
Fourier transforms and series
A Fourier transform converts a function of time into a function of frequency

f is frequency in hertz

t is time in seconds t = 1
f
and f = 1

t

ω = 2πf

i is
√

( − 1)

eia = cos(a) + i sin(a)

X(f) is a frequency spectrum, complex value verses frequency

x(t) is a signal amplitude, complex value verses time

The continuous Fourier Transform is

X(f) =
∫

∞

−∞

x(t)e−i2πftdt

The continuous Inverse Fourier Transform is

x(t) =
∫

∞

−∞

X(f)ei2πftdf

X(k) is a discrete frequency spectrum at frequency bin k, complex value

k is along the frequency axis

x(n) is a signal amplitude at sample n, complex value

n is along the time axis

N is the number of frequency bins and the number of samples

The Discrete Fourier Transform, DFT, is

X(k) =
N−1
∑

n=0

x(n)e
−i2πkn

N

The Inverse Discrete Fourier Transform, IDFT

x(n) =
1

N

N−1
∑

k=0

X(k)e
i2πkn

N
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The Discrete Fourier Transform using sin and cos

X(k) =
N−1
∑

n=0

x(n)
(

cos(
2πkn

N
) − i sin(

2πkn

N
)
)

The IDFT using sin and cos is

x(n) =
1

N

N−1
∑

n=0

X(n)
(

cos(
2πkn

N
) + i sin(

2πkn

N
)
)

The Fast Fourier Transform, FFT

The FFT is a numerical method for computing the DFT.

The FFT is an order n log2 n time algorithm.

The DFT is an order n2 time algorithm.

Both compute approximately the same values.

The Inverse Fast Fourier Transform, IFFT

The IFFT is a numerical method for computing the IDFT.

The IFFT is an order n log2 n time algorithm.

The IDFT is an order n2 time algorithm.

Both compute approximately the same values.

Note that the values of X(k) for k > N
2
, the Nyquist frequency, are alias.

In order to compute the unaliased normalized spectrum, N even, N
2

values:

for k = 1 to N
2
− 1 X(k) = conj((X(k)+conj(X(N−k)))

N

X(0) is the DC component, the average value of the signal

X(1) is the complex fundamental frequency, 1 hertz for N samples in one second.

X(N
2
− 1) is the highest computed frequency (N

2
− 1) hertz

X(1) is the complex fundamental frequency, 1 MHz for N samples in one microsecond,

X(N
2
− 1) is the highest computed frequency (N

2
− 1)MHz

In the Fourier Series, below,

the real part of X(k) will be ak the coefficient of cos(2πk),
the imaginary part of X(k) will be bk the coefficient of sin(2πk).

2



A truncated Fourier Series may be written as
for n = 0 to N

2
− 1

x(n) =

N

2
−1

∑

k=0

akcos(
2πkn

N
) + bksin(

2πkn

N
)

The ak are the real values of anti aliased normalized X(k)
The bk are the imaginary values of the anti aliased normalized X(k)

Some example series:
square waves: n = 0 to N or greater, period is N

x(n) =
4

π

53
∑

k=odd

(−1)(k−1)/2

k
cos(

2πkn

N
)

a1 = 1.273, a3 = −0.424, a5 = 0.255, ... all bk = 0.0

Generates N/4 1’s, 0, N/2 − 1 -1’s, 0, N/2 − 1 1’s, 0, N/2 − 1 -1’s

x(n) =
4

π

N−1
∑

n=odd

1

k
sin(

2πkn

N
)

b1 = 1.273, b3 = 0.424, b5 = 0.255, ... all ak = 0.0

triangle waves:

x(n) =
8

π2

N−1
∑

k=odd

1

k2
cos(

2πkn

N
)

a1 = 0.811, a3 = 0.090, a5 = 0.032, ... all bk = 0.0

x(n) =
8

π2

N−1
∑

k=odd

(−1)(k−1)/2

k2
sin(

2πkn

N
)

b1 = 0.811, b3 = −0.090, b5 = 0.032, ... all ak = 0.0

saw tooth wave:

x(n) =
2

π

N−1
∑

k=1

(−1)k−1

k
sin(

2πkn

N
)

b1 = 0.637, b3 = −0.318, b5 = 0.212, ... all ak = 0.0
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Modulation of a carrier by a signal:
The mathematical definition of modulation is derived from basic relations:

sin(A + B) = sin(A)cos(B) + cos(A)sin(B)

cos(A + B) = cos(A)cos(B) − sin(A)sin(B)

sin(A − B) = sin(A)cos(B) − cos(A)sin(B)

cos(A − B) = cos(A)cos(B) + sin(A)sin(B)

m(t) is the continuous modulation signal. Typically in range -1.0 to +1.0

m(n) is the sampled modulation signal. Typically N samples.

fc is the continuous carrier frequency.

sin(2πfct) is the continuous carrier signal.

sin(2πn
Nc

) is the sampled carrier signal.

(not covered here is down conversion to an intermediate frequency

and narrow band filtering, that provides noise reduction.)

Amplitude Modulation, AM, for a carrier A and modulation B is:

modulated signal = sin(A)(1.0 + sin(B)) and either sin may be cos .

The resulting spectrum of the modulated signal has sin(A) and

cos(A + B) and cos(A − B), known as a double sideband signal.

The same equations apply, taking the signal B as a B(k) transform of b(n).
For numeric computation the time domain modulated signal is represented as

x(n) = sin(2πn
Nc

)(1.0 + m(n)) where m(n) is the time domain sampled modulation.

The demodulation is performed using:

sin(B) is computed approximately as lowpassfilter(abs(modulated signal) − 1.0)

Frequency Modulation, FM, for a carrier A and modulation B is:

modulated signal = sin(A + scale
∫

sin(B)) and either sin may be cos .

The continuous FM signal is sin(2πfc t + scale
∫

m(t)dt) .

The scale determines the band width of the modulated signal.

The demodulation may be performed using several techniques including

discriminator and ratio detector to determine the instantaneous frequency.
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Phase Modulation, PM, for a carrier A and analog modulation B is:

modulated signal = sin(A + scale sin(B)) and either sin may be cos .

The continuous PM signal is sin(2πfc t + scale m(t)) .

The scale determines the band width of the modulated signal.
The demodulation may be performed using arcsin of the measured

phase difference from the carrier reference.

Frequency Shift Modulation for a carrier A and modulation B is:

modulated signal = sin(A + scale sin(B)) and either sin may be cos .

m(t) may be analog, although typically used for digital modulation as FSK.

The continuous FSM signal is sin(2π(fc + scale m(t))t) .

For numeric computation the time domain modulated signal is represented as

x(n) = sin(2π(n+scale m(n))
Nc

) where m(n) is the time domain sampled modulation.

The scale determines the band width of the modulated signal.
The demodulation may be performed using several techniques. One technique is

to measure the time between zero crossings of the modulated signal. Subtract
0.5
fc

from each time and low pass filter, integrate, the resulting signal, then

unscale. This approximately reconstructs the original modulation m(n).

Quadrature Phase Shift Keying, QPSK, is used to send a symbol, two bits

in this case, for a few cycles,j, then another symbol for a few cycles,j, etc.

Typical transmission uses modulation fm in the KHz range with

Φ = Π
4

for 002,

Φ = 3π
4

for 012,

Φ = −
π
4
for 102,

Φ = −
3π
4

for 112

The continuous QPSK signal is sin(2πfc t) ∗ sin(2πfm t + Φ) .

Demodulation converts the continuous signal to in-phase, I and
π
2
quadrature, Q, signals at frequency fm .

For the known few cycles,j, Isum = Σsin(2πfm t) × I and

Qsum = Σsin(2πfm t) × Q , then

Isum > 0 and Qsum > 0 yeilds symbol 002

Isum < 0 and Qsum > 0 yeilds symbol 012

Isum > 0 and Qsum < 0 yeilds symbol 102

Isum < 0 and Qsum < 0 yeilds symbol 112
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Single Side Band modulation, SSB, results from the equations:

Computing the product of signal A with signal B
(cos(A)+ i sin(A))(cos(B)+ i sin(B)) = cos(A)cos(B)−sin(A)sin(B)+ i(sin(A)cos(B)+
cos(A)sin(B)) = cos(A + B) + i sin(A + B)
results in the sum frequency signal A + B.

This is called single side band modulation, producing the upper sideband.

Computing the product of conjugate signal A with signal B
(cos(A)− i sin(A))(cos(B)+ i sin(B)) = cos(A)cos(B)+sin(A)sin(B)− i(sin(A)cos(B)−
cos(A)sin(B)) = cos(A − B) − i sin(A − B)
results in the difference frequency signal A − B.

This is called single side band modulation, producing the lower sideband.

Computing the product of conjugate signal A with signal A + B
(cos(A)− i sin(A))(cos(A+B)+ i sin(A+B)) = cos(A)cos(A+B)+ sin(A)sin(A+B)−
i(sin(A)cos(A + B) − cos(A)sin(A + B)) = cos(A − (A + B)) − i sin(A − (A + B)) =
cos(B) + i sin(B)
results in the demodulation, reproducing the signal B.

Computing the product of signal A with signal A − B
(cos(A)+ i sin(A))(cos(A−B)− i sin(A−B)) = cos(A)cos(A−B)+ sin(A)sin(A−B)+
i(sin(A)cos(A − B) − cos(A)sin(A − B)) = cos(A − (A − B)) + i sin(A − (A − B)) =
cos(B) + i sin(B)
results in the demodulation, reproducing the signal B.

In general the signal B will contain many frequencies at various phase angles.

The same equations apply, taking the signal B as a B(k) transform of b(n).
For numeric computation the time domain carrier is represented as

cos(
2πn

Nc
) + isin(

2πn

Nc
)

and the modulation signal m(n)+i m′(n) where m′(n) is m(n) phase shifted -90

degrees, and Nc determines the carrier frequency.

6


