// least_square_fit.java tailorable code, provide your input and setup // The purpose of this package is to provide a reliable and convenient // means for fitting existing data by a few coefficients. The companion // package check_fit provides the means to use the coefficients for // interpolation and limited extrapolation. // // This package implements the least square fit. // // The problem is stated as follows : // Given measured data for values of Y based on values of X1,X2 and X3. e.g. // // Y_actual X1 X2 X3 // -------- ----- ----- ----- // 32.5 1.0 2.5 3.7 // 7.2 2.0 2.5 3.6 // 6.9 3.0 2.7 3.5 // 22.4 2.2 2.1 3.1 // 10.4 1.5 2.0 2.6 // 11.3 1.6 2.0 3.1 // // Find a, b and c such that Y_approximate = a * X1 + b * X2 + c * X3 // and such that the sum of (Y_actual - Y_approximate) squared is minimized. // // The method for determining the coefficients a, b and c follows directly // form the problem definition and mathematical analysis. (See more below) // // Y is called the dependent variable and X1 .. Xn the independent variables. // The procedures below implements a few special cases and the general case. // The number of independent variables can vary. // The approximation equation may use powers of the independent variables // The user may create additional independent variables e.g. X2 = SIN(X1) // with the restriction that the independent variables are linearly // independent. e.g. Xi not equal p Xj + q for all i,j,p,q // // // // The mathematical derivation of the least square fit is as follows : // // Given data for the independent variable Y in terms of the dependent // variables S,T,U and V consider that there exists a function F // such that Y = F(S,T,U,V) // The problem is to find coefficients a,b,c and d such that // Y_approximate = a * S + b * T + c * U + d * V // and such that the sum of ( Y - Y_approximate ) squared is minimized. // // Note: a, b, c, d are scalars. S, T, U, V, Y, Y_approximate are vectors. // // To find the minimum of SUM( Y - Y_approximate ) ** 2 // the derivatives must be taken with respect to a,b,c and d and // all must equal zero simultaneously. The steps follow : // // SUM( Y - Y_approximate ) ** 2 = SUM( Y - a*S - b*T - c*U - d*V ) ** 2 // // d/da = -2 * S * SUM( Y - A*S - B*T - C*U - D*V ) // d/db = -2 * T * SUM( Y - A*S - B*T - C*U - D*V ) // d/dc = -2 * U * SUM( Y - A*S - B*T - C*U - D*V ) // d/dd = -2 * V * SUM( Y - A*S - B*T - C*U - D*V ) // // Setting each of the above equal to zero and putting constant term on left // the -2 is factored out, // the independent variable is moved inside the summation // // SUM( a*S*S + b*S*T + c*S*U + d*S*V = S*Y ) // SUM( a*T*S + b*T*T + c*T*U + d*T*V = T*Y ) // SUM( a*U*S + b*U*T + c*U*U + d*U*V = U*Y ) // SUM( a*V*S + b*V*T + c*V*U + d*V*V = V*Y ) // // Distributing the SUM inside yields // // a * SUM(S*S) + b * SUM(S*T) + c * SUM(S*U) + d * SUM(S*V) = SUM(S*Y) // a * SUM(T*S) + b * SUM(T*T) + c * SUM(T*U) + d * SUM(T*V) = SUM(T*Y) // a * SUM(U*S) + b * SUM(U*T) + c * SUM(U*U) + d * SUM(U*V) = SUM(U*Y) // a * SUM(V*S) + b * SUM(V*T) + c * SUM(V*U) + d * SUM(V*V) = SUM(V*Y) // // To find the coefficients a,b,c and d solve the linear system of equations // // | SUM(S*S) SUM(S*T) SUM(S*U) SUM(S*V) | | a | | SUM(S*Y) | // | SUM(T*S) SUM(T*T) SUM(T*U) SUM(T*V) | x | b | = | SUM(T*Y) | // | SUM(U*S) SUM(U*T) SUM(U*U) SUM(U*V) | | c | | SUM(U*Y) | // | SUM(V*S) SUM(V*T) SUM(V*U) SUM(V*V) | | d | | SUM(V*Y) | // // Some observations : // S,T,U and V must be linearly independent. // There must be more data sets (Y, S, T, U, V) than variables. // The analysis did not depend on the number of independent variables // A polynomial fit results from the substitutions S=1, T=X, U=X**2, V=X**3 // The general case for any order polynomial follows, fit_pn. // Any substitution such as three variables to various powers may be used. public class least_square_fit { double rms_err, avg_err, max_err; int idata = 0; // reset after each use of the data set least_square_fit() { int n; System.out.println("least_square_fit.java"); // sample polynomial least square fit, 3th power { n=3+1; // need constant term and three powers 1,2,3 double A[][] = new double[n][n]; double C[] = new double[n]; double Y[] = new double[n]; System.out.println("fit exp(x)*sin(x) 100 points 0.0 to Pi, "+(n-1)+ " degree polynomial"); fit_pn(n, A, Y, C); check_pn(n, C); System.out.println("rms_err="+rms_err+", avg_err="+avg_err+ ", max_err="+max_err); System.out.println(" "); } { n=4+1; // need constant term and four powers 1,2,3,4 double A[][] = new double[n][n]; double C[] = new double[n]; double Y[] = new double[n]; System.out.println("fit exp(x)*sin(x) 100 points 0.0 to Pi, "+(n-1)+ " degree polynomial"); fit_pn(n, A, Y, C); check_pn(n, C); System.out.println("rms_err="+rms_err+", avg_err="+avg_err+ ", max_err="+max_err); System.out.println(" "); } { n=5+1; // need constant term and five powers 1,2,3,4,5 double A[][] = new double[n][n]; double C[] = new double[n]; double Y[] = new double[n]; System.out.println("fit exp(x)*sin(x) 100 points 0.0 to Pi, "+(n-1)+ " degree polynomial"); fit_pn(n, A, Y, C); check_pn(n, C); System.out.println("rms_err="+rms_err+", avg_err="+avg_err+ ", max_err="+max_err); System.out.println(" "); } { n=6+1; double A[][] = new double[n][n]; double C[] = new double[n]; double Y[] = new double[n]; System.out.println("fit exp(x)*sin(x) 100 points 0.0 to Pi, "+(n-1)+ " degree polynomial"); fit_pn(n, A, Y, C); check_pn(n, C); System.out.println("rms_err="+rms_err+", avg_err="+avg_err+ ", max_err="+max_err); System.out.println(" "); } { n=7+1; double A[][] = new double[n][n]; double C[] = new double[n]; double Y[] = new double[n]; System.out.println("fit exp(x)*sin(x) 100 points 0.0 to Pi, "+(n-1)+ " degree polynomial"); fit_pn(n, A, Y, C); check_pn(n, C); System.out.println("rms_err="+rms_err+", avg_err="+avg_err+ ", max_err="+max_err); System.out.println(" "); } } // end least_square_fit int data_set(double yx[]) // returns 1 for data, 0 for end { // sets value of y for value of x int k = 100; // 100 double x1 = 0.0; double dx1 = 0.0314; // approx Pi double xx; double yy; idata++; if(idata>k) {idata=0; return 0;} // ready for check xx = x1 + (double)idata * dx1; yy = Math.exp(xx)*Math.sin(xx); yx[1] = xx; yx[0] = yy; return 1; } // end data_set void fit_pn(int n, double A[][], double Y[], double C[]) { // n is number of coefficients, highest power-1 int i, j, k; double x, y, t; double yx[] = new double[2]; double pwr[] = new double[n]; for(i=0; i abs_pivot) { I_pivot = i; pivot = B[row[i]][k]; abs_pivot = Math.abs(pivot); } } // have pivot, interchange row indices hold = row[k]; row[k] = row[I_pivot]; row[I_pivot] = hold; // check for near singular if(abs_pivot < 1.0E-10) { for(int j=k+1; j