Finite Element Method over triangles

One method for numerically solving partial differential equation boundary value problems is the Finite Element Method, FEM, and specifically the Galerkin method.

Given a two dimensional linear partial differential equation with dependent variable u and independent variables x, y

$$
L(u(x, y))=f(x, y)
$$

L is a general linear differential operator of some specific order. Samples for up to fourth order are shown below.

Find the approximate solution at vertices $U(x, y)$ numerically, that has boundary conditions chosen that make the problem of finding $u(x, y)$ well posed on the domain Ω for all $(x, y) \in \Omega$.

We denote the approximated solution $U\left(x_{i}, y_{i}\right)$ as U_{i} at vertex $\left(x_{i}, y_{i}\right)$.
We take $i=1 \ldots n$ for specific vertices $x_{1}, y_{1}, \ldots, x_{n}, y_{n}$. These are vertices of a properly trianglated region Ω covered by $\Omega_{1} \ldots \Omega_{m}$

Let $U(x, y)=\sum_{i=1}^{n} U_{i} \phi_{i}(x, y)$
We will use $\phi_{i}(x, y)$ as function about x_{i}, y_{i} as defined below, where $\phi_{i}(x, y)=\sum \phi_{i}(T, x, y)$ for all triangles, T , with area Ω_{v} containing vertex x_{i}, y_{i}

The Galerkin Method states:

$$
\int_{\Omega} L(U(x, y)) \phi_{l}(x, y) d x d y=\int_{\Omega} f(x, y) \phi_{l}(x, y) d x d y
$$

Substituting for $U(x, y)$ yields

$$
\int_{\Omega} L\left(\sum_{i=1}^{n} U_{k} \phi_{i}(x, y)\right) \phi_{l}(x, y) d x d y=\int_{\Omega} f(x, y) \phi_{l}(x, y) d x d y
$$

Bringing the summation out of the integral yields

$$
\sum_{i=1}^{n} U_{i} \int_{\Omega} L\left(\phi_{i}(x, y)\right) \phi_{l}(x, y) d x d y=\int_{\Omega} f(x, y) \phi_{l}(x, y) d x d y
$$

$L\left(\phi_{i}(x, y)\right)$ means a substitution in $L(u(x, y))$ where $u(x, y)$ becomes $\phi_{i}(x, y), u x(x, y)$ becomes $\phi_{x i}^{\prime}(x, y), u y(x, y)$ becomes $\phi_{y i}^{\prime}(x, y), u x y(x, y)$ becomes $\phi_{x y i}^{\prime}(x, y), u x x(x, y)$ becomes $\phi_{x i}^{\prime \prime}(x, y)$, $u y y(x, y)$ becomes $\phi_{y i}^{\prime \prime}(x, y)$, etc.

Writing the above in matrix form using the index $k=(i-1) \times n y+j$ for rows and index $l=(i-1) \times n y+j$ for columns yields

$$
\begin{aligned}
& \left|\begin{array}{c}
\int_{\Omega} L\left(\phi_{1}(x, y)\right) \phi_{1}(x, y) d x d y \\
\int_{\Omega} L\left(\phi_{1}(x, y)\right) \phi_{2}(x, y) d x d y \\
\int_{\Omega} L\left(\phi_{2}(x, y)\right) \phi_{1}(x, y) d x d y \ldots \int_{\Omega} L\left(\phi_{n}(x, y)\right) \phi_{2}(x, y) d x d y \ldots \int_{\Omega} L\left(\phi_{n}(x, y)\right) \phi_{2}(x, y) d x d y \\
\ldots \\
\int_{\Omega} L\left(\phi_{1}(x, y)\right) \phi_{n}(x, y) d x d y \\
\int_{\Omega} L\left(\phi_{2}(x, y)\right) \phi_{n}(x, y) d x d y \ldots \int_{\Omega} L\left(\phi_{n}(x, y)\right) \phi_{n}(x, y) d x d y
\end{array}\right| \\
& \qquad\left|\begin{array}{c}
U_{1} \\
U_{2} \\
\ldots \\
U_{n}
\end{array}\right|=\left|\begin{array}{c}
\int_{\Omega} f(x, y) \phi_{1}(x, y) d x d y \\
\int_{\Omega} f(x, y) \phi_{2}(x, y) d x d y \\
\ldots \\
\int_{\Omega} f(x, y) \phi_{n}(x, y) d x d y
\end{array}\right|
\end{aligned}
$$

Note that the above applies for the "internal" non boundary nodes.
Given Dirichlet boundary values, e.g. v_{1} at $\left(x_{1}, y_{1}\right)$ and v_{n} at $\left(x_{n x}, y_{n y}\right)$ the first and last rows of the above matrix equation would be:

$$
\left|\begin{array}{ccc}
1 & 0 & \ldots \\
& \ldots & 0 \\
0 & 0 & \ldots
\end{array}\right| \times\left|\begin{array}{c}
U_{1} \\
\ldots \\
U_{n}
\end{array}\right|=\left|\begin{array}{c}
v_{1} \\
\ldots \\
v_{n}
\end{array}\right|
$$

The many boundary rows may be eliminated and a $(n x-2)(n y-2)$ system of equations are solved to find the U_{k} for $i=2 \ldots n x-1, j=2 \ldots n y-1$

Note that, in general, numerical integration is required to compute the matrix elements and the right hand side vector elements.

Lagrange polynomials over triangles
For triangles, using $\phi_{i}\left(T\left[x_{i}, y_{i}, x_{j}, y_{j}, x_{k}, y_{k}\right]\right)$ to determine Lagrange polynomials:

$$
\phi_{i}(T, x, y)=c_{0}+c_{1} x+c_{2} y
$$

where
where $\phi_{i}(T, x, y)$ is the polynomial in a set of polynomials such that:

$$
\phi_{i}(T, x, y)=\left\{\begin{array}{l}
1 \text { for } x=x_{i} y=y_{i} \\
0 \text { for } x=x_{j} y=y_{j} \\
0 \text { for } x=x_{k} y=y_{k}
\end{array}\right.
$$

solve for c_{0}, c_{1}, c_{2}

$$
\left|\begin{array}{lll}
1 & x_{i} & y_{i} \\
1 & x_{j} & y_{j} \\
1 & x_{k} & y_{k}
\end{array}\right| \times\left|\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right|=\left|\begin{array}{l}
1 \\
0 \\
0
\end{array}\right|
$$

Derivative with respect to $\mathrm{x} \phi_{x i}^{\prime}(x, y)=c_{1}$, derivative with respect to $\mathrm{y} \phi_{y i}^{\prime}(x, y)=c_{2}$.
These ϕ functions are only useful when only the first derivative of ϕ is needed. Second derivatives and higher are all zero.

Using the midpoint of each side of the triangle $x_{i j}=\frac{\left(x_{i}+x_{j}\right)}{2}$ and $y_{i j}=\frac{\left(y_{i}+y_{j}\right)}{2}$

$$
\phi_{i}(T, x, y)=c_{0}+c_{1} x+c_{2} y+c_{3} x^{2}+c_{4} x y+c_{5} y^{2}
$$

where
where $\phi_{i}(T, x, y)$ is the polynomial in a set of polynomials such that:

$$
\phi_{i}(T, x, y)=\left\{\begin{array}{l}
1 \text { for } x=x_{i} y=y_{i} \\
0 \text { for } x=x_{j} y=y_{j} \\
0 \text { for } x=x_{k} y=y_{k} \\
0 \text { for } x=x_{i j} y=y_{i j} \\
0 \text { for } x=x_{j k} y=y_{j k} \\
0 \text { for } x=x_{k i} y=y_{k i}
\end{array}\right.
$$

solve for $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$

Higher order ϕ functions may be defined by

$$
\begin{aligned}
& \phi_{i}(T, x, y)=\frac{\left(\left(x-x_{j}\right)^{2}+\left(y-y_{j}\right)^{2}\right)\left(\left(x-x_{k}\right)^{2}+\left(y-y_{k}\right)^{2}\right)}{\left(\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}\right)\left(\left(x_{i}-x_{k}\right)^{2}+\left(y_{i}-y_{k}\right)^{2}\right)} \\
& \phi_{i}(T, x, y)=\frac{\left(\left(x-x_{j}\right)^{4}+\left(y-y_{j}\right)^{4}\right)\left(\left(x-x_{k}\right)^{4}+\left(y-y_{k}\right)^{4}\right)}{\left(\left(x_{i}-x_{j}\right)^{4}+\left(y_{i}-y_{j}\right)^{4}\right)\left(\left(x_{i}-x_{k}\right)^{4}+\left(y_{i}-y_{k}\right)^{4}\right)}
\end{aligned}
$$

Fig 1. the three linear phi functions for one triangle

$\phi_{1}\left(\mathrm{~T}\left[\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{x}_{3}, \mathrm{y}_{3}\right]\right)$

$$
\phi_{2}\left(\mathrm{~T}\left[\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{x}_{1}, \mathrm{y}_{1}\right]\right)
$$

$\phi_{3}\left(\mathrm{~T}\left[\mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}\right]\right)$

Fig 2. Top view of a triangularazation

Galerkin test functions for second order PDE Second order ϕ functions may be defined by see file tri_basis.h and tri_basis.c

