
Memory examples

Chapter 5

Memories

Portions of this work are from the book, Digital Design: An Embedded
Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan
Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Verilog

Digital Design — Chapter 5 — Memories 2

Example: Coefficient Multiplier

 Compute function

 Coefficient stored in flow-through SSRAM

 12-bit unsigned integer index for i

 x, y, ci 20-bit signed fixed-point

 8 pre- and 12 post-binary point bits

 Use a single multiplier

 Multiply ci × x × x

2xcy i

Verilog

Digital Design — Chapter 5 — Memories 3

Multiplier Datapath

Verilog

Digital Design — Chapter 5 — Memories 4

Multiplier Timing and Control

Verilog

Digital Design — Chapter 5 — Memories 5

Pipelined SSRAM

 Data output also has a register

 More suitable for high-speed systems

 Access RAM in one cycle, use the data in
the next cycle

a
1

xx

xx M(a
2
)

a
2

Verilog

Digital Design — Chapter 5 — Memories 6

Memories in Verilog

 RAM storage represented by an array variable

reg [15:0] data_RAM [0:4095];
...

always @(posedge clk)
if (en)

if (wr) begin
data_RAM[a] <= d_in; d_out <= d_in;

end
else

d_out <= data_RAM[a];

Verilog

Digital Design — Chapter 5 — Memories 7

Example: Coefficient Multiplier

module scaled_square (output reg signed [7:-12] y,
input signed [7:-12] c_in, x,
input [11:0] i,
input start,
input clk, reset);

wire c_ram_wr;
reg c_ram_en, x_ce, mult_sel, y_ce;
reg signed [7:-12] c_out, x_out;

reg signed [7:-12] c_RAM [0:4095];

reg signed [7:-12] operand1, operand2;

parameter [1:0] step1 = 2'b00, step2 = 2'b01, step3 = 2'b10;
reg [1:0] current_state, next_state;

assign c_ram_wr = 1'b0;

Verilog

Digital Design — Chapter 5 — Memories 8

Example: Coefficient Multiplier

always @(posedge clk) // c RAM - flow through
if (c_ram_en)
if (c_ram_wr) begin
c_RAM[i] <= c_in;
c_out <= c_in;

end
else
c_out <= c_RAM[i];

always @(posedge clk) // y register
if (y_ce) begin
if (!mult_sel) begin
operand1 = c_out;
operand2 = x_out;

end
else begin
operand1 = x_out;
operand2 = y;

end
y <= operand1 * operand2;

end

Verilog

Digital Design — Chapter 5 — Memories 9

Example: Coefficient Multiplier

always @(posedge clk) // State register
...

always @* // Next-state logic
...

always @* begin // Output logic
...

endmodule

Verilog

Digital Design — Chapter 5 — Memories 10

Multiport Memories

 Multiple address, data and control
connections to the storage locations

 Allows concurrent accesses

 Avoids multiplexing and sequencing

 Scenario

 Data producer and data consumer

 What if two writes to a location occur
concurrently?

 Result may be unpredictable

 Some multi-port memories include an arbiter

Verilog

Digital Design — Chapter 5 — Memories 11

FIFO Memories

 First-In/First-Out buffer

 Connecting producer and consumer

 Decouples rates of production/consumption

FIFO
Producer

subsystem
Consumer
subsystem

 Implementation using
dual-port RAM

 Circular buffer

 Full: write-addr = read-addr

 Empty: write-addr = read-addr
write

read

Verilog

FIFO Example

 Design a FIFO to store up to 256 data items
of 16-bits each, using 256x 16-bit dual-port
SSRAM for the data storage. Assume the
FIFO will not be read when it is empty, not to
be written when it is full, and that the write
and read ports share a common clock.

Digital Design — Chapter 5 — Memories 12

Verilog

Digital Design — Chapter 5 — Memories 13

Example: FIFO Datapath

 Equal = full or empty

 Need to distinguish between these states — How?

Verilog

Digital Design — Chapter 5 — Memories 14

Example: FIFO Control

 Control FSM

 → filling when write without concurrent read

 → emptying when read without concurrent write

 Unchanged when concurrent write and read

full = filling and equal

empty = emptying and equal
wr_en, rd_en

Verilog

Digital Design — Chapter 5 — Memories 15

Multiple Clock Domains

 Need to resynchronize data that
traverses clock domains

 Use resynchronizing registers

 May overrun if sender's clock is faster
than receiver's clock

 FIFO smooths out differences in data
flow rates

 Latch cells inside FIFO RAM written with
sender's clock, read with receiver's clock

Verilog

Digital Design — Chapter 5 — Memories 16

Dynamic RAM (DRAM)

 Data stored in a 1-transistor/1-capacitor cell

 Smaller cell than SRAM, so more per chip

 But longer access time

 Write operation

 pull bit-line high or low (0 or 1)

 activate word line

 Read operation

 precharge bit-line to intermediate voltage

 activate word line, and sense charge equalization

 rewrite to restore charge

Verilog

Digital Design — Chapter 5 — Memories 17

DRAM Refresh

 Charge on capacitor decays over time

 Need to sense and rewrite periodically

 Typically every cell every 64ms

 Refresh each location

 DRAMs organized into banks of rows

 Refresh whole row at a time

 Can’t access while refreshing

 Interleave refresh among accesses

 Or burst refresh every 64ms

Verilog

Digital Design — Chapter 5 — Memories 18

Read-Only Memory (ROM)

 For constant data, or CPU programs

 Masked ROM
 Data manufactured into the ROM

 Programmable ROM (PROM)
 Use a PROM programmer

 Erasable PROM (EPROM)
 UV erasable

 Electrically erasable (EEPROM)

 Flash RAM

Verilog

Digital Design — Chapter 5 — Memories 19

Combinational ROM

 A ROM maps address input to data output

 This is a combinational function!

 Specify using a table

 Example: 7-segment decoder

Address Content Address Content

0 0111111 6 1111101

1 0000110 7 0000111

2 1011011 8 1111111

3 1001111 9 1101111

4 1100110 10–15 1000000

5 1101101 16–31 0000000

Verilog

Digital Design — Chapter 5 — Memories 20

Example: ROM in Verilog

module seven_seg_decoder (output reg [7:1] seg,
input [3:0] bcd,
input blank);

always @*
case ({blank, bcd})
5'b00000: seg = 7'b0111111; // 0
5'b00001: seg = 7'b0000110; // 1
5'b00010: seg = 7'b1011011; // 2
5'b00011: seg = 7'b1001111; // 3
5'b00100: seg = 7'b1100110; // 4
5'b00101: seg = 7'b1101101; // 5
5'b00110: seg = 7'b1111101; // 6
5'b00111: seg = 7'b0000111; // 7
5'b01000: seg = 7'b1111111; // 8
5'b01001: seg = 7'b1101111; // 9
5'b01010, 5'b01011, 5'b01100,
5'b01101, 5'b01110, 5'b01111:

seg = 7'b1000000; // "-" for invalid code
default: seg = 7'b0000000; // blank

endcase

endmodule

Verilog

Digital Design — Chapter 5 — Memories 21

Flash RAM

 Non-volatile, readable (relatively fast), writable
(relatively slow)

 Storage partitioned into blocks
 Erase a whole block at a time, then write/read

 Once a location is written, can't rewrite until erased

 NOR Flash
 Can write and read individual locations

 Used for program storage, random-access data

 NAND Flash
 Denser, but can only write and read block at a time

 Used for bulk data, e.g., cameras, memory sticks

Verilog

Digital Design — Chapter 5 — Memories 22

Summary

 Memory: addressable storage locations

 Read and Write operations

 Asynchronous RAM

 Synchronous RAM (SSRAM)

 Dynamic RAM (DRAM)

 Read-Only Memory (ROM) and Flash

 Multiport RAM and FIFOs

