/* least_square_fit_3d.c up to power 3 */ /* tailorable code, provide your input and setup */ #include #include #include #undef abs #define abs(x) (((x)<0.0)?(-(x)):(x)) #undef max #define max(x,y) (((x)>(y))?((x)):(y)) #undef min #define min(x,y) (((x)<(y))?((x)):(y)) static double A[40000]; static double C[200]; static double Y[200]; static int Apwr[200]; /* powers of each variable in a term */ static int Bpwr[200]; static int Cpwr[200]; static int debug = 0; static void simeq(int n, double A[], double Y[], double X[]); /* * The purpose of this package is to provide a reliable and convenient * means for fitting existing data by a few coefficients. The companion * package check_fit provides the means to use the coefficients for * interpolation and limited extrapolation. * * This package implements the least square fit. * * The problem is stated as follows : * Given measured data for values of Y based on values of X1,X2 and X3. e.g. * * Y_actual X1 X2 X3 * -------- ----- ----- ----- * 32.5 1.0 2.5 3.7 * 7.2 2.0 2.5 3.6 * 6.9 3.0 2.7 3.5 * 22.4 2.2 2.1 3.1 * 10.4 1.5 2.0 2.6 * 11.3 1.6 2.0 3.1 * * Find a, b and c such that Y_approximate = a * X1 + b * X2 + c * X3 * and such that the sum of (Y_actual - Y_approximate) squared is minimized. * * The method for determining the coefficients a, b and c follows directly * form the problem definition and mathematical analysis. (See more below) * * Y is called the dependent variable and X1 .. Xn the independent variables. * The procedures below implements a few special cases and the general case. * The number of independent variables can vary. * The approximation equation may use powers of the independent variables * The user may create additional independent variables e.g. X2 = SIN(X1) * with the restriction that the independent variables are linearly * independent. e.g. Xi not equal p Xj + q for all i,j,p,q * * * * The mathematical derivation of the least square fit is as follows : * * Given data for the independent variable Y in terms of the dependent * variables S,T,U and V consider that there exists a function F * such that Y = F(S,T,U,V) * The problem is to find coefficients a,b,c and d such that * Y_approximate = a * S + b * T + c * U + d * V * and such that the sum of ( Y - Y_approximate ) squared is minimized. * * Note: a, b, c, d are scalars. S, T, U, V, Y, Y_approximate are vectors. * * To find the minimum of SUM( Y - Y_approximate ) ** 2 * the derivatives must be taken with respect to a,b,c and d and * all must equal zero simultaneously. The steps follow : * * SUM( Y - Y_approximate ) ** 2 = SUM( Y - a*S - b*T - c*U - d*V ) ** 2 * * d/da = -2 * S * SUM( Y - A*S - B*T - C*U - D*V ) * d/db = -2 * T * SUM( Y - A*S - B*T - C*U - D*V ) * d/dc = -2 * U * SUM( Y - A*S - B*T - C*U - D*V ) * d/dd = -2 * V * SUM( Y - A*S - B*T - C*U - D*V ) * * Setting each of the above equal to zero and putting constant term on left * the -2 is factored out, * the independent variable is moved inside the summation * * SUM( a*S*S + b*S*T + c*S*U + d*S*V = S*Y ) * SUM( a*T*S + b*T*T + c*T*U + d*T*V = T*Y ) * SUM( a*U*S + b*U*T + c*U*U + d*U*V = U*Y ) * SUM( a*V*S + b*V*T + c*V*U + d*V*V = V*Y ) * * Distributing the SUM inside yields * * a * SUM(S*S) + b * SUM(S*T) + c * SUM(S*U) + d * SUM(S*V) = SUM(S*Y) * a * SUM(T*S) + b * SUM(T*T) + c * SUM(T*U) + d * SUM(T*V) = SUM(T*Y) * a * SUM(U*S) + b * SUM(U*T) + c * SUM(U*U) + d * SUM(U*V) = SUM(U*Y) * a * SUM(V*S) + b * SUM(V*T) + c * SUM(V*U) + d * SUM(V*V) = SUM(V*Y) * * To find the coefficients a,b,c and d solve the linear system of equations * * | SUM(S*S) SUM(S*T) SUM(S*U) SUM(S*V) | | a | | SUM(S*Y) | * | SUM(T*S) SUM(T*T) SUM(T*U) SUM(T*V) | x | b | = | SUM(T*Y) | * | SUM(U*S) SUM(U*T) SUM(U*U) SUM(U*V) | | c | | SUM(U*Y) | * | SUM(V*S) SUM(V*T) SUM(V*U) SUM(V*V) | | d | | SUM(V*Y) | * * Some observations : * S,T,U and V must be linearly independent. * There must be more data sets (Y, S, T, U, V) than variables. * The analysis did not depend on the number of independent variables * A polynomial fit results from the substitutions S=1, T=X, U=X**2, V=X**3 * The general case for any order polynomial follows, fit_pn. * Any substitution such as three variables to various powers may be used. */ static int data_set3d(double *u1, double *a1, double *b1, double *c1) { static int i=0; static int j=0; static int k=0; static int first=1; int n = 3; double u, a, b, c; if(first) { first = 0; printf("the function generating the data set is \n"); printf("u = 1.0 + 2.0*a + 3.0*b + 4.0*c + 5.0*a*a + 6.0*b*b +\n"); printf(" 7.0*c*c +8.0*a*a*a + 9.0*b*b*b + 10.0*c*c*c \n" ); } i++; if(i>n) {i=0; j++;} if(j>n) {j=0; k++;} if(k>n) {i=0; j=0; k=0; return 0;} a = (double)i; b = (double)j; c = (double)k; u = 1.0 + 2.0*a + 3.0*b + 4.0*c + 5.0*a*a + 6.0*a*b + 7.0*a*c + 8.0*b*b + 9.0*b*c + 10.0*c*c + 11.0*a*a*a + 12.0*a*a*b + 13.0*a*a*c + 14.0*a*b*b + 15.0*a*b*c + 16.0*a*c*c + 17.0*b*b*b + 18.0*b*b*c + 19.0*b*c*c + 20.0*c*c*c; if(debug>1) printf("data_set u=%g, a=%g, b=%g, c=%g\n", u, a, b, c); *u1=u; *a1=a; *b1=b; *c1=c; return 1; } static gen_3d_powers(int n, int m, int *nnn, int a[], int b[], int c[]) { int i,j,k; /* need more, or generalize, for more variables */ int ii = 0; /* pointer to next available a[ii], b[ii], c[ii] */ int nn=1; /* power being generated */ if(m != 3) printf("ERROR, this only good for m=3 independent variables\n"); a[0]=0; b[0]=0; c[0]=0; printf("terms used to find fit \n"); printf("a^0 b^0 c^0 \n\n"); i=nn; j=0; k=0; while(nn<=n) /* n is highest sum of powers */ { ii++; a[ii] = i; b[ii] = j; c[ii] = k; printf("a^%d b^%d c^%d \n", i, j, k); if(i==0 && j==0 && k==nn) /* increment nn, set i,j,k */ { nn++; i = nn; j = 0; k = 0; printf("\n"); } else if(i==nn) { i--; j=1; /* k should be zero */ } else if(j==nn) { j--; /* i should be zero */ k=1; } else if(j>0) { j--; k++; } else if(j==0) { i--; j=nn-i; k=0; } } *nnn = ii+1; } /* end gen_3d_powers */ static void fit_3d(int n, int m, int *nnn, double A[], double Y[], double X[]) { int i, j, k, nn; double Av[10]; /* at least n */ double Bv[10]; /* powers of variables */ double Cv[10]; double u1, a1, b1, c1; double term_i, term_j; gen_3d_powers(n, m, &nn, Apwr, Bpwr, Cpwr); *nnn = nn; for(i=0; i4) printf("Av[%d]=%g, Bv[%d]=%g, Cv[%d]=%g \n", i, Av[i], i, Bv[i], i, Cv[i]); } for(i=0; i2) { for(i=0; iamax) amax=a1; if(a1bmax) bmax=b1; if(b1cmax) cmax=c1; if(c1umax) umax=u1; if(u1maxe) maxe=diff; sum = sum + diff; sumsq = sumsq + diff*diff; k++; } printf("check_3d k=%d, amin=%g, amax=%g, bmin=%g, bmax=%g \n", k, amin, amax, bmin, bmax); printf(" cmin=%g, cmax=%g, umin=%g, umax=%g \n", cmin, cmax, umin, umax); *max_err = maxe; *avg_err = sum/(double)k; *rms_err = sqrt(sumsq/(double)k); } /* end check_3d */ static void simeq(int n, double A[], double Y[], double X[]) { /* PURPOSE : SOLVE THE LINEAR SYSTEM OF EQUATIONS WITH REAL */ /* COEFFICIENTS [A] * |X| = |Y| */ /* */ /* INPUT : THE NUMBER OF EQUATIONS n */ /* THE REAL MATRIX A should be A[i][j] but A[i*n+j] */ /* THE REAL VECTOR Y */ /* OUTPUT : THE REAL VECTOR X */ /* */ /* METHOD : GAUSS-JORDAN ELIMINATION USING MAXIMUM ELEMENT */ /* FOR PIVOT. */ /* */ /* USAGE : simeq(n,A,Y,X); */ /* */ /* */ /* WRITTEN BY : JON SQUIRE , 28 MAY 1983 */ /* ORIGONAL DEC 1959 for IBM 650, TRANSLATED TO OTHER LANGUAGES */ /* e.g. FORTRAN converted to Ada converted to C */ double *B; /* [n][n+1] WORKING MATRIX */ int *ROW; /* ROW INTERCHANGE INDICIES */ int HOLD , I_PIVOT; /* PIVOT INDICIES */ double PIVOT; /* PIVOT ELEMENT VALUE */ double ABS_PIVOT; int i,j,k,m; B = (double *)calloc((n+1)*(n+1), sizeof(double)); ROW = (int *)calloc(n, sizeof(int)); m = n+1; /* BUILD WORKING DATA STRUCTURE */ for(i=0; i ABS_PIVOT){ I_PIVOT = i; PIVOT = B[ROW[i]*m+k]; ABS_PIVOT = abs ( PIVOT ); } } /* HAVE PIVOT, INTERCHANGE ROW POINTERS */ HOLD = ROW[k]; ROW[k] = ROW[I_PIVOT]; ROW[I_PIVOT] = HOLD; /* CHECK FOR NEAR SINGULAR */ if( ABS_PIVOT < 1.0E-8 ){ for(j=k+1; j