
Digital Design:
An Embedded Systems
Approach Using Verilog

Chapter 5

Memories

Portions of this work are from the book, Digital Design: An Embedded
Systems Approach Using Verilog, by Peter J. Ashenden, published by Morgan
Kaufmann Publishers, Copyright 2007 Elsevier Inc. All rights reserved.

Verilog

Digital Design — Chapter 5 — Memories 2

General Concepts

 A memory is an array of
storage locations

 Each with a unique address

 Like a collection of
registers, but with
optimized implementation

 Address is unsigned-binary
encoded

 n address bits ⇒ 2n locations

 All locations the same size

 2n × m bit memory

0

1

2

3

4

5

6

2n–2

2n–1

m bits

Verilog

Digital Design — Chapter 5 — Memories 3

Memory Sizes

 Use power-of-2 multipliers

 Kilo (K): 210 = 1,024 ≈ 103

 Mega (M): 220 = 1,048,576 ≈ 106

 Giga (G): 230 = 1,073,741,824 ≈ 109

 Example

 32K × 32-bit memory

 Capacity = 1,024K = 1Mbit

 Requires 15 address bits

 Size is determined by application
requirements

Verilog

Digital Design — Chapter 5 — Memories 4

Basic Memory Operations

 a inputs: unsigned address
 d_in and d_out

 Type depends on application

 Write operation
 en = 1, wr = 1
 d_in value stored in location given

by address inputs

 Read operation
 en = 1, wr = 0
 d_out driven with value of location

given by address inputs

 Idle: en = 0

n

m m

Verilog

Digital Design — Chapter 5 — Memories 5

Wider Memories

 Memory components have a fixed width

 E.g., ×1, ×4, ×8, ×16, ...

 Use memory
components in
parallel to make
a wider memory

 E.g, three 16K×16
components for a
16K×48 memory

Verilog

Digital Design — Chapter 5 — Memories 6

More Locations

 To provide 2n locations with
2k-location components

 Use 2n/2k components

 Address A

 at offset A mod 2k

 least-significant k bits of A

 in component A/2k

 most-significant n–k bits of A

 decode to select component

0
1

2k–1
2k

2k+1

2×2k–1
2×2k

2×2k+1

3×2k–1

2n–2k

2n–2k +1

2n–1

Verilog

Digital Design — Chapter 5 — Memories 7

More Locations

 Example:
64K×8 memory

composed of
16K×8 components

Verilog

Digital Design — Chapter 5 — Memories 8

Memory Types

 Random-Access Memory (RAM)
 Can read and write

 Static RAM (SRAM)
 Stores data so long as power is supplied

 Asynchronous SRAM: not clocked

 Synchronous SRAM (SSRAM): clocked

 Dynamic RAM (DRAM)
 Needs to be periodically refreshed

 Read-Only Memory (ROM)
 Combinational

 Programmable and Flash rewritable

 Volatile and non-volatile

Verilog

Digital Design — Chapter 5 — Memories 9

Asynchronous SRAM

 Data stored in 1-bit latch cells
 Address decoded to enable a given cell

 Usually use active-low control inputs
 Not available as components in ASICs or FPGAs

Verilog

Digital Design — Chapter 5 — Memories 10

Asynch SRAM Timing

 Timing parameters published in data sheets

 Access time

 From address/enable valid to data-out valid

 Cycle time

 From start to end of access

 Data setup and hold

 Before/after end of WE pulse

 Makes asynch SRAMs hard to use in clocked
synchronous designs

Verilog

Digital Design — Chapter 5 — Memories 11

Example Data Sheet

Verilog

Digital Design — Chapter 5 — Memories 12

Synchronous SRAM (SSRAM)

 Clocked storage registers for inputs

 address, data and control inputs

 stored on a clock edge

 held for read/write cycle

 Flow-through SSRAM

 no register on
data output

a
1

xx

xx M(a
2
)

a
2

Verilog

Digital Design — Chapter 5 — Memories 13

Pipelined SSRAM

 Data output also has a register

 More suitable for high-speed systems

 Access RAM in one cycle, use the data in
the next cycle

a
1

xx

xx M(a
2
)

a
2

Verilog

Digital Design — Chapter 5 — Memories 14

Memories in Verilog

 RAM storage represented by an array variable

reg [15:0] data_RAM [0:4095];
...

always @(posedge clk)
if (en)

if (wr) begin
data_RAM[a] <= d_in; d_out <= d_in;

end
else

d_out <= data_RAM[a];

Verilog

Digital Design — Chapter 5 — Memories 15

Example: Coefficient Multiplier

module scaled_square (output reg signed [7:-12] y,
input signed [7:-12] c_in, x,
input [11:0] i,
input start,
input clk, reset);

wire c_ram_wr;
reg c_ram_en, x_ce, mult_sel, y_ce;
reg signed [7:-12] c_out, x_out;

reg signed [7:-12] c_RAM [0:4095];

reg signed [7:-12] operand1, operand2;

parameter [1:0] step1 = 2'b00, step2 = 2'b01, step3 = 2'b10;
reg [1:0] current_state, next_state;

assign c_ram_wr = 1'b0;

Verilog

Digital Design — Chapter 5 — Memories 16

Example: Coefficient Multiplier

always @(posedge clk) // c RAM - flow through
if (c_ram_en)
if (c_ram_wr) begin
c_RAM[i] <= c_in;
c_out <= c_in;

end
else
c_out <= c_RAM[i];

always @(posedge clk) // y register
if (y_ce) begin
if (!mult_sel) begin
operand1 = c_out;
operand2 = x_out;

end
else begin
operand1 = x_out;
operand2 = y;

end
y <= operand1 * operand2;

end

Verilog

Digital Design — Chapter 5 — Memories 17

Example: Coefficient Multiplier

always @(posedge clk) // State register
...

always @* // Next-state logic
...

always @* begin // Output logic
...

endmodule

Verilog

Digital Design — Chapter 5 — Memories 18

Pipelined SSRAM in Verilog

reg pipelined_en;
reg [15:0] pipelined_d_out;
...

always @(posedge clk) begin
if (pipelined_en) d_out <= pipelined_d_out;
pipelined_en <= en;
if (en)
if (wr) begin
data_RAM([a] <= d_in; pipelined_d_out <= d_in;

end
else
pipelined_d_out <= data_RAM[a];

end
SSRAM

output
register

Verilog

Digital Design — Chapter 5 — Memories 19

Example: RAM Core Generator

