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Notes on Recurrences

Linear Homogeneous Recurrences with Constant Coefficients

We begin by recalling some terminology from the text. Roughly, a sequence {a,, },>¢ satisfies
a recurrence relation if the term a, can be computed in terms of ag,ay,...,a,_1. We say
the recurrence relation has degree d if a,, can be computed in terms of the previous d
terms:

a, = R(ap_1,...,a,_q) foralln>d

for some function R. A recurrence relation is linear if it is linear in the terms a,_1, ..., G,_g;
that is, the relation has the form

Qp = C1Qp—1 + C20p—2 + *++ + C4Qp—q + C,

where ¢ and the ¢;’s are allowed to depend on n, but not on the a;’s. For a linear recurrence,
if the ¢;’s are all constants, we say the recurrence has constant coefficients, and if ¢ = 0
we say the recurrence is homogeneous.

The simplest case is that of a homogeneous linear recurrence relation of degree d, with
constant coefficients. We can write the relation as

Up — C1lp—1 — Colp_ — *+* — Cglp_q =0 (1)

where the ¢;’s are constants. Let’s start by trying to guess a solution. Suppose a,, = t" is a
solution to (1) for some constant ¢. Then (1) implies that

" — e t" Tt —egt"— et = 0.

If we divide both sides by t"~¢, we obtain a condition on ¢ which doesn’t depend on n:

t4— et — et 2 — i,y = 0. (2)

The polynomial on the left hand side of (2) is called the characteristic polynomial of
the recurrence relation. We find that a,, = t" satisfies the recurrence only if ¢ is a root of
the characteristic polynomial. (Note that the “degree” of the recurrence is the same as the
“degree” of the polynomial.)



Now, how can we find more solutions? This is where the linearity of the recurrence comes
in. Notice that if a,, and b, are two sequences which satisfy the recurrence (1), then for any
constants A and B, the linear combination

¢, = Aa,, + Bb,

is another sequence which also satisfies (1)! The game now is to come up with a short list
of “basic” solutions to the recurrence (1) such that any solution is some linear combination
of solutions in our list. (If you're familiar with linear algebra, the set of sequences which
satisfy a linear homogeneous recurrence form a vector space; we want to construct a basis.)

How many “basic” solutions should there be in our list? Well, if the recurrence has degree d,
so that a, depends only on a,_1,...,a,_4, then we need to specify the first d terms before
the recurrence “kicks in.” These can be any numbers we like, so we can make essentially
d independent choices; we have d “degrees of freedom.” On the other hand, how many
“degrees of freedom” do we have if we're constructing a linear combination of solutions from
our list of “basic” solutions? The answer is just the number of basic solutions, since that’s
the number of coefficients we get to pick. So, for a degree d recurrence, we’d like to find d
“basic” solutions.

In the case of homogeneous linear recurrences with constant coefficients, one can prove the
following theorem, which gives us a complete list of basic solutions, from which all solutions
can be constructed.

Theorem 1 Suppose we have a homogeneous linear recurrence with constant coefficients.
Let p(t) denote the characteristic polynomial, and suppose that X is a root of p(t) having
multiplicity r; that 1s,

(t —N)" divides p(t).

1. Each of the r sequences X", n\",n?\", ... ,n"~I\" satisfies the recurrence.

2. (the really cool part) Any sequence satisfying the recurrence can be written uniquely
as a linear combination of solutions constructed in part (1).

You should keep in mind the “fundamental theorem of algebra,” which states that any
polynomial p(t), whose leading coefficient is equal to 1, can be factored completely into
linear factors of the form ¢t — A, provided we allow A to take complex values. If our recurrence
has degree d, then p(t) will have d linear factors, and the total number of “basic solutions”
constructed in part (2) of the theorem will be d.

An Example

Let’s try an example. Consider the recurrence

ap = 3ap—1 — 4ay_3,



with initial conditions ag = 0, a1 = 1, as = 13. We seek a closed-form expression for a,,.

If we start generating the next few terms, we get 39,113,287,705,1663,... There doesn’t
seem to be any obvious formula. Nonetheless, we can find the answer as follows: the char-
acteristic polynomial is

p(t) =t* = 3t* +4=(t+1)(t - 2)

This has two roots: —1, with multiplicity one, and 2, with multiplicity 2. By Theorem 1,
any sequence satisfying the recurrence is a linear combination of the three sequences (—1)",
2™ and n2". In other words, we have

a, = A(—1)" + B2" + Cn2" (3)
for some constants A, B, and C.

How do we determine the constants? We just select them so that the initial conditions are
satisfied. We have three initial conditions, for n = 0,1, 2. Plugging each of these values of n
in turn into (3) gives three equations involving A, B and C":

ap=0 = A+ B =0
m=1 = —-A+2B+20 =1
a=13 = A+4B+8C =13

These equations can easily be solved for A, B and C, for example by successively eliminating
variables. We find A =1, B = —1 and C' = 2, giving us a closed-form for our sequence:

an = (—1)" = 2" + 202" = (2n — 1)2" + (—1)™.

Some Non-homogeneous Recurrences

Many non-homogeneous linear recurrence relations can be dealt with easily. We will just do
an example here.

Apio = Qpi1 + ap, + 27, n > 0. (4)

This is non-homogeneous, due to the 2" term. We will “homogenize” it by finding a different
recurrence, also satisfied by the sequence {a,}, which is homogeneous. One way to do this
is to try to use a “slide” of the recurrence to “cancel out” the non-homogeneous part. In our
example, we take both the original recurrence, and a slide:

(py2 = Qpt1+0ap + 2"

—1
pny1 = G  +0p1+ 2"



Now subtract twice the second equation from the first, so that the 2 terms cancel. We find
Apy2 — 2an+1 = Qpy1 + Qp — 2a, — 2an71;

or
(pto = 3Upi1 — Ay — 20p_1. (5)

This is a linear homogeneous recurrence which is valid for all n > 1 (do you see why?) So
we're in business; given some initial conditions, we could solve it using the methods we've
already developed.

It’s worth stopping to smell the roses here. The characteristic polynomial of the recurrence
in (5) is 3 — 3t* + ¢+ 2 = 0, which factors as (t* —¢—1)(t —2) = 0. You should recognize the
first factor as the characteristic polynomial of the “homogeneous part” of (4). (That is, if the
2" term were missing in (4), the resulting homogeneous recurrence would have characteristic
polynomial t> — ¢ — 1.) The second factor, (¢ — 2), is the characteristic polynomial of the
recurrence satisfied by the 2" term.

This is a special case of something very general. Suppose a sequence a,, satisfies a recurrence
which would be a linear homogeneous recurrence with constant coefficients, except for one
extra term b, added in (in the above example, b, = 2".) Then a, does satisfy a linear
homogeneous recurrence with constant coefficients, and its characteristic polynomial is the
product of two factors: one corresponding to the homogeneous part of the recurrence, and
the other corresponding to the "non-homogeneous term” b,.

We won’t prove this result here, since it really belongs in a discussion of vector spaces and
linear operators on sequences. But it is useful to know that such a factorization exists, since
otherwise it might be harder to guess the factors of the characteristic polynomial.



