CMPE 641

Advanced VLSI Design

Instructor

Chintan Patel

(contact using email: <u>cpatel2@cs.umbc.edu</u>)

Text & References

No required text

See syllabus for details on References

Online Cadence Documentation

Prerequisite

CMPE 640, Digital Design, Good Layout Skills, Computer Architecture

Further Info

http://www.cs.umbc.edu/~cpatel2

Moore's Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months
 - □ Transistors/Chip increasing by 50% per year (by $4 \times$ in 3.5 years)
 - Gate Delay decreasing by 13% per year (by $\frac{1}{2}$ in 5 years)
- This rate of improvement will continue until about 2018 at least

Advanced VLSI Design

Introduction

CMPE 641

Evolution in Complexity

Adapted from: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan M. Rabaey et al. © 2003 Prentice Hall/Pearson

RSITY IN MARYLAND

Cost Scaling

O Cost per transistor scales down

- □ Approximately constant cost per wafer to manufacture
- □ About \$2,000 \$4,000 per wafer

O But cost to first chip scales up!

- Design cost increases with transistor count
- □ Mask cost increases with each new family

Adapted from: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan M. Rabaey et al. © 2003 Prentice Hall/Pearson

Advanced VLSI Design

Introduction

Cost Scaling : Some Examples

Chip	Metal layers	Line width	Wafer cost	Def./ cm ²	Area mm ²	Dies/w afer	Yield	Die cost
386DX	2	0.90	\$900	1.0	43	360	71%	\$4
486 DX2	3	0.80	\$1200	1.0	81	181	54%	\$12
Power PC 601	4	0.80	\$1700	1.3	121	115	28%	\$53
HP PA 7100	3	0.80	\$1300	1.0	196	66	27%	\$73
DEC Alpha	3	0.70	\$1500	1.2	234	53	19%	\$149
Super Sparc	3	0.70	\$1700	1.6	256	48	13%	\$272
Pentium	3	0.80	\$1500	1.5	296	40	9%	\$417

Adapted from: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan M. Rabaey et al. © 2003 Prentice Hall/Pearson

Semiconductor Roadmap

O Projections for 'leading edge' ASIC/MPU: (www.itrs.net)

					-				
Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM ½ Pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (f)	90	78	68	59	52	45	40	36	32
MPU Physical Gate Length (nm)	32	28	25	23	20	18	16	14	13
ASIC									
ASIC usable Mtransistors/cm ² (auto layout)	225	283	357	449	566	714	899	1,133	1,427
ASIC max chip size at production (mm ²) (maximum lithographic field size)	858	858	858	858	858	858	858	858	858
ASIC maximum functions per chip at production (Mtransistors/chip) (fit in maximum lithographic field size)	1,928	2,430	3,061	3,857	4,859	6,122	7,713	9,718	12,244
2 Q Q 2		1							
Chip Frequency (MHz)									
On-chip local clock [1]	5,204	6,783	9,285	10,972	12,369	15,079	17,658	20,065	22,980
Chip-to-board (off-chip) speed (high-performance, for peripheral buses)[2]	3,125	3,906	4,883	6,103	7,629	9,536	11,920	14,900	18,625
Maximum number wiring levels—maximum [3]	15	15	15	16	16	16	16	16	17
Maximum number wiring levels—minimum [3]	11	11	11	12	12	12	12	12	13

Table 1i High-Performance MPU and ASIC Product Generations and Chip Size Model—Near-term Years

Adapted from: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan M. Rabaey et al. © 2003 Prentice Hall/Pearson

Advanced VLSI Design

Introduction

CMPE 641

14

Productivity Trends

RSITY IN MARYLAND

15

ASICs vs. What?

• Application Specific Integrated Circuit

- □ A chip designed to perform a particular operation as opposed to General Purpose integrated circuits
- An ASIC is generally NOT software programmable to perform a wide variety of different tasks
- An ASIC will often have an embedded CPU to manage suitable tasks

• An ASIC may be implemented as an FPGA

- □ Sometimes considered a separate category
- □ Hybrid implementation: programmable logic and application specific blocks
- > Platform-based Implementations: System on a Chip

Advanced VLSI Design	Introduction	CMPE 641
ASICs vs What?		
General Purpos	e Integrated Circuits	
Examples:		
ProgrammatUsed in	ole microprocessors (e.g. Intel Pentium Series, Motorola PCs to washing machines	HC-11)
ProgrammatUsed in	ble Digital Signal Processors (e.g. TI TMS 320 Series) many multimedia, sensor processing and communicatior	ns applications
Memory (DI	RAMs, SRAMs, etc.)	
		1

17

ASIC Examples

□ Video processor to decode or encode MPEG-2 digital TV signals

Low power dedicated DSP/controller / convergence device for mobile phones

□ Encryption processor for security

Many examples of graphics chips

□ Network processor for managing packets, traffic flow, etc.

CMPE 641

Full-Custom ASICs

- Every transistor is designed and drawn by hand
- □ Typically only way to design analog portions of ASICs
- Gives the highest performance but the longest design time
- □ Full set of masks required for fabrication
- Custom digital circuits are used in applications where their performance premium justifies their design cost

				111111
		202020	.[영영양성[영영양성	
50:50:50:50:50:				
- The side of the side of the side				
	BEREISH LEBERAR	LEAST SECTION OF	1,22597,597 1,25597,597	
			J COM I NO COM	
		I Strengt I Strengt	LEW States LEW Sector	

Standard Cell Based Design

- □ or 'Cell Based IC' (CBIC) or 'semi-custom'
- **Standard Cells** are custom designed and then inserted into a **library**
- □ These cells are then used in the design by being placed in rows and wired together using 'place and route' CAD tools
- Some standard cells, such as RAM and ROM cells, and some datapath cells (e.g. a multiplier) are tiled together to create **macrocells**

small number of interconnect layers

Newer Technologies: Cell-structure hidden under interconnect layers

UMBC

Adapted from: Dr. Paul D Franzon, www.ece.ncsu.edu/erl/faculty/paulf.html Adapted from: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan M. Rabaey et al. © 2003 Prentice Hall/Pearson

CMPE 641

Standard Cells

O Example:

Path	1.2V - 125°C	1.6V - 40°C
In $1-t_{pLH}$	0.073+7.98C+0.317T	0.020+2.73 <i>C</i> +0.253 <i>T</i>
In $1-t_{pHL}$	0.069+8.43 <i>C</i> +0.364 <i>T</i>	0.018+2.14 <i>C</i> +0.292 <i>T</i>
In2—t _{pLH}	0.101+7.97 <i>C</i> +0.318 <i>T</i>	0.026+2.38 <i>C</i> +0.255 <i>T</i>
In2—t _{pHL}	0.097+8.42 <i>C</i> +0.325 <i>T</i>	0.023+2.14 <i>C</i> +0.269 <i>T</i>
$In3-t_{pLH}$	0.120+8.00C+0.318T	0.031+2.37C+0.258T
$In3-t_{pHL}$	0.110+8.41C+0.280T	0.027+2.15 <i>C</i> +0.223 <i>T</i>

3-input NAND cell (from ST Microelectronics): C = Load capacitance T = input rise/fall time

□ Full set of masks (22+) still required

Fabless semiconductor company model

- □ Company does design only. Fab performed by another company (e.g. TSMC, UMC, IBM, Philips, LSI).
- □ Back-end (place and route, etc.) might be performed at that company or with their assistance

string mat = "booth"; directive (multtype = mat); output signed [16] Z = A * B;

Synopsys DesignCompiler

Introduction

Adapted from: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan M. Rabaey et al. © 2003 Prentice Hall/Pearson

MARYLAND

Advanced VLSI Design

Introduction

CMPE 641

Gate-Array Based Design: Sea-of-Gates

- □ In a gate array, the transistors level masks are fully defined and the designer can not change them
- □ The design instead programs the wiring and vias to implement the desired function
- Gate array designs are slower than cell-based designs but the implementation time is faster as less time must be spent in the factory
- RTL-based methods and synthesis, together with other CAD tools, are often used for gate arrays
- Examples:
 - **Chip Express**
 - \succ Wafers built with sea of macros + 4 metal layers
 - > 2 metal layers customized for application
 - > Only 4 masks!
 - Triad Semiconductor
 - Analog and Digital Macros
 - ▶ 1 metal layer for customization (2 week turnaround)

CMPE 641

Adapted from: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan M. Rabaey et al. © 2003 Prentice Hall/Pearson

Advanced VLSI Design	Introduction	CMPE 641
Prewired Arrays		
Classification of prewire	d arrays (or field-programmable devices):	
O Based on Programmi	ng Technique	
Fuse-based (progr	am-once)	
Non-volatile EPR	OM based	
RAM based		
O Programmable Logic	z Style	
Array-Based		
Look-up Table		
O Programmable Interest	connect Style	
Channel-routing		
Mesh networks		
INARC	Adapted from: Digital Integrated Circuits A Design Perspective 2nd Edition Jan M. Behavy et al.	2003 Prentice Hall/Poorcon
JIVIDU	Adapted nom: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan W. Rabaey et al. @ 2	2003 Frentice Hall/Pearson

30

Programmable Logic Devices (PLDs and FPGAs)

- □ FPGA= Field Programmable Gate Array
- Are off-the-shelf ICs that can be programmed by the user to capture the logic
- □ There are no custom mask layers so final design implementation is a few hours instead of a few weeks
- □ Simple PLDs are used for simple functions.
- □ FPGAs are increasingly displacing standard cell designs
- □ Capable of capturing 100,000+ designed gates
- □ High power consumption
- High per-unit cost
- □ FPGAs are also slow (< 100 MHz)

CMPE 641

FPGAs (Contd.)

○ Sample internal architecture:

- Store logic in look-up table (RAM)
- Programmable interconnect

Programmable Interconnect Array

MARYLAND

LN

Configurable Logic Block (CLB):

Adapted from: Dr. Paul D Franzon, www.ece.ncsu.edu/erl/faculty/paulf.html

Advanced VLSI Design	Introduction	CMPE 6
Addressing Design Com	plexity	
Reuse existing comp	onents/designs	
Standard Cells		
IP Blocks		
Architecture		
□ IC		
○ IP can be broadly cla	assified as	
Hard IP		
➢ Defined at th	e mask layout level in a particular process	
Firm IP		
≻ Will normall	y have a specific or generic gate net-list	
Soft IP		
➢ Defined at th	e RTL level	
O Platform-based Desi	gn	
□ H/W architecture	s, S/W modules, programmable components	, network architecture
UMBC	Adapted from: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan M. I	Rabaey et al. © 2003 Prentice Hall/Pearson

Adapted from: Digital Integrated Circuits A Design Perspective, 2nd Edition, Jan M. Rabaey et al. © 2003 Prentice Hall/Pearson

Advanced VLSI Desig	gn]	Introduction				CMPE 64	
Comparison of Design Methods Table 8.4 Comparison of CMOS design methods								
Design Method	Non-recurring Engineering	Unit Cost	Power Dissipation	Complexity of Imple- mentation	Time to Market	Perfor- mance	Flexibility	
Microprocessor/ DSP	low	medium	high	low	low	low	high	
PLA	low	medium	medium	low	low	medium	low	
FPGA	low	high	medium	medium	low	medium	high	
Gate Array/SOG	medium	medium	low	medium	medium	medium	medium	
Cell Based	high	low	low	high	high	high	low	
Custom Design	high	low	low	high	high	very high	low	
Platform Based	high	low	low	high	high	high	medium	

Adapted from: CMOS VLSI Design, A Circuits and Systems Perspective, 3rd Edition, Neil Weste et al. © 2005 Pearson Addison-Wesley

ERSITY IN MARYLAND

Adapted from: Dr. Paul D Franzon, www.ece.ncsu.edu/erl/faculty/paulf.html

ASICs and FPGAs

- O Market currently dominated by standard cell ASICs and FPGAs
 - □ Ideally standard cell designs would be used for higher volume applications that justify the NRE
- Many consider FPGAs separate from ASICs

Why?

- Different level of design skills required, especially in "back end" (place and route or physical design)
- □ Reduced level of verification required before "sending to factory"
 - > Again reduces sophistication required of team
- Low-cost (barrier) of entry
 - > Often different, lower cost Design Automation (CAD) tools
- □ Lower performance
- However, front-end design (RTL coding) is virtually identical for each implementation style
- **O** Sometimes FPGA done first and standard cell ASIC done later

CMPE 641

39

Future Issues

Increased cost of custom fab

- □ First chip run will cost over \$2M for 90 nm
- Multiproject wafers

Increased cost of design

 \Box Must be addressing > \$1B market to justify a new chip run

Globalization

□ Time-to-market and other competitive issues

- > Multi-core embedded CPU + ASIC accelerators
- > Configurable systems
- Existing designs ('IP or Intellectual Property')
- □ Increased use of SystemVerilog, SystemC and other system modeling tools

- Complexity shifting from design to logical and performance verification Logical verification = function; Performance = speed
- Cost to first silicon getting so high that the total addressable market must be very large and product risk low

Design Cost

Summary

- Over the next ten years, product growth will be driven by:
 - Underlying technology push
 - □ High demand for graphics, multimedia and wireless connectivity
 - □ Insidious insertion of electronics and computers into our everyday lives
- Many of the resulting products will require specialized silicon chips to meet performance (speed/size/weight/power/cost) demands - ASICs
- To match this product need, the capability of a silicon CMOS chip will continue doubling every 2-3 years until after 2015.
 - □ To sell a product at \$300-\$1,000, it can only include one high value chip
 - > Thus product performance is determined by the performance of that one chip
 - □ AND talk about planned obsolescence!!
- ASIC styles include full custom (for analog) and RTL-based design: Cell based (semicustom), Gate Array or FPGA implementation
- ASIC design methodology includes logic, timing, and physical design
 - Unfortunately, design productivity is not keeping up with chip performance growth

