/* least_square_fit.c tailorable code, provide your input and setup */ #include #include #include #undef abs #define abs(x) (((x)<0.0)?(-(x)):(x)) #undef max #define max(x,y) (((x)>(y))?((x)):(y)) #undef min #define min(x,y) (((x)<(y))?((x)):(y)) static void simeq(int n, double A[], double Y[], double X[]); static FILE *inp = NULL; /* * The purpose of this package is to provide a reliable and convenient * means for fitting existing data by a few coefficients. The companion * package check_fit provides the means to use the coefficients for * interpolation and limited extrapolation. * * This package implements the least square fit. * * The problem is stated as follows : * Given measured data for values of Y based on values of X1,X2 and X3. e.g. * * Y_actual X1 X2 X3 * -------- ----- ----- ----- * 32.5 1.0 2.5 3.7 * 7.2 2.0 2.5 3.6 * 6.9 3.0 2.7 3.5 * 22.4 2.2 2.1 3.1 * 10.4 1.5 2.0 2.6 * 11.3 1.6 2.0 3.1 * * Find a, b and c such that Y_approximate = a * X1 + b * X2 + c * X3 * and such that the sum of (Y_actual - Y_approximate) squared is minimized. * * The method for determining the coefficients a, b and c follows directly * form the problem definition and mathematical analysis. (See more below) * * Y is called the dependent variable and X1 .. Xn the independent variables. * The procedures below implements a few special cases and the general case. * The number of independent variables can vary. * The approximation equation may use powers of the independent variables * The user may create additional independent variables e.g. X2 = SIN(X1) * with the restriction that the independent variables are linearly * independent. e.g. Xi not equal p Xj + q for all i,j,p,q * * * * The mathematical derivation of the least square fit is as follows : * * Given data for the independent variable Y in terms of the dependent * variables S,T,U and V consider that there exists a function F * such that Y = F(S,T,U,V) * The problem is to find coefficients a,b,c and d such that * Y_approximate = a * S + b * T + c * U + d * V * and such that the sum of ( Y - Y_approximate ) squared is minimized. * * Note: a, b, c, d are scalars. S, T, U, V, Y, Y_approximate are vectors. * * To find the minimum of SUM( Y - Y_approximate ) ** 2 * the derivatives must be taken with respect to a,b,c and d and * all must equal zero simultaneously. The steps follow : * * SUM( Y - Y_approximate ) ** 2 = SUM( Y - a*S - b*T - c*U - d*V ) ** 2 * * d/da = -2 * S * SUM( Y - A*S - B*T - C*U - D*V ) * d/db = -2 * T * SUM( Y - A*S - B*T - C*U - D*V ) * d/dc = -2 * U * SUM( Y - A*S - B*T - C*U - D*V ) * d/dd = -2 * V * SUM( Y - A*S - B*T - C*U - D*V ) * * Setting each of the above equal to zero and putting constant term on left * the -2 is factored out, * the independent variable is moved inside the summation * * SUM( a*S*S + b*S*T + c*S*U + d*S*V = S*Y ) * SUM( a*T*S + b*T*T + c*T*U + d*T*V = T*Y ) * SUM( a*U*S + b*U*T + c*U*U + d*U*V = U*Y ) * SUM( a*V*S + b*V*T + c*V*U + d*V*V = V*Y ) * * Distributing the SUM inside yields * * a * SUM(S*S) + b * SUM(S*T) + c * SUM(S*U) + d * SUM(S*V) = SUM(S*Y) * a * SUM(T*S) + b * SUM(T*T) + c * SUM(T*U) + d * SUM(T*V) = SUM(T*Y) * a * SUM(U*S) + b * SUM(U*T) + c * SUM(U*U) + d * SUM(U*V) = SUM(U*Y) * a * SUM(V*S) + b * SUM(V*T) + c * SUM(V*U) + d * SUM(V*V) = SUM(V*Y) * * To find the coefficients a,b,c and d solve the linear system of equations * * | SUM(S*S) SUM(S*T) SUM(S*U) SUM(S*V) | | a | | SUM(S*Y) | * | SUM(T*S) SUM(T*T) SUM(T*U) SUM(T*V) | x | b | = | SUM(T*Y) | * | SUM(U*S) SUM(U*T) SUM(U*U) SUM(U*V) | | c | | SUM(U*Y) | * | SUM(V*S) SUM(V*T) SUM(V*U) SUM(V*V) | | d | | SUM(V*Y) | * * Some observations : * S,T,U and V must be linearly independent. * There must be more data sets (Y, S, T, U, V) than variables. * The analysis did not depend on the number of independent variables * A polynomial fit results from the substitutions S=1, T=X, U=X**2, V=X**3 * The general case for any order polynomial follows, fit_pn. * Any substitution such as three variables to various powers may be used. */ static int data_set(double *y, double *x) /* returns 1 for data, 0 for end */ { /* sets value of y for value of x */ int k = 100; /* 100 */ static i = 0; double x1 = 0.0; double dx1 = 0.0314; /* approx Pi */ double xx; double yy; i++; if(i>k) {i=0; return 0;} /* ready for check */ xx = x1 + (double)i * dx1; yy = exp(xx)*sin(xx); *x = xx; *y = yy; return 1; } /* end data_set */ static void fit_pn(int n, double A[], double Y[], double C[]) { /* n is number of coefficients, highest power+1 */ int i, j, k; double x, y, t; double pwr[30]; /* at least n */ for(i=0; ixmax) xmax=x; if(xymax) ymax=y; if(y0; i--) { ya = (C[i]+ya)*x; } ya = ya + C[0]; diff = abs(y-ya); if(diff>maxe) { maxe=diff; imax=k; xbad=x; ybad=y; } sum = sum + diff; sumsq = sumsq + diff*diff; } printf("check_pn k=%d, xmin=%g, xmax=%g, ymin=%g, ymax=%g \n", k, xmin, xmax, ymin, ymax); *max_err = maxe; *avg_err = sum/(double)k; *rms_err = sqrt(sumsq/(double)k); printf("max=%g at %d, xbad=%g, ybad=%g\n", maxe, imax, xbad, ybad); } /* end check_pn */ static void fit_file(int n, double A[], double Y[], double C[]) { int i, j, k; double x, y, t; double pwr[30]; /* at least 2n */ for(i=0; ixmax) xmax=x; if(xymax) ymax=y; if(y0; i--) { ya = (C[i]+ya)*x; } ya = ya + C[0]; diff = abs(y-ya); if(diff>maxe) { maxe=diff; imax=k; xbad=x; ybad=y; } sum = sum + diff; sumsq = sumsq + diff*diff; } rewind(inp); printf("check_pn k=%d, xmin=%g, xmax=%g, ymin=%g, ymax=%g \n", k, xmin, xmax, ymin, ymax); *max_err = maxe; *avg_err = sum/(double)k; *rms_err = sqrt(sumsq/(double)k); printf("max=%g at %d, xbad=%g, ybad=%g\n", maxe, imax, xbad, ybad); } /* end check_pn */ static void simeq(int n, double A[], double Y[], double X[]) { /* PURPOSE : SOLVE THE LINEAR SYSTEM OF EQUATIONS WITH REAL */ /* COEFFICIENTS [A] * |X| = |Y| */ /* */ /* INPUT : THE NUMBER OF EQUATIONS n */ /* THE REAL MATRIX A should be A[i][j] but A[i*n+j] */ /* THE REAL VECTOR Y */ /* OUTPUT : THE REAL VECTOR X */ /* */ /* METHOD : GAUSS-JORDAN ELIMINATION USING MAXIMUM ELEMENT */ /* FOR PIVOT. */ /* */ /* USAGE : simeq(n,A,Y,X); */ /* */ /* */ /* WRITTEN BY : JON SQUIRE , 28 MAY 1983 */ /* ORIGINAL DEC 1959 for IBM 650, TRANSLATED TO OTHER LANGUAGES */ /* e.g. FORTRAN converted to Ada converted to C */ double *B; /* [n][n+1] WORKING MATRIX */ int *ROW; /* ROW INTERCHANGE INDICES */ int HOLD , I_PIVOT; /* PIVOT INDICES */ double PIVOT; /* PIVOT ELEMENT VALUE */ double ABS_PIVOT; int i,j,k,m; B = (double *)calloc((n+1)*(n+1), sizeof(double)); ROW = (int *)calloc(n, sizeof(int)); m = n+1; /* BUILD WORKING DATA STRUCTURE */ for(i=0; i ABS_PIVOT){ I_PIVOT = i; PIVOT = B[ROW[i]*m+k]; ABS_PIVOT = abs ( PIVOT ); } } /* HAVE PIVOT, INTERCHANGE ROW POINTERS */ HOLD = ROW[k]; ROW[k] = ROW[I_PIVOT]; ROW[I_PIVOT] = HOLD; /* CHECK FOR NEAR SINGULAR */ if( ABS_PIVOT < 1.0E-10 ){ for(j=k+1; j1) { printf("trying to open %s \n",argv[1]); inp = fopen(argv[1],"r"); } /* sample polynomial least square fit, 3th power */ n=3+1; /* need constant term and five powers 1,2,3,4,5 */ printf("fit exp(x)*sin(x) 100 points 0.0 to Pi, %d degree polynomial\n", n-1); fit_pn(n, A, Y, C); check_pn(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n\n", rms_err, avg_err, max_err); n=4+1; /* need constant term and five powers 1,2,3,4,5 */ printf("fit exp(x)*sin(x) 100 points 0.0 to Pi, %d degree polynomial\n", n-1); fit_pn(n, A, Y, C); check_pn(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n\n", rms_err, avg_err, max_err); n=5+1; /* need constant term and five powers 1,2,3,4,5 */ printf("fit exp(x)*sin(x) 100 points 0.0 to Pi, %d degree polynomial\n", n-1); fit_pn(n, A, Y, C); check_pn(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n\n", rms_err, avg_err, max_err); n=6+1; printf("fit exp(x)*sin(x) 100 points 0.0 to Pi, %d degree polynomial\n", n-1); fit_pn(n, A, Y, C); check_pn(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n\n", rms_err, avg_err, max_err); n=7+1; printf("fit exp(x)*sin(x) 100 points 0.0 to Pi, %d degree polynomial\n", n-1); fit_pn(n, A, Y, C); check_pn(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n", rms_err, avg_err, max_err); if(inp!=NULL) { n = 8; printf("\n\nfitting file %s, n=%d \n", argv[1], n); fit_file(n, A, Y, C); check_file(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n", rms_err, avg_err, max_err); n = 9; printf("\n\nfitting file %s, n=%d \n", argv[1], n); fit_file(n, A, Y, C); check_file(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n", rms_err, avg_err, max_err); n = 10; printf("\n\nfitting file %s, n=%d \n", argv[1], n); fit_file(n, A, Y, C); check_file(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n", rms_err, avg_err, max_err); n = 11; printf("\n\nfitting file %s, n=%d \n", argv[1], n); fit_file(n, A, Y, C); check_file(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n", rms_err, avg_err, max_err); n = 12; printf("\n\nfitting file %s, n=%d \n", argv[1], n); fit_file(n, A, Y, C); check_file(n, C, &rms_err, &avg_err, &max_err); printf("rms_err=%g, avg_err=%g, max_err=%g \n", rms_err, avg_err, max_err); fclose(inp); } return 0; } /* end main for least_square_fit.c */