Homework 2, Due June 14th

You are required to solve TEN problems.
Problems 2, 3, 4, 5, 6 are not optional.
Solve any FIVE problems out of the rest.
Each problem carries 4 points.
Extra credit for extra problems solved.

1. Let $L \subseteq \Sigma^{*}$ be a regular language. Define the language $\operatorname{Prefix}(L)$ as follows: $\operatorname{Prefix}(L)=\left\{w \in \Sigma^{*}: x=w y\right.$ for some $\left.x \in L, y \in \Sigma^{*}\right\}$.
Show that the language $\operatorname{Prefix}(L)$ is also regular.
2. Construct DFAs equivalent to the corresponding NFAs given in the Figure 1.

Figure 1.
3. Describe in English the sets denoted by the following regular expressions.
(a) $(a \cup b a \cup b b)(a \cup b)^{*}$
(b) $(a \cup b)^{*} a(a \cup b)(a \cup b)(a \cup b)$
4. Write regular expressions for each of the following languages over the alphabet $\{0,1\}$.
(a) $L_{1}=\{w \mid w$ starts with 0 and has odd length, or w starts with 1 and has even length $\}$
(b) $L_{2}=\{w \mid$ every odd position of w is a 1$\}$
5. Construct finite automata equivalent to the following regular expressions.
(a) $\left(11 \cup 0^{*}\right)(00 \cup 1)^{*}$
(b) $\left(\left((00)^{*}(11)\right) \cup 01\right)^{*}$
6. Construct regular expressions corresponding to the state diagrams given in the Figure 2.

Figure 2.

Prove that the following languages are not regular using pumping lemma.
7. $A_{1}=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}$
8. $A_{2}=\left\{x \in\{0,1,2\}^{*} \mid x=w 2 w\right.$, with $\left.w \in\{0,1\}^{*}\right\}$
9. $A_{3}=\left\{a^{n} b a^{m} b a^{m+n}: n, m \geq 1\right\}$.
10. $A_{4}=\left\{w w \mid w \in\{0,1\}^{*}\right\}$
11. $A_{5}=$ Set of strings over $\{()$,$\} in which the parentheses are paired.$

Some examples of strings in A_{5} are ()$,()(),(()),(())()$.
12. $A_{6}=\left\{w w^{R} \mid w \in\{0,1\}^{*}\right\} . w^{R}$ is w written backwards. For example, $(011)^{R}=110$.

