Encounter Path Adjust Flow on page 36
July 2009 31 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Path Adjust Flows
Overview

The following figures show two Path Adjust flows: the RTL Compiler Path Adjust flow and the
Encounter Path Adjust flow.

Figure 2-1 on page 32 shows the RTL Compiler Path Adjust Flow. It is called the RTL
Compiler Path Adjust Flow because it starts from within RTL Compiler and uses its
export_critical_endpoints command. For more information about the
export_critical_endpoints command, refer to the Command Reference for Encounter
RTL Compiler.

Figure 2-1 RTL Compiler Path Adjust Flow

RTL or Netlist
and

Constraints

Meet
constraints?

No

PlaceDesign in
Encounter

OptDesign in
Encounter

Export_critical_end
points in RTL

Compiler

Synthesize in RTL
Compiler

Synthesize in RTL
Compiler again

Place in Encounter

OptDesign in
Encounter again

RTL Compiler
endpoint report

 Encounter .slk
report
July 2009 32 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Path Adjust Flows
Figure 2-2 on page 33 shows the Encounter Path Adjust Flow. It is called the Encounter Path
Adjust Flow because it starts from within Encounter and uses its runN2NOpt command.

Figure 2-2 Encounter Path Adjust Flow

Netlist and
Constraints

Is timing
good?

No

Load/Restore

End Point Report with
report timing -

end

runN2N Opt

.slk Report from
ReportSlack

Placement

OptDesign

Analyze Results

Floorplan and
Configuration

Files
July 2009 33 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Path Adjust Flows
Tasks

■ RTL Compiler Path Adjust Flow on page 34

■ Encounter Path Adjust Flow on page 36

RTL Compiler Path Adjust Flow

Timing closure between RTL Compiler and Encounter uses an automated path adjust flow.
The path adjust flow is for those scenarios in which you want to improve QoS after a you have
taken your design through a RTL Compiler synthesis run, placement and optimization in
Encounter, and the timing goals are not met.

1. Take the timing endpoint report generated from the RTL Compiler synthesis run. The
following example generates a report named rc_endpoint.rpt:

report timing -end > rc_endpoint.rpt

2. Use the slack report (.slk) from the Encounter run. The following example generates a
report named top.slk:

reportSlacks -outfile top.slk

3. The endpoint reports (rc_endpoint.rpt and top.slk in the examples above) can be
passed to the export_critical_endpoints RTL Compiler command to generate a
path adjust file. The following example creates a path adjust file called
pathadjust.tcl:

export_critical_endpoints -rc_file rc_endpoint.rpt -fe_file top.slk > \
pathadjust.tcl

4. Run a second RTL Compiler synthesis run using the path adjust file (pathadjust.tcl
in the example above) as a additional set of constraint on the original RTL or netlist.

5. Load the newly created netlist into Encounter and take it through placement and
optimization for better QoS.

Again, Figure 2-1 on page 32 illustrates the steps above.

All exceptions created by the automatic path adjust flow will have the prefix RCFE_PA. The
following RTL Compiler command will give all the exceptions created by the automatic path
adjust flow:

rc:\> find / -exception RCF_PA*

Note: The path adjust file that was created using -rtl option of the
export_critical_endpoints will not be applicable on the RTL if the netlist has
undergone hierarchy changes due to grouping or ungrouping.
July 2009 34 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Path Adjust Flows
Example 2-1 Example Script Starting from RTL
set_attribute library libraries

read_hdl RTL files

elaborate

read_sdc constraint files

export_critical_endpoints -rc_file rc_endpoint.rpt -fe_file top.slk -rtl > \
rtl_pathadjust.tcl

source rtl_pathadjust.tcl ?------------------Apply the pathadjust file created

synthesize -to_generic -effort level

synthesize -to_map -effort level

rm [find / -exception RCFE_PA*] ?------------Remove the created before reporting.

report timing

write_hdl > netlist.v

Example 2-2 Example Script Starting from a Netlist
set_attribute library libraries

read_netlist RTL files

read_sdc <constraint files>

export_critical_endpoints -rc_file rc_endpoint.rpt -fe_file top.slk > \
pathadjust.tcl

source pathadjust.tcl ?------------------Apply the pathadjust file created

synthesize -to_generic -effort level

synthesize -to_map -effort level

rm [find / -exception RCFE_PA*] ?------------Remove the created before reporting.

report timing

write_hdl > netlist.v
July 2009 35 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Path Adjust Flows
Encounter Path Adjust Flow

Encounter’s runN2NOpt command supports the automatic path adjust flow from version 7.1.
The runN2NOpt command launches RTL Compiler from Encounter and automatically runs
a RTL Compiler synthesis session based on the options and RTL Compiler directives
specified as options. The RTL Compiler endpoint report and Encounter slack report will be
accepted as options to the runN2NOpt command and will enable the
export_critical_endpoints command in the RTL Compiler flow script that is written
out.

Note: For a detailed documentation & supported options/settings refer to SOCE
documentation.

Figure 2-2 on page 33 illustrates the automatic path adjust flow using Encounter’s
runN2NOpt command. After an initial pass in Encounter or Encounter with runN2Nopt the
RTL Compiler endpoint and Encounter slack reports can be loaded through the runN2NOpt
command. This enables the autopathadjust flow during the netlist-to-netlist optimization
performed in RTL Compiler from Encounter.

Note: If only the Encounter slack report is available and an initial RTL Compiler synthesis run
was not performed, the runN2NOpt command will generate a RTL Compiler endpoint report
automatically when it launches RTL Compiler. For third party netlists, run an incremental
synthesis before generating an endpoint report using the -incrFirst effort option.

The following steps describe the Encounter Path Adjust Flow

1. Load or restore the Encounter session with the netlist, constraints, floorplan and
configuration file.

2. Enable the runN2NOpt command with the automatic path adjust options and provide the
RTL Compiler endpoint & .slk reports. In the following example the RTL Compiler
endpoint report is rc_endpoint.rpt and the Encounter slack report is top.slk. The
-autoPathAdjust’option enables the automatic path adjust flow and the
-backendReport and -frontEndReport options accept the Encounter slack & RTL
Compiler endpoint reports. respectively.

encounter> runN2NOpt -autoPathAdjust -backEndReport top.slk \
-frontEndReport rc_endpoint.rpt

3. The runN2NOpt command loads the newly optimized netlist, which went through
automatic path adjust into Encounter after a RTL Compiler synthesis session.

4. This netlist can be taken through placement and optimization for better QOS

Again, Figure 2-2 on page 33 illustrates the steps above.
July 2009 36 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Path Adjust Flows
If only the Encounter slack report is available and a initial RTL Compiler synthesis run was
not performed, the runN2NOpt command can be specified in the following forms.

■ The following example will create a RTL Compiler endpoint report automatically because
only the Encounter slack report is specified:

encounter> runN2NOpt -autoPathAdjust -backEndReport top.slk

■ The following example will run a low effort incremental synthesis before creating a
endpoint report for path adjust:

encounter> runN2NOpt -autoPathAdjust -backEndReport top.slk -incrFirst low

The following table shows the runN2NOpt options for automatic path adjust and the
corresponding export_critical_endpoints options that will be enabled.

runN2NOpt export_critical_endpoints

-autoPathAdjust n/a

-fronEndReport -rc_file

-backEncReport -fe_file

-noGroup -no_group

-group -group

-percentageEndpoints -percentage_of_endpoints
July 2009 37 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Path Adjust Flows
July 2009 38 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
3
Design For Manufacturing Flow

■ Overview on page 40

■ Tasks on page 41

❑ Specifying the Yield Coefficients Information on page 41

❑ Setting the DFM Flow on page 41

❑ Analyzing the Yield Information on page 41
July 2009 39 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Design For Manufacturing Flow
Overview

RTL Compiler allows you to perform Design for Manufacturing (DFM) optimizations and
discover yield information in the DFM flow. During synthesis, RTL Compiler estimates the
probability for library cell failure and computes the overall impact on “defect-limited yield” for
the whole design. While keeping this impact as a global cost function, RTL Compiler picks
cells which have the best combination of timing, area, probability of cell failure, and power
during logic structuring.

Load HDL files or Netlist

Meet
constraints?

Yes

No

Change constraints

Modify constraints

Perform elaboration

Apply constraints

Modify source

Export design

HDL files

Synthesize

Set timing libraries

Netlist, SDC

Analyze Yield

Set yield coefficients file

Required Task for DFM Flow

Apply optimization settings
July 2009 40 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Design For Manufacturing Flow
Tasks

The tasks below list only those that are different from the generic flow or illustrate a new step.

■ Specifying the Yield Coefficients Information on page 41

■ Setting the DFM Flow on page 41

■ Analyzing the Yield Information on page 41

Specifying the Yield Coefficients Information

The yield coefficients file provides the probability for failure of each library cell. The cell failure
rates are typically characterized by some library analysis methods based on the cell layout
and fabrication yield characterization data.

To load the yield coefficients file, use the read_dfm command:

rc:/> read_dfm penny.dfm

RTL Compiler will annotate the defect probability of any matching cells between the
coefficients file and the timing library.

If you have multiple coefficients file, use the read_dfm command for each file:

rc:/> read_dfm penny.dfm

rc:/> read_dfm flame.dfm

Setting the DFM Flow

Before synthesis, you must set RTL Compiler into yield synthesis mode through the
optimize_yield attribute.

rc:/> set_attribute optimize_yield true /

The default value of this attribute is false.

Analyzing the Yield Information

After synthesizing the design to gates, find the yield cost and yield percentage for each
instance with the report yield command:

rc:/> report yield

Instance Cells Cell Area Cost Yield %
July 2009 41 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Design For Manufacturing Flow
--

cpu 470 659 1.600606e-05 99.9984

 alu1 248 283 7.606708e-06 99.9992

 pcount1 65 92 2.215669e-06 99.9998

 ireg1 33 88 1.629471e-06 99.9998

 accum1 33 88 1.629471e-06 99.9998

 decode1 50 67 1.568901e-06 99.9998

The command shows the defect-limited yield impact for library cell defects.

To find the yield cost and yield percentage values for each library cell, use the -yield option
of the report gates command:

rc:/> report gates -yield

Gate Instances Area Cost Yield Library

flopdrs 33 264.000 3.39278e-06 99.9997 tutorial

inv1 103 51.500 1.5022e-06 99.9998 tutorial

nand2 315 315.000 1.08311e-05 99.9989 tutorial

nor2 19 28.500 6.79989e-07 99.9999 tutorial

total 470 659.000 1.64061e-05 99.9984

 Type Instances Area Area %

sequential 33 264.000 40.1

inverter 103 51.500 7.8

logic 334 343.500 52.1

total 470 659.000 100.0

Chip will have other effects (for example, systematic and random) that also lower yield. If a
given chip had zero defect-limited yield losses, it would still not reach 100% yield due to these
other effects. In logic synthesis, RTL Compiler consider only the cell defects.

You must contact the fabrication facility to understand what percentage of failures are due to
the cell based defect-limited yield effects. For example, report yield may estimate that
the yield is 90% while the true yield may only be 80% due to other effects that are not currently
modeled. Cell failure rates are given as a simple failure rate per instance of the cell used.

To find the total yield for the design, use the yield attribute with the get_attribute
command. The following example finds the yield for the design test:
July 2009 42 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Design For Manufacturing Flow
rc:> get_attribute yield [find . -design test]

0.999983594076
July 2009 43 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Design For Manufacturing Flow
July 2009 44 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
4
Associating Dedicated Libraries with
Different Blocks in the Design

■ Overview on page 46

■ Flow Steps on page 50

❑ Begin Setup on page 50

❑ Create Library Domains on page 50

❑ Read Target Libraries for Library Domains on page 51

❑ Read HDL Files on page 52

❑ Elaborate Design on page 52

❑ Set Timing and Design Constraints on page 52

❑ Apply Optimization Directives on page 52

❑ Associate Library Domains with Different Blocks of Design on page 53

❑ Synthesize Design on page 55

❑ Analyze Design on page 55

■ Library Domain Information in the Design Information Hierarchy on page 56

■ Additional Tasks on page 57

❑ Removing a Library Domain on page 57

❑ Saving Information on page 58

❑ What If Analysis on page 58
July 2009 45 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Overview

The generic synthesis flow uses the same libraries for the entire design.

You must define library domains to

■ Associate Dedicated Libraries with Different Portions of the Design

The design in Figure 4-1 uses three different library sets. You want to use libraries LIB1
and LIB2 for the top-level and for block A, library LIB3 for block B and library LIB4 for
block C.

Figure 4-1 Use of Dedicated Libraries in Single Supply Voltage Design

■ Target Different Cells from Same Library for Different Portions of Design

The design in Figure 4-2 on page 47 uses the same library for the entire design, but you
would like to use a limited set of cells to map block B and a different set of cells to map
block C, and you allow the use of all cells for the top-level and block A.

LIB1

LIB2

LIB3

LIB4

Dom3

Dom2

A
C

B

Library domains

Dom1
July 2009 46 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Figure 4-2 Use of Targeted Cells in Single Supply Voltage Design

This chapter describes the top-down synthesis flow using multiple library domains. The flow
is shown in Figure 4-3 on page 48. A script is shown in Example 4-1 on page 49.

Flow Steps describes the steps that are not part of the generic synthesis flow in detail.

Library Domain Information in the Design Information Hierarchy shows where the library
domain information is stored.

When using multiple library domains, you can also perform a what-if analysis to determine
which configuration results in better timing. This analysis and some other tasks that are not
part of the normal flow covered in Flow Steps are described in Additional Tasks.

Important

The flow described in this chapter assumes a single supply voltage design. RTL
Compiler also uses library domains for multiple supply voltage designs. The
multiple supply voltage flow is covered in Low Power in Encounter RTL
Compiler.

lib

lib

lib

Dom3

Dom2

A
C

B

Library domains

Dom1
July 2009 47 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Figure 4-3 Top-Down Synthesis Flow with Multiple Library Domains

Task added or
modified for

msv

Begin setup

 Start

Modify constraints

Modify optimization directives

Target
libraries

HDL
files

SDC
constraint

Yes

No

Read HDL files

Set Timing and design constraints

Apply optimization directives

Synthesize design

Analyze design

Meet
constraints?

Create library domains

Elaborate design

Read target libraries for library
domains

Associate library domains with
portions of design

Continue with recommended flow
July 2009 48 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Example 4-1 Script for Top-Down Synthesis Flow Using Multiple Library Domains
general setup
#--------------
set_attributer lib_search_path ...
set_attribute hdl_search_path ..

create library domains
#-----------------------
create_library_domain domain_list

specifiy the target libraries for each library domain
#--
set_attribute library library_list1 [find /libraries -library_domain domain1] /
set_attribute library library_list2 [find /libraries -library_domain domain2] /
...

load and elaborate the design
#------------------------------
read_hdl design.v
elaborate

specify timing and design constraints
#---------------------------------------
specify the following constraints per library domain
#---
set_attr operating_conditions string [find /libraries -library_domain domain]
set_attr wireload_selection string [find /libraries -library_domain domain]

set target library domain for top design
#---
set_attribute library_domain library_domain design

set target library domain for blocks
#-------------------------------------
edit_netlist uniquify subdesign
set_attribute library_domain library_domain subdesign

#synthesize the design
#---------------------
synthesize -to_mapped

analyze design

report timing
report gates

export design
#--------------
write_encounter design design] [-basename string] [-gzip_files]
[-reference_config_file file] [-preserve_avoid_cells]
[-ignore_scan_chains] [-floorplan {.def|.pdef|.fp}] [-lef file_list]
July 2009 49 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Flow Steps

Begin Setup

For more information on the setup, see

■ Generating Log Files

■ Generating the Command File

■ Setting Information Level and Messages

■ Specifying Explicit Search Paths

Create Library Domains

A library domain is a collection of libraries. You can use library domains to associate
dedicated libraries or library cells with portions of the design.

➤ To create library domains, use the create_library_domain command:

create_library_domain domain_list

Note: There is no limitation on the number of library domains you can create.

Tip

Create as many library domains

❑ As there are portions in the design for which you want to use dedicated libraries.

In the example of Figure 4-1 on page 46, you want to use three different sets of
libraries, which requires you to create three library domains.

❑ As the number of library cell sets that you want to use.

In the example of Figure 4-2 on page 47, you want to use three different cell sets,
so you need to create three library domains.

This command returns the directory path to the library domains that it creates. You need this
information when loading in the target libraries.

To get meaningful timing results, all libraries should have been characterized for the same
nominal operating conditions. If the libraries have different operating conditions, the nominal
operating conditions of the last library will be used and thus the last library also determines
July 2009 50 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
the voltage of the library domain. For this flow the voltage of all library domains must be the
same.

For example, to find the active operating condition of a specific domain, use

get_att active_operating_conditions [find / -library_domain lib*/*domains/domain]

To find the voltage of a domain, you need use the active operating condition of the domain:

get_att voltage [get_att active_operating_conditions \
[find / -library_domain lib*/library_domains/domain]]

Tip

You can always rename or remove a library domain. For more information on
removing library domains, refer to Removing a Library Domain.

Read Target Libraries for Library Domains

Next, you need to associate the libraries with the library domains.

To read in the libraries for a specific library domain, set the library attribute for the
corresponding domain:

set_attribute library library_list [find /libraries -library_domain domain]

Note: There is no limitation on the number of libraries you can read in per domain.

Tip

When targeting different cells from the same library for different portions of design,
you need to

a. Read in the same library for each library domain:

set_attribute library lib [find /libraries -library_domain dom1]
set_attribute library lib [find /libraries -library_domain dom2]
set_attribute library lib [find /libraries -library_domain dom3]

b. Exclude library cells.

Because library lib is used in three library domains, RTL Compiler treats it as if
three different libraries were read in. This allows to exclude cells in one library
domain, while you allow the use of them in a different library domain.

Within each library domain, you can exclude the library cells that the mapper should
not use. To exclude a cell you can use the avoid attribute. For example:

set_attribute avoid true /lib*/library_domains/dom2/lib/libcells/AO22X2M

set_attribute avoid true [find /*/dom2/lib -libcell AO22X2M]
July 2009 51 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
The first library domain for which you read in the libraries, becomes the default library domain.

➤ To change the default library domain, set the following attribute:

set_attribute default true desired_library_domain

For more information on the use of the default library domain, refer to Removing a Library
Domain.

Read HDL Files

For more information on reading HDL files, see Loading Files in Using Encounter RTL
Compiler.

Elaborate Design

For more information on elaborating a design, see Performing Elaboration in Using
Encounter RTL Compiler.

Set Timing and Design Constraints

Except for the following constraints, which should be set per library domain, all other (SDC
and RC native) constraints are set as in the regular top-down flow.

set_attr operating_conditions string [find /libraries -library_domain domain]

set_attr wireload_selection string [find /libraries -library_domain domain]

For more information on setting design constraints, see Applying Constraints in Using
Encounter RTL Compiler.

Tip

When you set the force_wireload attribute on a design or subdesign, make sure
that the wireload model you set matches a wireload model defined for a library in the
associated library domain.

Apply Optimization Directives

For more information on optimization strategies and related commands, see Defining
Optimization Settings in Using Encounter RTL Compiler.
July 2009 52 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Associate Library Domains with Different Blocks of Design

To inform RTL Compiler about the special library use, associate the library domains with the
design and blocks for which you want to use the dedicated libraries or dedicated library cells.

➤ To set the target library domain for the top design, specify the library_domain
attribute on the design:

set_attribute library_domain library_domain design

➤ To set the target library domain for a subdesign, do the following

a. Uniquify the subdesign:

edit_netlist uniquify subdesign

See Example 4-2 for more information.

b. Specify the library_domain attribute on the subdesign:

set_attribute library_domain library_domain subdesign

Note: This attribute is hierarchical. It applies to all instances of the specified design or
subdesign. So the order in which you specify the target domains is important. See
Example 4-3 for more information.

When you change the library domain for a subdesign, RTL Compiler copies all attributes from
the original mapped instances to the new mapped instances.

Important

If you marked an instance preserved, the library domain that the instance is
associated with will still be changed. However, the instance will still be marked
preserved even though it will probably be pointing to another library cell in the new
library domain. In other words, the library_domain attribute has a higher priority
than the preserve attribute.

If RTL Compiler cannot find the corresponding cell in the libraries that belong to the new
library domain, the instance becomes unresolved.
July 2009 53 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Example 4-2 Uniquifying a Subdesign before Associating the Library Domain

In the following design, module top has two instantiations of module my_mod. If you associate
subdesign my_mod with library domain domain1 before uniquifying subdesign my_mod, both
instances my_inst1 and my_inst2 are associated with library domain domain1.This is
illustrated in Figure 4-4. To associate instance my_inst1 with library domain domain1, and
instance my_inst2 with library domain domain2, you first need to uniquify subdesign
my_mod, and then associate both subdesigns with their domains individually.

Figure 4-4 Uniquifying a Subdesign before Associating the Library Domain

Example 4-3 Setting Target Library Domains

Assume a design top which has a subdesign u1. Subdesign u1 has a subdesign u2.

Assume that all instances of u2 should be mapped using libraries from library domain dom1.
All instances of u1, except for the instances of u2, should be mapped using libraries from
library domain dom2. The instances in the remainder of the design should be mapped using
libraries from library domain dom1.

To ensure the correct mapping, make the assignments in the following order:

set_attribute library_domain [find / -library_domain dom1] /designs/top
set_attribute library_domain [find / -library_domain dom2] [find / -subdesign u1]
set_attribute library_domain [find / -library_domain dom1] [find / -subdesign u2]

top

my_inst1

my_inst2

domain1my_mod

top
b. with uniquification

my_inst1

my_inst2

my_mod2

my_mod1

domain2

a. without uniquification

domain1

top
u1

u2
July 2009 54 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Synthesize Design

After the constraints and optimizations are set for your design, you can proceed with
synthesis by issuing the synthesize command.

➤ To synthesize your design using the synthesize command, type:

synthesize -to_mapped

Note: The design can be synthesized top down, without the need for manual partitioning.

The different portions of the design that are associated with different library domains will be
mapped to the target libraries of those library domains and optimized.

For details on the synthesize command, see Synthesizing your Design in Using
Encounter RTL Compiler.

Analyze Design

After synthesizing the design, you can generate detailed timing and area reports using the
various report commands.

For more information on generating reports for analysis, see Generating Reports in Using
Encounter RTL Compiler and “Analysis Commands” in the Command Reference for
Encounter RTL Compiler.

Most reports reflect information for the library domains. Gates Report

In the timing report, the domain information is added to the Type column.
July 2009 55 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Library Domain Information in the Design Information
Hierarchy

RTL Compiler stores the original design data along with additional information added by RTL
Compiler in the design information hierarchy in the form of attributes. Figure 4-5 highlights
where the library domain information is stored in the design information hierarchy.

Figure 4-5 Design Information Hierarchy

wireload_models

operating_conditions

(rc/>)
root

designs hdl_libraries libraries

design

librarydft

constants

instances_seq

instances_hier

libcells

wireload_selections

instances_comb

nets

port_busses_in

port_busses_out

ports_in

ports_out

subdesigns

timing

messages

library_domains

...
...library_domain
July 2009 56 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
Additional Tasks

Removing a Library Domain

➤ To remove a library domain, use

rm [find /libraries -library_domain domain]

When you remove a library domain, RTL Compiler removes

■ The libraries that are part of that library domain

■ Any level-shifter group that was referring from or to this library domain

Additional Notes

■ RTL Compiler links any instances in the subdesigns associated with a library domain that
is being removed to the default library domain. While relinking, RTL Compiler copies all
attributes from the original mapped instance to the new mapped instance.

Important

If you marked an instance preserved, the library domain that the instance is
associated with will still be removed. However, the instance will still be marked
preserved even though it will probably be pointing to another library cell in the default
library domain. In other words, the library_domain attribute has a higher priority
than the preserve attribute.

If RTL Compiler cannot find the corresponding cell in the libraries that belong to the
default library domain, the instance becomes unresolved.

■ You can remove the library domain that is marked the default library domain, by first
setting the default attribute on another library domain.

In the following example, dom_1 is the default library domain. You can only remove
library domain dom1, after changing the default for example to library domain dom_2,

rc:/> get_attribute default [find /libraries -library_domain dom_1]
true
rc:/> set_attribute library typical.lib dom_2
Setting attribute of library_domain dom_2: ’library’ = typical.lib
rc:/> set_attribute default true [find /libraries -library_domain dom_2]
Info : Default library domain has been set. [LBR-109]

: Default domain changed from: /libraries/library_domains/dom_1 to /
libraries/library_domains/dom_2

Setting attribute of library_domain dom_2: ’default’ = true
rc:/> rm [find /libraries -library_domain dom_1]
July 2009 57 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
■ You can only remove the default library domain if it is the only library domain that
remains. If you remove the default library domain and a design was loaded, all instances
become unresolved. In that case, none of the instances have timing, power or area
information.

Saving Information

➤ To save the information for a later synthesis session, use the following commands:

write_hdl > design.v

write_script > design.scr

write_sdc > design.sdc

These commands will save specific information such as library domain-associations with
portions of the design.

What If Analysis

You can check the effect on timing by using different library domains for some portions of the
designs. The what-if analysis can be done before or after mapping, although you can get
more meaningful results when you perform it after mapping.

Important

To do a what-if analysis, RTL Compiler expects that the libraries in the library domain
you want to switch to, have the same set of cells with the same names as the
libraries in the original library domain.

When you change the library domain assignment of a subdesign, RTL Compiler tries to
rebind each cell in the subdesign by searching for a cell with the same name in a library
in the new library domain. If RTL Compiler finds such cell, it uses the timing and power
information of this cell from the new library domain to perform timing and power analysis
and optimization. Otherwise, the original instance becomes an unresolved instance with
the library cell name as its subdesign name.
July 2009 58 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
What-If Analysis before Mapping Flow

1. Setup.

2. Create library domains.

3. Load libraries

4. Read netlist.

5. Elaborate design.

6. Set constraints.

7. Set optimization directives.

8. Assign library domains to portions of design.

9. Report on timing (and power).

10. Reassign the target library domain for a portion of the design.

11. Report on timing (and power).

12. Repeat steps 10 through 11 until you are satisfied with results.

13. Map design.

14. Continue flow.

What-if Analysis Steps
July 2009 59 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Associating Dedicated Libraries with Different Blocks in the Design
What-If Analysis after Mapping Flow

1. Setup.

2. Create library domains.

3. Load libraries

4. Read netlist.

5. Elaborate design.

6. Set constraints.

7. Set optimization directives.

8. Assign library domains to portions of design.

9. Map design.

10. Report on timing (and power).

11. Save information (see Saving Information).

12. Reassign the target library domain for a portion of the design.

13. Either remap or do incremental synthesis.

14. Report on timing (and power).

15. Repeat steps 11 through 14 until you are satisfied with results.

16. Restore information depending on the what-if results.

17. Continue flow.

What-if Analysis Steps
July 2009 60 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
5
Quality Analyzer Flow

■ Overview on page 62

■ RCQA Flow Stage Methodology on page 63

❑ HDL on page 64

❑ CDC on page 64

❑ Netlist on page 64

❑ Library on page 65

❑ Constraint on page 65

❑ DFT on page 65

❑ Low Power on page 66

❑ Physical on page 66

■ RCQA GUI-Based Methodology on page 67
July 2009 61 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Quality Analyzer Flow
Overview

The RTL Compiler Quality Analyzer (RCQA) software performs signoff checks on the RTL at
the RTL development stage before front end implementation, and on the structural netlist
before back-end implementation.

For RTL signoff, you can use the RCQA software to confirm that the RTL and constraints are
ready for synthesis, simulation, equivalency checking and test. With the RCQA software, you
can efficiently complete as many design logical signoff checks as possible early in the design
cycle and avoid downstream design flow iterations due to late checking, and avoid rerunning
many of the checks past the RTL signoff point.

For Front-End signoff, you can use the RCQA software to ensure efficient handoff from front-
end signoff to back-end implementation to confirm netlist and constraints are truly ready for
back-end implementation, and avoid iterations from the back-end to the front-end due to late
checking.

You can run the following signoff checks:

■ Clock Domain Crossing Checks.

■ Constraint (SDC) Checks

■ Design For Test (DFT) Checks

■ HDL Lint Checks

■ Library Checks

■ Low Power Checks

■ Physical Checks
July 2009 62 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Quality Analyzer Flow
RCQA Flow Stage Methodology

The following shows which recommended checks to use during which flow stage:

RTL Block Coding

Verification
and Preliminary

Synthesis

Checks: HDL, CDC, Library, DFT

RTL Block Signoff

Chip
Integration

Checks: HDL, CDC, Constraint, DFT, Low Power

RTL Chip Signoff

Production
Synthesis

Checks: HDL, CDC, Constraint, DFT, Low Power

Chip Netlist Signoff Checks: Netlist, Constraint, DFT, Low Power, Physical
July 2009 63 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Quality Analyzer Flow
HDL

These are done at the RTL block level and chip integration level. For RTL, this checks the RTL
for any coding style, synthesis compatibility, simulation race conditions, and naming
conventions. For netlists, this performs structural lint checks for the netlist.

HDL lint checks are recommended during the following flow stages:

■ RTL Block Code

■ RTL Block Signoff

■ RTL Chip Signoff

Important

If the HDL lint checks do not pass for synthesizability checks, they must be fixed
before running clock domain crossing, constraint, DFT, and low power checks.

Note: HDL lint checks might require a .lib file for missing modules.

CDC

These are done for designs with multiple clocks that need clock domain crossing (CDC)
checks. These checks are started with the RTL rather than netlist as problems are easier to
find at the RTL stage. These checks flag errors in designs where clock domain crossings do
not have appropriate clock synchronizer cells.

CDC checks are recommended during the following flow stages:

■ RTL Block Code

■ RTL Block Signoff

■ RTL Chip Signoff

■ Chip Netlist Signoff

Netlist

Netlist checks detect errors in the netlists that can cause problems during the netlist
implementation through the backend. Some of these errors are checking for multiple drivers
on a net without use of tristate logic, unused output and inputs, correctness of syntax, and
missing modules in the netlists.
July 2009 64 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Quality Analyzer Flow
Netlist checks are recommended during the Chip Netlist Signoff flow stage.

Library

Technology libraries used for synthesis must be error free. Errors flag non-conformity to the
liberty specification, such as unsupported timing arcs for synthesis, inconsistent operating
conditions, and unsupported constructs.

Library checks are recommended during the following flow stages:

■ Library Development

■ ASIC Vendor Selection

■ RTL Block Code

Note: Library checks should be completed before running synthesis or a full set of DFT
checks on gate-level netlists

Constraint

For RTL and netlists, these checks perform syntax checks on the SDC and basic structural
checks on the design, and reports missing input/output delays, invalid from/to points of
exceptions, and so on.

Constraint (SDC) checks are recommended during the following flow stages:

■ RTL Block Signoff

■ RTL Chip Signoff

■ Chip Netlist Signoff

DFT

Cadence recommends that DFT checks are done at every step of the design flow, and
whenever there is a meaningful change to the design. These checks make sure that the
resulting design is scannable, clock rules are not violated, and if there are conflicting off state
requirements.

DFT checks are recommended during the following flow stages:

■ RTL Block Code
July 2009 65 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Quality Analyzer Flow
■ RTL Block Signoff

■ RTL Chip Signoff

■ Chip Netlist Signoff

Low Power

These check designs that use low power techniques: multiple supply voltages (MSV), power
shut off (PSO), and state retention power gating sequential cells. For RTL and netlists, these
check for completeness and correctness of the CPF file provided for the RTL and performs
low power implementation checks for cell types such as level shifters, isolation, and state
retention.

CPF quality checks are recommended during the following flow stages:

■ RTL Block Signoff

■ RTL Chip Signoff

■ Chip Netlist Signoff

Note: The results can be different for the RTL and the netlist for the same CPF file, for
example, if there are test ports in the netlist that are not in the RTL.

Physical

For physical libraries, the scaling factors used in back-end tools must be consistent with the
technology libraries (.lib) used to create the netlists in the front-end tools. Physical design
data checks perform LEF library and captable checks, library and LEF inconsistency checks,
and DEF (floorplan, placement) checks.

Physical checks are recommended during the Chip Netlist Signoff flow stage.
July 2009 66 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Quality Analyzer Flow
RCQA GUI-Based Methodology

The following shows a typical RCQA flow when using the graphical user interface (GUI).

1. Start the RCQA software.

%> rc -qa

This will start the software in GUI mode by default.

2. Create and load the configuration file.

Use the Create Configuration File form (File – Configuration File – Create) to create
in the configuration file, and use the Read RCQA Configuration File form (File –
Configuration File – Read) to read it in.

3. Select and run rule checks for your level of signoff.

Use the Signoff Checks form (Tools – Signoff Checks) to select and run the signoff
checks.

4. Verify that the checks ran successfully in the shell window.

5. Generate a report of violations in the shell window

Use the Report Checks form (Tools – Report Checks) to choose a report category,
report type, and report severities.

6. Open the Signoff Checks Summary window to analyze the scope of violations

Use the Signoff Checks Summary form (Tools – Report Summary) to view a pie chart
graphically represents the distribution of errors, warnings, and info rule severity
messages.

7. Open the Message Browser and select Filter.

Use the Message Browser Filter form (Tools – Message Browser, click Filter) to view
and hide individual occurrences of message IDs while navigating through the messages.

8. In the Message Browser Filter window, select a Severity of Error.

9. Go Back to the Message Browser window.

10. Select one rule violation instance.

11. Click on the link under File information to debug the rule violation.

12. Use additional diagnosis reports, if needed.

Use the forms from the Diagnosis submenu (Tools – Diagnosis).
July 2009 67 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Quality Analyzer Flow
13. Launch Individual analysis engines, if needed.

Use the forms from the Launch submenu (Tools – Launch).

14. Open the Message Browser’s File Editor and fix any issues.

Right-click on a highlighted file in the Message panel of the Message Browser and
select Edit File.

15. Go Back to Message Browser and add rule instances and rule groups to the filter.

16. Go to Message Browser Filter Window apply the filter.

17. In the Message Browser Filter window, and select a Severity of Warning and repeat
from step 7 on.

18. Choose the next rule violation instance and repeat from step 10 on.

19. In the Message Browser Filter window, and select a Severity of Warning and repeat
from step 8 on.

20. Reload the configuration file and rerun rule checks to verify the fixes.
July 2009 68 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
A
Summary of the Flows

■ Generic Flow on page 70

■ Physical Flow with predict_qos, LEF, and Capacitance Table on page 71

■ Physical Flow with predict_qos and Encounter Configuration File on page 71

■ Physical Flow without predict_qos on page 71

■ DFM Flow on page 72

■ Top-Down Synthesis Flow Using Multiple Library Domains on page 73
July 2009 69 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Summary of the Flows
Generic Flow
set_attribute library library_name

read_hdl filename

elaborate

read constraints

synthesize -to_mapped

write_hdl
July 2009 70 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Summary of the Flows
Physical Flow with predict_qos, LEF, and Capacitance Table
set_attribute library library_name

set_attribute lef_library {tech.lef cell.lef}

set_attribute cap_table_file cap_file

read_hdl filename

elaborate

read sdc

read_def def_file

synthesize -to_mapped

predict_qos

write_encounter design

Physical Flow with predict_qos and Encounter Configuration File
read_encounter config config_file

read_def def_file

synthesize -to_mapped

predict_qos

write_encounter design

Physical Flow without predict_qos
set_attribute library library_name

set_attribute lef_library {tech.lef cell.lef}

set_attribute cap_table_file cap_file

read_hdl filename

elaborate

read sdc

synthesize -to_mapped

write_hdl
July 2009 71 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Summary of the Flows
DFM Flow
set_attr library library_name

read_dfm coefficients_file

read_hdl filename

elaborate

read sdc

set_attribute optimize_yield true /

synthesize -to_mapped

report yield

report gates -yield

get_attribute yield
July 2009 72 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Summary of the Flows
Top-Down Synthesis Flow Using Multiple Library Domains
general setup
#--------------
set_attributer lib_search_path ...
set_attribute hdl_search_path ..

create library domains
#-----------------------
create_library_domain domain_list

specifiy the target libraries for each library domain
#--
set_attribute library library_list1 [find /libraries -library_domain domain1] /
set_attribute library library_list2 [find /libraries -library_domain domain2] /
...

load and elaborate the design
#------------------------------
read_hdl design.v
elaborate

specify timing and design constraints
#---------------------------------------
specify the following constraints per library domain
#---
set_attr operating_conditions string [find /libraries -library_domain domain]
set_attr wireload_selection string [find /libraries -library_domain domain]

set target library domain for top design
#---
set_attribute library_domain library_domain design

set target library domain for blocks
#-------------------------------------
edit_netlist uniquify subdesign
set_attribute library_domain library_domain subdesign

#synthesize the design
#---------------------
synthesize -to_mapped

analyze design

report timing
report gates

export design
#--------------
write_encounter design design] [-basename string] [-gzip_files]
[-reference_config_file file] [-preserve_avoid_cells]
[-ignore_scan_chains] [-floorplan {.def|.pdef|.fp}] [-lef file_list]
July 2009 73 Product Version 9.1

Encounter RTL Compiler Synthesis Flows
Summary of the Flows
RCQA Flow

read in the configuration file
read_config_file <file>
run all signoff checks. If specifying a CPF file, run ‘signoff_checks power’
before ‘signoff_checks dft’
signoff_checks hdl_lint
signoff_checks clock_domain_crossing
signoff_checks constraints
signoff_checks dft
signoff_checks library
signoff_checks power
signoff_checks physical
report on all signoff checks
report checks
go to GUI for analysis

For configuration file examples that specify the full path and search path for the library and
RTL files, see Sample Configuration Files in Using Encounter RTL Compiler Quality
Analyzer.
July 2009 74 Product Version 9.1

	Contents
	Preface
	About This Manual
	Additional References
	How to Use the Documentation Set
	Reporting Problems or Errors in Manuals
	Customer Support
	Cadence Online Support
	Other Support Offerings

	Messages
	Man Pages
	Command-Line Help
	Getting the Syntax for a Command
	Getting the Syntax for an Attribute
	Searching for Attributes
	Searching For Commands When You Are Unsure of the Name

	Documentation Conventions
	Text Command Syntax

	Getting Started with the Generic Flow
	Overview
	Tasks
	Starting RTL Compiler
	Generating Log Files
	Generating the Command File
	Setting Information Level and Messages
	Specifying Explicit Search Paths
	Setting the Target Technology Library
	Setting the Appropriate Synthesis Mode
	Loading the HDL Files
	Performing Elaboration
	Applying Constraints
	Applying Optimization Constraints
	Performing Synthesis
	Analyzing the Synthesis Results
	Writing Out Files for Place and Route
	Exiting RTL Compiler
	Summarizing the Generic Flow

	Path Adjust Flows
	Overview
	Tasks
	RTL Compiler Path Adjust Flow
	Encounter Path Adjust Flow

	Design For Manufacturing Flow
	Overview
	Tasks
	Specifying the Yield Coefficients Information
	Setting the DFM Flow
	Analyzing the Yield Information

	Associating Dedicated Libraries with Different Blocks in the Design
	Overview
	Flow Steps
	Begin Setup
	Create Library Domains
	Read Target Libraries for Library Domains
	Read HDL Files
	Elaborate Design
	Set Timing and Design Constraints
	Apply Optimization Directives
	Associate Library Domains with Different Blocks of Design
	Synthesize Design
	Analyze Design

	Library Domain Information in the Design Information Hierarchy
	Additional Tasks
	Removing a Library Domain
	Saving Information
	What If Analysis

	Quality Analyzer Flow
	Overview
	RCQA Flow Stage Methodology
	HDL
	CDC
	Netlist
	Library
	Constraint
	DFT
	Low Power
	Physical

	RCQA GUI-Based Methodology

	Summary of the Flows
	Generic Flow
	Physical Flow with predict_qos, LEF, and Capacitance Table
	Physical Flow with predict_qos and Encounter Configuration File
	Physical Flow without predict_qos
	DFM Flow
	Top-Down Synthesis Flow Using Multiple Library Domains
	RCQA Flow

